Convex geometric Demazure operators

Valentina Kiritchenko*

*Faculty of Mathematics and Laboratory of Algebraic Geometry, National Research University Higher School of Economics and Kharkevich Insitute for Information Transmission Problems RAS

The 5th MSJ-SI workshop on Schubert Calculus, July 24, 2012

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

うして ふゆう ふほう ふほう うらつ

0. Toric geometry Newton (or moment) polytopes

1. Representation theory

Gelfand–Zetlin polytopes and *string polytopes* (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

うして ふゆう ふほう ふほう うらつ

0. Toric geometry Newton (or moment) polytopes

1. Representation theory Gelfand–Zetlin polytopes and string polytopes (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

うして ふゆう ふほう ふほう うらつ

0. Toric geometry Newton (or moment) polytopes

1. Representation theory

Gelfand–Zetlin polytopes and string polytopes (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

0. Toric geometry Newton (or moment) polytopes

1. Representation theory

Gelfand–Zetlin polytopes and string polytopes (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

Flag varieties

Definition

The flag variety X is the variety of complete flags in \mathbb{C}^n :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n | \dim V^i = i\}$$

Remark

Alternatively, $X = GL_n(\mathbb{C})/B$, where B denotes the group of upper-triangular matrices (*Borel subgroup*). In this form, the definition can be extended to arbitrary connected reductive groups.

Dimension

$$\dim X = \frac{n(n-1)}{2}$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Э

Flag varieties

Definition

The flag variety X is the variety of complete flags in \mathbb{C}^n :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n | \dim V^i = i\}$$

Remark

Alternatively, $X = GL_n(\mathbb{C})/B$, where B denotes the group of upper-triangular matrices (*Borel subgroup*). In this form, the definition can be extended to arbitrary connected reductive groups.

Dimension

$$\dim X = \frac{n(n-1)}{2}$$

Flag varieties

Definition

The flag variety X is the variety of complete flags in \mathbb{C}^n :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n | \dim V^i = i\}$$

Remark

Alternatively, $X = GL_n(\mathbb{C})/B$, where B denotes the group of upper-triangular matrices (*Borel subgroup*). In this form, the definition can be extended to arbitrary connected reductive groups.

Dimension

$$\dim X = \frac{n(n-1)}{2}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition

A collection of integers $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ is a strictly dominant weight of the group $GL_n(\mathbb{C})$ if $\lambda_i < \lambda_{i+1}$ for all $i = 1, \ldots, n-1$.

Fact

very ample line bundles on $X \leftrightarrow$ irreducible representations of $GL_n(\mathbb{C})$ with strictly dominant weights.

Construction

• V_{λ} — the irreducible GL_{n} -module with the highest weight $\lambda \implies X \hookrightarrow \mathbb{P}(V_{\lambda}), g \mapsto gv_{\lambda}$ — embedding;

(日) (四) (日) (日) (日)

• \mathcal{L} - very ample line bundle $\implies H^0(X, \mathcal{L})^* = V_\lambda$

Definition

A collection of integers $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{Z}^n$ is a strictly dominant weight of the group $GL_n(\mathbb{C})$ if $\lambda_i < \lambda_{i+1}$ for all i = 1, ..., n-1.

Fact

very ample line bundles on $X \leftrightarrow$ irreducible representations of $GL_n(\mathbb{C})$ with strictly dominant weights.

Construction

• V_{λ} — the irreducible GL_n -module with the highest weight $\lambda \implies X \hookrightarrow \mathbb{P}(V_{\lambda}), g \mapsto gv_{\lambda}$ — embedding;

うして ふゆう ふほう ふほう うらつ

• \mathcal{L} — very ample line bundle $\implies H^0(X, \mathcal{L})^* = V_\lambda$

Definition

A collection of integers $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ is a strictly dominant weight of the group $GL_n(\mathbb{C})$ if $\lambda_i < \lambda_{i+1}$ for all $i = 1, \ldots, n-1$.

Fact

very ample line bundles on $X \leftrightarrow$ irreducible representations of $GL_n(\mathbb{C})$ with strictly dominant weights.

