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Alternatively, X = GL,(C)/B, where B denotes the group of
upper-triangular matrices (Borel subgroup). In this form, the
definition can be extended to arbitrary connected reductive groups.

Dimension
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Flag varieties and representation theory

Definition
A collection of integers A = (A1,...,\p) € Z" is a strictly dominant
weight of the group GL,(C) if \j < \jyq foralli=1,...,n—1.

Fact
very ample line bundles on X <— irreducible representations of

GL,(C) with strictly dominant weights.

Construction
e V), — the irreducible GL,-module with the highest weight A
= X <= P(V)), g — gv\ — embedding;

e L — very ample line bundle
— HO(X,L)* = V)
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Gelfand-Zetlin polytope

For each strictly dominant weight )\, define a convex polytope
Py C RY (where d = n(n — 1)/2) with integer vertices.
Origins

Gelfand and Zetlin constructed a natural basis in V). The basis

elements are parameterized by the integer points inside and at the
boundary of Py.

Dimension

dimPy =d =dimX



Gelfand—Zetlin polytopes

The Gelfand-Zetlin polytope P, is defined by inequalities:

A1 A2 A3 An
1 1 1
X1 X3 ) Xn—1
Xi Xn—2
n—2 n—2
X; X X3
e
X1
h 1 1 . L nh—1 di . d d th

where (x{,...,x;_1;...;x{ ) are coordinates in RY, and the
notation

a b

c

means a < ¢ < b.



Gelfand—Zetlin polytopes

A Gelfand-Zetlin
polytope for GLs:
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Flag varieties and Gelfand—Zetlin polytopes

Goal
Use combinatorics of Py to study geometry of X.

Results

e Relation between Schubert varieties and preimages of rc-faces
of Py under the Guillemin—Sternberg moment map X — P,
(Kogan, 2000)

e Degenerations of Schubert varieties to (reducible) toric
varieties given by (unions of) faces of Py (Kogan—Miller,
Knutson—Miller, 2003)

e Description of H*(X,Z) using volume polynomial of Py
(Kaveh, 2003)

e Schubert calculus: intersection product of Schubert cycles in
H*(X,Z) = intersection of faces in Py (K.=Smirnov—Timorin,
2011)
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Schubert calculus and Gelfand—Zetlin polytopes

Definition
For each permutation w € S,,, the Schubert variety X,, C X is

X,, = BwB,

where w acts on the standard basis vectors e; by the formula
€i 7 ew(i)-

Dimension
dim X,, = £(w)

Definition
The Schubert cycle [X,] is the class of X, in H*(X,Z).
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~Ppyra v,
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[Xsl 5251 ]:
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Schubert calculus and Gelfand—Zetlin polytopes

[Xa]+[Xs]



Schubert calculus and Gelfand—Zetlin polytopes

Xl = \/[Xs2]/ =\
[X52$1]2 = ’ . ( ' +/ ) = / [Xsl]

/
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GL,

Any two Schubert cycles [X,,] and [X,,] can be represented as sums
of faces so that every face appearing in the decomposition of [X,]
is transverse to every face appearing in the decomposition of [X,,/]!.

Corollary
Intersection of any two Schubert cycles can be represented by linear
combinations of faces with nonnegative coefficients.

Question
Why intersecting faces is better than multiplying Schubert
polynomials?

'see ARX1v:1101.0278v1 [MATH.AG] for precise formulas
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Schubert calculus and Gelfand—Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with
faces are cancelation free.

Example for GL3
Compute [Xy,] - [Xs,s,] in two ways: via Schubert polynomials and
via faces.

xixo(x1 + x2) = x¥xo — x1x3 =1 — 1 = 0 (cancelation)

intersection is empty (no
— (0 cancelation)
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Arbitrary reductive groups

How to relate Schubert cycles to (unions of) faces of polytopes?

