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Ehresmann defined an order (called Bruhat order) on the
symmetric group, which plays a fundamental role in geometry,
algebra and representation theory:
two permutations are consecutive if they have consecutive
length and differ by multiplication
by a transposition
(on the right or left).
thick arrows =
permutohedron
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The EB-order possesses many symmetry properties.
For example, in every interval, there are as many permutations
of even length than of odd length.
This type of properties is accounted by the notion of Eulerian
structure : given a graded poset X , its incidence matrix E (i.e.
E [x , y ] = 1⇔ x ≤ y ) is graded.

E = E0 + E1 + E2 + . . .

The poset is Eulerian if E−1 = E0 − E1 + E2 − E3 + . . . .

The same notion applies to a directed graph with a rank.
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Young tableaux may be viewed as chains of permutations
w.r. to the EB-order.

2 2 1 1
4 3 3 2
3 4 4 4
1 1 2 3

⇔ 1342 < 1432 < 2431 < 3421

tableau chain

first permutation= left key = 1342 ,
last permutation=right key=3421

But keys may be obtained by the jeu de taquin . . .
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Keys by jeu de taquin on consecutive columns :

5 6
1 3

2 4
−→

5
1 3 6

4
2

↗ ↘
5
3 6
1 2 4

1 5 6
3 4

2
↘ ↗

5
3
1 2 6

4

−→ 1 5
3 6
2 4

5
3 5
1 1 1

= left key rightkey =
6
4 6
2 4 4
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Instead of permutations, one records also shapes, and one can
use one of the following equivalent ways of denoting the same
object :

key = set of columns embedded into each other
⇔ tableau congruent to some word of type . . . 3v32v21v1

⇔ monomial xv = xv1
1 xv2

2 . . .
⇔ weight v = [v1, v2, . . . ].

For the above example, the right key is

C(t) =

{
4 , 6

4
,

6
4
2

}
⇔ 6

4 6
2 4 4

≡ 6 6
4 4 4

2
⇔ x2x3

4 x2
6 ⇔ [0,1,0,3,0,2]
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Keys are very useful to describe Demazure characters, but they
can also be used for other problems in the theory of tableaux.
For example, the shape of a product t1t2 of two tableaux is equal
to the sum of the shapes of t1 and t2 if and only if

right key(t1) ≤ left key(t2) (componentwise)

Thus, the square of a tableau has twice the shape of the tableau
iff the tableau is a key. The square of the preceding tableau,
which is not a key, is

5
3 6
1 2 4

5
3 6
1 2 4

=
5 6
3 4
2 3 5
1 1 2 4 6

whose shape is [2,2,3,5] 6= 2× [1,2,3]
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Taquin is not enough
Crystal graphs
are needed
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Crystal graphs decompose the set of tableaux of the same
shape into i-strings:
Example of a 3-string ( one pairing 43)

3 4
2 2 3
1 1 2 3 3

→ 3 4
2 2 3
1 1 2 3 4

→ 3 4
2 2 3
1 1 2 4 4

→ 4 4
2 2 3
1 1 2 4 4

In fact, after paring and eliminating the letters 6= 3,4, a 3-string
reduces to

333→ 334→ 344→ 444

Action of si = symmetry with respect to the middle of the i-string
Action of πi on the head of the string = sum of all the elements
of the string
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One can also use π̂i = πi − 1 = πi - identity.
It sends the head of a i-string to the sum of all the other
elements of the string.

3 4
2 2 3
1 1 2 3 3

π̂3 =
3 4
2 2 3
1 1 2 3 4

+
3 4
2 2 3
1 1 2 4 4

+
4 4
2 2 3
1 1 2 4 4

These operators lift similar operators on Pol:

si transpose xi , xi+1,
πi is the operator f → (xi f − xi+1f si ) (xi − xi+1)

−1

π̂i = πi−1 is the operator f → (f − f si ) (xi/xi+1 − 1)−1
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Tableaux generated by π̂1, π̂2 , starting from a Yamanouchi
tableau:

K̂F210 = 2
1 1

ooooooo
OOOOOOO

OOOOOOO

K̂F120 = 2
1 2

K̂F201 = 3
1 1

K̂F102 = 2
1 3

+ 3
1 3

OOOOOOO

K̂F021 = 3
1 2

+ 3
2 2

ooooooo
ooooooo

K̂F012 = 3
2 3
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Given a partition λ, one defines KFλ = K̂Fλ = . . . 2λ21λ1, and the
other key polynomials by recursion. For i , v such that vi > vi+1,
then

KFvsi
= KFv πi & K̂Fvsi

= K̂Fv π̂i

Facts. K̂Fv is the sum of all tableaux with right key v .