Construction

• V_{λ} — the irreducible GL_n -module with the highest weight $\lambda \implies X \hookrightarrow \mathbb{P}(V_{\lambda}), g \mapsto gv_{\lambda}$ — embedding;

• \mathcal{L} - very ample line bundle $\implies H^0(X, \mathcal{L})^* = V_\lambda$

Definition

A collection of integers $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{Z}^n$ is a strictly dominant weight of the group $GL_n(\mathbb{C})$ if $\lambda_i < \lambda_{i+1}$ for all i = 1, ..., n-1.

Fact

very ample line bundles on $X \leftrightarrow$ irreducible representations of $GL_n(\mathbb{C})$ with strictly dominant weights.

Construction

• V_{λ} — the irreducible GL_n -module with the highest weight $\lambda \implies X \hookrightarrow \mathbb{P}(V_{\lambda}), \ g \mapsto gv_{\lambda}$ — embedding;

• \mathcal{L} — very ample line bundle $\implies H^0(X, \mathcal{L})^* = V_\lambda$

Definition

A collection of integers $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ is a strictly dominant weight of the group $GL_n(\mathbb{C})$ if $\lambda_i < \lambda_{i+1}$ for all $i = 1, \ldots, n-1$.

Fact

very ample line bundles on $X \leftrightarrow$ irreducible representations of $GL_n(\mathbb{C})$ with strictly dominant weights.

Construction

• V_{λ} — the irreducible GL_n -module with the highest weight $\lambda \implies X \hookrightarrow \mathbb{P}(V_{\lambda}), g \mapsto gv_{\lambda}$ — embedding;

うして ふゆう ふほう ふほう うらつ

• \mathcal{L} - very ample line bundle $\implies H^0(X, \mathcal{L})^* = V_\lambda$

Representation theory and Gelfand–Zetlin polytopes

Gelfand-Zetlin polytope

For each strictly dominant weight λ , define a convex polytope $P_{\lambda} \subset \mathbb{R}^d$ (where d = n(n-1)/2) with integer vertices.

Origins

Gelfand and Zetlin constructed a natural basis in V_{λ} . The basis elements are parameterized by the integer points inside and at the boundary of P_{λ} .

Dimension

$$\dim P_{\lambda} = d = \dim X$$

Representation theory and Gelfand–Zetlin polytopes

Gelfand-Zetlin polytope

For each strictly dominant weight λ , define a convex polytope $P_{\lambda} \subset \mathbb{R}^d$ (where d = n(n-1)/2) with integer vertices.

Origins

Gelfand and Zetlin constructed a natural basis in V_{λ} . The basis elements are parameterized by the integer points inside and at the boundary of P_{λ} .

Dimension

$$\dim P_{\lambda} = d = \dim X$$

Representation theory and Gelfand–Zetlin polytopes

Gelfand-Zetlin polytope

For each strictly dominant weight λ , define a convex polytope $P_{\lambda} \subset \mathbb{R}^d$ (where d = n(n-1)/2) with integer vertices.

Origins

Gelfand and Zetlin constructed a natural basis in V_{λ} . The basis elements are parameterized by the integer points inside and at the boundary of P_{λ} .

Dimension

$$\dim P_{\lambda} = d = \dim X$$

Gelfand–Zetlin polytopes

The Gelfand–Zetlin polytope P_{λ} is defined by inequalities:

where $(x_1^1, \ldots, x_{n-1}^1; \ldots; x_1^{n-1})$ are coordinates in \mathbb{R}^d , and the notation

a b c

means a < c < b.

Gelfand-Zetlin polytopes

A Gelfand–Zetlin polytope for *GL*₃:

$$\begin{array}{cccc}
-1 & 0 & 1 \\
 & x & y \\
 & z
\end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Goal

Use combinatorics of P_{λ} to study geometry of X.

- Relation between Schubert varieties and preimages of rc-faces of P_λ under the Guillemin–Sternberg moment map X → P_λ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_λ (Kogan-Miller, Knutson-Miller, 2003)
- Description of H^{*}(X, Z) using volume polynomial of P_λ (Kaveh, 2003)
- Schubert calculus: intersection product of Schubert cycles in *H**(*X*, ℤ) = intersection of faces in *P*_λ (K.–Smirnov–Timorin, 2011)

Goal

Use combinatorics of P_{λ} to study geometry of X.