Main tool
A convex geometric incarnation of divided difference operators.
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Tool: divided difference operators

Definition (for GL,)

Divided difference operator §; (for i =1,..., n— 1) acts on
Z[x, ..., xp)] as follows:
S f f_is’(f)
Xi — Xi+1
Example
2 X1 Xz2
0n(xg) = =x1+ x2
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Divided difference operators in cohomology

Theorem (Bernstein—-Gelfand-Gelfand, Demazure, 1971)

Let w = s; ...s;j, be a reduced representation. In the Borel
presentation,

[Xw] = i, ... 0, [Xidl,
where [Xj4] is the class of a point.

Remark
For GL,,
[Xiq] = X{’flng2 c e Xp_1.

For other reductive groups, there is sometimes no denominator-free
formula.
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Gysin morphism

Let P; be the minimal parabolic subgroup, and p; : G/B — G/P;
the natural projection. Then the action of ; on H*(G/B,Z)
coincides with the action of pf o p;,:

*

5 H*(G/B,Z) 2= H*(G/P;,Z) 25 H*(G/B, 7).

Example

If G = GL,, then G/P; is obtained by forgetting the i-th space in a
flag.
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Generalizations of divided difference operators

Generalized cohomology theories

Let A* be a generalized oriented cohomology theory. Define
generalized divided difference operator 5,-A as the composition

A A
57 AY(G/B,Z) 25 A*(G /P, Z) 2 AY(G)B, 7).

Examples

e classical cohomology H* or Chow ring CH*
e K-theory Kj

e complex cobordism MU* or algebraic cobordism Q*
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Generalizations of divided difference operators

Question
Is there an algebraic formula for 647

Formal group law

There exists a formal power series Fa(x,y) = x +y + ... with
coefficients in A such that

F(cf\(L), e (M) = cf' (L& M)
in A*(X) for any pair of line bundles L and M on a variety X.

Examples

CH* F(x,y)=x+y
Ky F(x,y) =x+y—xy

Q* Flx,y)=x+y = [Pxy + ([P'] = [PP])x?y + ...
universal formal group law
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Generalizations of divided difference operators

Theorem

MA=(1+s)——
' ( +SI)Xi —AXit+1

Applications

Formulas for “Schubert cycles” in the “Borel presentation” for
A*(G/B). Algorithms for multiplying “Schubert cycles”.

H* Bernstein—Gelfand—Gelfand, Demazure, 1973
K; Demazure, 1974
MU* Bressler—Evens, 1992
Q* Hornbostel-K., Calmés—Petrov—Zainoulline, 2009
Q% K.—Krishna, 2011
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Demazure operators

Notation

Let G be a connected reductive group of semisimple rank r, Ag the
weight lattice of G, and Z[A¢] the group ring. Simple roots of G
are denoted by aq,..., a,.

Remark
Elements of A¢ are written in the form

> m(u)et.

HENG
Definition
Demazure operator D; (for i = 1,..., n) acts on Z[Ag] as follows:
f— e%s;(f
D, oy T EMSE)

1— e



Demazure operators

Example for GL,,

e %] a1 p01 00
e — e e
Dl(ea2) _ — o™ eaﬁ-ag
1—em




Demazure operators

Example for GL,,

¥ _ g™ g1t n
a2y — a2 Qa1 T2
Di(e*?) = g =e"+te

Exercise
Define (A, «j) by the identity s;i(A) = A — (A, o).

<0
D,-(eA) = 07 ()\,a,-) =1
>1

Di(e*) = M1 + e + ... 4+ e~ (Mei)aiy, (A, i)
Di(e*) = —eM1+ e % + ...+ e ((hai)=2)ai) () ;)



Demazure operators

Remark
For G = GL,, put x; := 1 + eXi where the character x; is given by
the i-th entry of the diagonal torus. Then

D; = -6,

that is, the Demazure operator is equal up to a sign to the K-theory
divided difference operator (= isobaric divided difference operator).
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Demazure characters

Definition

Demazure B-module Vj ,, 1= H°(Xy, Lalx,)* is the dual space to
the space of global sections of the line bundle £y on G/B
(corresponding to V) restricted to X.