KFv =
∑

u≤v
K̂Fu

The tableaux in KFv index a basis of a Demazure module.
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The construction of the bases of Demazure modules is not
symmetrical in the left and right keys. To recover symmetry, one
defines operators on Free⊗ Free.

di = π̂i ⊗ si + 1⊗ π̂i

= πi ⊗ si + 1⊗ θi ,

with θi = π̂i − si = πi − 1− si .

Caution! These operators do not satisfy the braid relations.
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Since one uses 1, πi , π̂i on the left factor, this factor remains in
the linear span of the KFv . One can project this factor on Pol
without loss of information.
On the right factor, one uses also the si , which preserve
tableaux, but not the linear span of the KFv . Thus, one takes Vλ,
the linear span of all tableaux of shape λ as second space.
Proposition. Given a strict partition λ ∈ Nn, a reduced
decomposition si . . . sj , and v = si . . . sj , then

KFλ ⊗ K̂Fλ di · · ·dj =
∑

u

∑
t

KFu ⊗ t

sum over all weights u ∈ Nn which are a permutation of λ, all
tableaux t which have left key u and right key v.
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Proof. By induction on the length of the reduced decomposition.
Adding one factor dj and looking at the action on j-strings, or
heads of j-strings is easy, as well as the modification of the left
key. Reasoning is reduced to words in the two letters j , j + 1.

Here is an example of a 2-string, writing the variable letters in
color. The letter in red determines the left key among
KF6402,K

F
6042.

4 4
2 2 3 4
1 1 1 1 1 2

KF6 40 2

→
4 4
2 3 3 4
1 1 1 1 1 2

KF6 40 2

→
4 4
3 3 3 4
1 1 1 1 1 2

KF6 04 2

Alain Lascoux Tableauhedron 16 / 28



Considering the component on the right only, given a strict
partition λ and a reduced decomposition si . . . sj , one obtains the
Tableauhedron with top λsi . . . sj by the expansion of
(si+θi+1) . . . (sj+θj+1).

420

s1 = 240 s2 = 402

s1s2 = 204

θ1 θ2

θ1θ2

s1θ2 θ1s2

expansion of
2 2
1 1 1 1

(s1+θ1+1)(s2+θ2+s2)

t θ1 = 2 2
1 1 1 2

t θ2 = 2 3
1 1 1 1

t θ1s2 = 3 3
1 1 1 3

t θ1θ2 =

2 2
1 1 1 3

+ 2 3
1 1 1 3

and ts1θ2 = 2 3
1 1 3 3

+ 2 2
1 1 3 3

+ 2 2
1 1 2 3

.
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420

s1 = 240 s2 = 402

s1s2 = 204

1 1

2

3 1

Eulerian property
satisfied by the edge

multiplicities:

2× 2 = 1× 3 + 1× 1

But, stronger statement, keeping the evaluation of tableaux
instead of only their number.
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One projects Free⊗ Free onto Pol♣ ⊗Pol
by sending i ⊗ j onto x−1

i ⊗ xj .

Since the image of πi under the inversion of variables ♣ is −θi ,
one has (

f♣⊗ g
)
di = −f θi♣⊗ gsi + f♣⊗ gθi .

Thus the operators to use on Pol⊗Pol are

d̃i = −θi ⊗ si + 1⊗ si

followed by the evaluation

f ⊗ g → f (1/x1, . . . ,1/xn)⊗ g(x1, . . . , xn)
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Our starting point was xλ ⊗ xλ. It image under d̃i is

xλ ⊗ xλ d̃i = −xλθi ⊗ xλsi + xλ ⊗ (xλθi)

which evaluates to 0 (one has in fact computed the image of
x−λxλ = 1 under the operator π̂i = ∂ixi+1).

At the level of tableaux, writing t41 = 2
1 1 1 1

, t14 = 2
1 2 2 2

,

one has
t41θ1 = 2

1 1 1 2
+ 2

1 1 2 2
= t + t ′ ,

and the relation is the symmetry property:

− t14

t
− t14

t ′
+

t
t41

+
t ′

t41
evaluates to 0 .
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Similarly, the action of d̃id̃j on xλ ⊗ xλ, corresponding to the
figure

T

• •

T ′

∑
t1

∑
t2∑

t5∑
t3

∑
t4

gives the relation∑ t3
t1

+
∑ t4

t2
−
∑ T ′

t5
−
∑ t5

T
∼ 0 .
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I shall not draw a picture for length 3 ! In general, let λ ∈ Nn be a
strict partition, Tab be the set of tableaux in {1, . . . ,n}, {σ} be
the set of permutation of λ.

Let E = E0 + E1 + E2 + . . . be the matrix, filtered by distance,
with entries

E [σ, ζ] =
∑

t
ev(t)

sum over all tableaux in Tab with left key σ, right key ζ.
In particular, E0 is the diagonal matrix with ev(σ) on its diagonal.