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin–Sternberg moment map $X \to P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan–Miller, Knutson–Miller, 2003)
- Description of H^{*}(X, Z) using volume polynomial of P_λ (Kaveh, 2003)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z})$ = intersection of faces in P_{λ} (K.-Smirnov-Timorin, 2011)

Goal

Use combinatorics of P_{λ} to study geometry of X.

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin–Sternberg moment map $X \rightarrow P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan–Miller, Knutson–Miller, 2003)
- Description of H^{*}(X, Z) using volume polynomial of P_λ (Kaveh, 2003)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z})$ = intersection of faces in P_{λ} (K.-Smirnov-Timorin, 2011)

Goal

Use combinatorics of P_{λ} to study geometry of X.

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin–Sternberg moment map $X \rightarrow P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan-Miller, Knutson-Miller, 2003)
- Description of H^{*}(X, Z) using volume polynomial of P_λ (Kaveh, 2003)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z})$ = intersection of faces in P_{λ} (K.-Smirnov-Timorin, 2011)

Goal

Use combinatorics of P_{λ} to study geometry of X.

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin–Sternberg moment map $X \rightarrow P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan-Miller, Knutson-Miller, 2003)
- Description of H^{*}(X, Z) using volume polynomial of P_λ (Kaveh, 2003)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z})$ = intersection of faces in P_{λ} (K.-Smirnov-Timorin, 2011)

Goal

Use combinatorics of P_{λ} to study geometry of X.

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin–Sternberg moment map $X \rightarrow P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan-Miller, Knutson-Miller, 2003)
- Description of H^{*}(X, ℤ) using volume polynomial of P_λ (Kaveh, 2003)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X, \mathbb{Z})$ = intersection of faces in P_{λ} (K.-Smirnov-Timorin, 2011)

Definition

For each permutation $w \in S_n$, the Schubert variety $X_w \subset X$ is

$$X_w = \overline{BwB},$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

where w acts on the standard basis vectors e_i by the formula $e_i \mapsto e_{w(i)}$.

Dimension dim $X_w = \ell(w)$

Definition The *Schubert cycle* $[X_w]$ is the class of X_w in $H^*(X, \mathbb{Z})$

Definition

For each permutation $w \in S_n$, the Schubert variety $X_w \subset X$ is

$$X_w = \overline{BwB},$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

where w acts on the standard basis vectors e_i by the formula $e_i \mapsto e_{w(i)}$.

Dimension dim $X_w = \ell(w)$

Definition The *Schubert cycle* $[X_w]$ is the class of X_w in $H^*(X, \mathbb{Z})$

Definition

For each permutation $w \in S_n$, the Schubert variety $X_w \subset X$ is

$$X_w = \overline{BwB},$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

where w acts on the standard basis vectors e_i by the formula $e_i \mapsto e_{w(i)}$.

Dimension dim $X_w = \ell(w)$

Definition

The Schubert cycle $[X_w]$ is the class of X_w in $H^*(X, \mathbb{Z})$.

・ロト ・個ト ・モト ・モト

æ

(日) (四) (日) (日)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣��

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のなの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

GL_n

Any two Schubert cycles $[X_w]$ and $[X_{w'}]$ can be represented as sums of faces so that every face appearing in the decomposition of $[X_w]$ is transverse to every face appearing in the decomposition of $[X_{w'}]^1$.

Corollary

Intersection of any two Schubert cycles can be represented by linear combinations of faces with nonnegative coefficients.

Question

Why intersecting faces is better than multiplying Schubert polynomials?

¹see ARXIV:1101.0278V1 [MATH.AG] for precise formulas $\langle a \rangle \langle a \rangle \langle a \rangle \langle a \rangle$

GL_n

Any two Schubert cycles $[X_w]$ and $[X_{w'}]$ can be represented as sums of faces so that every face appearing in the decomposition of $[X_w]$ is transverse to every face appearing in the decomposition of $[X_{w'}]^1$.

Corollary

Intersection of any two Schubert cycles can be represented by linear combinations of faces with nonnegative coefficients.

Question

Why intersecting faces is better than multiplying Schubert polynomials?