Definition

Demazure character x.,(\) of V), is the sum over all basis weight
vectors of the exponentials of the corresponding weights:

Xw(A) ==Y myw(p)e”

BEN

Demazure character formula [Andersen, 1985, .. .]

Let w = s; ...s;, be a reduced representation. Then

XW()\) == D;1 PN D,-Ee’\



Demazure characters
Examples

e Viiga = Cy, xia(N)
° V) wy — Vi, XWO()\)

Weyl character
Remark

:eA

For GL,, the definition of Gelfand—Zetlin polytopes implies that

Xuo(A) = Z eP()

XGP)\r‘IZd
where p(x) :=

= (075 e + (077
the weight of x

1 )
= J)az-i- X a1 s

«O>» «Fr «E»r» «E>»

nae
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Demazure characters

Examples

o Viig=Cy, xig(A) = e
° Viiw, = Vi, Xuo(A) — Weyl character

Remark
For GL,, the definition of Gelfand—Zetlin polytopes implies that

Xwy(A) = Z eP()

xeP\NZ4

where p(x) == (3272 L x xHen + (72 “2x xPag + ...+ X tan_1 s

the weight of x.
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A Gelfand-Zetlin polytope for
GL3:




Demazure characters and Gelfand—Zetlin polytopes

The weight polytope (=image of
P under the projection p):

¥
L

DA



Convex geometric Demazure operators

Goal

Define operators D;,..., D, on convex polytopes in R? and a
weight map RY — R’ such that for any reduced decomposition
w = s, ...s;, the sequence of polytopes

Dy D;, Dj, D;,
pt(A) — P1(A) — P2(\) — ... — Py()N)

yields the sequence of the Demazure characters

Dj, D

D; D;
et % Xs;, (A) 2 Xsiys, (A) — - — xw(N)

that is,

W= Y e

xEPy(\)NZ
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Definition
A root space of rank r is a real vector space R together with a
direct sum decomposition

RI=R" @ ... R*

and a collection of linear functions /1, ..., I, € (Rd)* such that /;
vanishes on RY



Convex geometric Demazure operators

Definition
A root space of rank r is a real vector space R together with a
direct sum decomposition

RY =R @ ... R*

and a collection of linear functions /1, ..., I, € (Rd)* such that /;
vanishes on RY

Definition

A convex polytope P C RY is called a parapolytope if for all
i=1,..., r, and any vector c € R the intersection of P with the
parallel translate ¢ + R% of R% is a coordinate parallelepiped.
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A coordinate
parallelepiped in R3

Notation
Coordinates in RY: (x{, ... ,x&l; ce X X )
Definition

A coordinate parallelepiped in RY is

N(p,v) = {(X{,...,xgi) € Ry, ij <vj,j=1,...,d}.



Convex geometric Demazure operators

Example
d= Ln{”, r=(n-1)

RI=R" 1R 2g..oR!

Exercise
The Gelfand—Zetlin polytope P, is a parapolytope.

A1 A2 A3
1 1 1
X1 X3 ) Xp—1
X1 Xn—2
n—2 n—2
X1 X2
n—1



Convex geometric Demazure operators

R3=R2QR

The slices {z = 1} and
{z = —1} are coordinate
rectangles.




Convex geometric Demazure operators
Definition

1. P=N(u,v) C (c+R%) — coordinate parallelepiped
Choose the smallest j = 1,..., d; such that ; = v;. Put

D;(P) := N(u,v"),

d:

i

where v} = vy for all k # j and v] is defined by the equality

k=1

S (pk + ) = Ii(©).