Theorem. The inverse of E is

E♣0 − E♣1 + E♣2 − E♣3 + . . .

Alain Lascoux Tableauhedron 22 / 28



For example, the matrix and its inverse corresponding to the
keys [4,2,0], [4,0,2], [2,4,0], [2,0,4] are


x2

2x1
4 x2x3x1

4 x2
3x1

3 x2x3
2x1

3 + x2
2x1

3x3

· x3
2x1

4 · x3
3x1

3

· · x2
4x1

2 x2x3
3x1

2 + x2
2x1

2x3
2 + x2

3x1
2x3

· · · x3
4x1

2




1
x2

2x1
4 − 1

x2x3x1
4 − 1

x2
3x1

3
1

x2x3
2x1

3 +
1

x2
2x1

3x3

· 1
x3

2x1
4 · − 1

x3
3x1

3

· · 1
x2

4x1
2 − 1

x2x3
3x1

2 − 1
x2

2x1
2x3

2 − 1
x2

3x1
2x3

· · · 1
x3

4x1
2


Alain Lascoux Tableauhedron 23 / 28



In summary, the preceding construction allows to understand
sequences t1, t2, t3, . . . of tableaux such that

right key(ti) ≤ left key(ti+1)

(that we call chains of tableaux).

Back to Schubert calculus:

Postulation of Schubert subvarieties of a flag manifold
= dimension of the space of sections of the powers of a

line bundle Lλ over the Schubert variety Sσ

⇔ (1− zxλ)−1OSσπω

∣∣∣
xi=1

= (1− zxλ)−1πσ−1

∣∣∣
xi=1

Alain Lascoux Tableauhedron 24 / 28



Combinatorially: enumerate chains of tableaux of shape λ, and
count them.
In the case of Grassmannians, this problem was solved by
Hodge (with the help of Littlewood for the determinantal formula
giving the postulation number). One has to enumerate chains of
partitions (with respect to inclusion of diagrams), or, equivalently
plane partitions.
For the usual Plücker embedding, λ = ρ = [n−1, . . . ,1]. In terms
of Key polynomials, one takes a permutation v of ρ and one
studies the function

1 + zKv + z2K2v + z3K3v + . . .
∣∣∣
xi=1
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General fact: for the Schubert variety corresponding to σ, one
obtains a rational function with denominator (1− z)`(σ)+1, and for
numerator a positive polynomial Eσ, whose description remains
to be written in terms of the tableauhedron.
For example, for n = 4, taking, up to inversion, all permutations
which do not belong to a Young subgroup, one has the following
Eσ:
[3, 1, 4, 2] : 1 + 8 z + 3 z2

[3, 4, 1, 2] : 1 + 25 z + 44 z2 + 8 z3

[4, 1, 2, 3] : 1 + 10 z + 5 z2

[4, 1, 3, 2] : 1 + 18 z + 24 z2 + 3 z3

[4, 2, 1, 3] : 1 + 19 z + 25 z2 + 3 z3

[4, 2, 3, 1] : 1 + 43 z + 150 z2 + 81 z3 + 5 z4

[4, 3, 1, 2] : 1 + 38 z + 120 z2 + 58 z3 + 3 z4

[4, 3, 2, 1] : 1 + 57 z + 302 z2 + 302 z3 + 57 z4 + z5
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There is a symmetry such that (1− zxρ)−1πσ and (1− zxρ)−1π̂σ
have numerators reversed of each other.
Let us compute, for n = 4, (1− zx3210)−1 π̂3π̂2π̂1 . There are 8
keys and 6 tableaux which are not keys:

t1 =
3
2 3
1 1 2

, t2 =
4
2 3
1 1 1

,

t3 =
4
2 3
1 1 2

, t4 =
4
2 3
1 2 2

, t5 =
4
3 3
1 1 2

, t6 =
4
3 3
1 2 2

The numerator is

z(1 + zt0 + z2t0t0 + z3t0t0t0 + . . . ) π̂3π̂2π̂1(1− z)4
∣∣∣
ti=1

Explicitly, specializing the keys to 1, this numerator is

z(1+t3 + t4 + t5 + t6)+z2(4+t1 + t2 −t3 +t4 + t5 + t6+t2t5+t2t6)+z3

which specializes to 5z + 10z2 + z3, but Euler is needed to
eliminate the minus sign!
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3210

2310 1320

3120 2301 0321

3201 3021

t1
t4

t3 t5 + t6

t2
Here is the structure with which to make the preceding
computation, with the Euler relation 2t3 ∼ t2t5 + t2t6.

Alain Lascoux Tableauhedron 28 / 28