2. P — any parapolytope

ceRrd

Di(P) = U {D;j(P N (c+R%))}

«O>» «Fr « >

«E)»

DA



Convex geometric Demazure operators
Definition
1. P=N(u,v) C (c+R%) — coordinate parallelepiped
Choose the smallest j = 1,..., d; such that ; = v;. Put
Di(P) == N(u, V),
where v} = vy for all k # j and v} is defined by the equality

d;

D (hk+14) = li(e).

k=1



Convex geometric Demazure operators
Definition

1. P=N(u,v) C (c+R%) — coordinate parallelepiped
Choose the smallest j = 1,..., d; such that ; = v;. Put

Di(P) = N(p, "),
where v} = vy for all k # j and v} is defined by the equality

d;

D (hk+14) = li(e).

k=1

2. P — any parapolytope

Di(P) = | J {Di(P N (c +R¥))}

ceRd
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Examples
R3 = R2 @R, Il(X7y7z) =2z /2(X,y,Z) = X+y

P ={(a, b,c)} — a point
Dl(P) - [(37 b, c),(a’, b, C)]?

where &’ is defined by the equality

at+b+a +b=h(a,b,c), i

that is,
d=c—a-2b
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Examples
R3 = R2 @R, Il(X7y7z) =2z /2(X,y,Z) = X+y

P ={(a, b,c)} — a point
Dl(P) - [(37 b, c),(a’, b, C)]?

where &’ is defined by the equality

at+b+a +b=h(a,b,c), i

that is,
d=c—a-2b
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R*=R*®OR, h(x.y,2) =2z h(x,y,2) =x+y
P =1(a, b,c),(d, b, c)] — segment
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R*=R*®OR, h(x.y,2) =2z h(x,y,2) =x+y
P =1(a, b,c),(d, b, c)] — segment

D2('D): U [(X,b,C),(X,b,C/(X))],

x€la,a’]

where
d(x)=x+b-c
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Convex geometric Demazure operators

R3 = R? SR, Il(x,y,z) =2z, /2(X,y,2) =x+ty
Exercise

D1D> D1 ({(M1, A2, A1)}) — Gelfand—Zetlin polytope for
A= (A1, A2, = A1 — A2).
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R3 = R? SR, Il(x,y,z) =2z, /2(X,y,2) =x+ty
Exercise

D1D> D1 ({(M1, A2, A1)}) — Gelfand—Zetlin polytope for
A= (A1, A2, = A1 — A2).




Convex geometric Demazure operators

R3 = R? SR, ll(vavz) =2z, /2(X,y,2) =x+ty
Exercise

D1D> D1 ({(M1, A2, A1)}) — Gelfand—Zetlin polytope for
A= (A1, A2, = A1 — A2).
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R3 = R? SR, ll(vavz) =2z, /2(X,y,2) =x+ty
Exercise

D1D> D1 ({(M1, A2, A1)}) — Gelfand—Zetlin polytope for
A= (A1, A2, = A1 — A2).
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Convex geometric Demazure operators

GL, root space
RI=R"1oR"2@...0R!

Functions /;

/,'(X) = O‘;_1(X) + o‘,'+1(X),

where 0;(x) = Zj’;l x! (=sum of coordinates in the i-th row) for

i=1,...,n—1landog=0,=0
1 1 1
X1 X2 ) Xn—1
X1 Xn—2
n—2 n—2
X1 X2



Convex geometric Demazure operators

Proposition
The Gelfand-Zetlin polytope P, coincides with

[(Dl e anl)(Dl c. Dn,2) . (Dl)] (p),

where p € R? is the point (A1,..., A 1; A1, An_2i. .. A1),
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li(x) = Z(ak, a;)ok(x).
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Convex geometric Demazure operators

Wo
Fix a reduced decomposition wg = sj, ... s;, of the longest element
in the Weyl group of G.

(G, wp) root space

RY=R" ¢ ... R,

where d; is the number of si; in Wo such that i; = .

li(x) = Z(ak, a;)ok(x).
ki

Example
For G = GL, and wp = (s1...Sp—1)(s1...5n—2)...(s1), we get
GL,, root space.



Convex geometric Demazure operators

Theorem
For each dominant weight \ of G, there exists a point py € RY
such that the polytope

P .= D,'1 N D,‘d(p)\)

yields the Weyl character x(V)) of the irreducible G-module V),
namely,



D1 D> D1 (p)

D>D1(p)

Geometric mitosis

D1D(p)




Geometric mitosis

DiD;D1(p) = ' D1Dy(p) = g

D> Di(p) '

D¢