GL_n

Any two Schubert cycles $[X_w]$ and $[X_{w'}]$ can be represented as sums of faces so that every face appearing in the decomposition of $[X_w]$ is transverse to every face appearing in the decomposition of $[X_{w'}]^1$.

Corollary

Intersection of any two Schubert cycles can be represented by linear combinations of faces with nonnegative coefficients.

Question

Why intersecting faces is better than multiplying Schubert polynomials?

¹see ARXIV:1101.0278v1 [MATH.AG] for precise formulas $\langle a \rangle \langle a \rangle \langle a \rangle \langle a \rangle$

Answer

Faces are more "positive" than monomials: all computations with faces are cancelation free.

Example for GL_3

Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1x_2(x_1+x_2) = x_1^2x_2 - x_1x_2^2 = 1 - 1 = 0$$
 (cancelation)

intersection is empty (no cancelation)

<ロ> (四) (四) (三) (三) (三) (三)
Answer

Faces are more "positive" than monomials: all computations with faces are cancelation free.

Example for GL_3

Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1x_2(x_1+x_2)=x_1^2x_2-x_1x_2^2=1-1=0$$
 (cancelation)

intersection is empty (no cancelation)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Answer

Faces are more "positive" than monomials: all computations with faces are cancelation free.

Example for GL_3

Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1x_2(x_1+x_2)=x_1^2x_2-x_1x_2^2=1-1=0$$
 (cancelation)

intersection is empty (no cancelation)

Answer

Faces are more "positive" than monomials: all computations with faces are cancelation free.

Example for GL_3

Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1x_2(x_1+x_2)=x_1^2x_2-x_1x_2^2=1-1=0$$
 (cancelation)

intersection is empty (no cancelation)

Answer

Faces are more "positive" than monomials: all computations with faces are cancelation free.

Example for GL_3

Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1x_2(x_1+x_2)=x_1^2x_2-x_1x_2^2=1-1=0$$
 (cancelation)

intersection is empty (no cancelation)

Answer

Faces are more "positive" than monomials: all computations with faces are cancelation free.

Example for GL_3

Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1x_2(x_1+x_2)=x_1^2x_2-x_1x_2^2=1-1=0$$
 (cancelation)

intersection is empty (no cancelation)

Answer

Faces are more "positive" than monomials: all computations with faces are cancelation free.

Example for GL_3

Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1x_2(x_1+x_2)=x_1^2x_2-x_1x_2^2=1-1=0$$
 (cancelation)

intersection is empty (no cancelation)

Answer

Faces are more "positive" than monomials: all computations with faces are cancelation free.

Example for GL_3

Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1x_2(x_1+x_2)=x_1^2x_2-x_1x_2^2=1-1=0$$
 (cancelation)

intersection is empty (no cancelation)

Answer

Faces are more "positive" than monomials: all computations with faces are cancelation free.

Example for GL_3

Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1x_2(x_1+x_2)=x_1^2x_2-x_1x_2^2=1-1=0$$
 (cancelation)

intersection is empty (no cancelation)

・ロト ・聞ト ・ヨト ・ヨト

Arbitrary reductive groups

How to relate Schubert cycles to (unions of) faces of polytopes?

Main tool

A convex geometric incarnation of divided difference operators.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Arbitrary reductive groups

How to relate Schubert cycles to (unions of) faces of polytopes?

Main tool

A convex geometric incarnation of divided difference operators.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tool: divided difference operators

Definition (for GL_n)

Divided difference operator δ_i (for i = 1, ..., n-1) acts on $\mathbb{Z}[x_1, ..., x_n]$ as follows:

$$\delta_i: f \mapsto \frac{f - s_i(f)}{x_i - x_{i+1}}$$

Example

$$\delta_1(x_1^2) = \frac{x_1^2 - x_2^2}{x_1 - x_2} = x_1 + x_2$$

Tool: divided difference operators

Definition (for GL_n)

Divided difference operator δ_i (for i = 1, ..., n-1) acts on $\mathbb{Z}[x_1, ..., x_n]$ as follows:

$$\delta_i: f\mapsto \frac{f-s_i(f)}{x_i-x_{i+1}}.$$

Example

$$\delta_1(x_1^2) = \frac{x_1^2 - x_2^2}{x_1 - x_2} = x_1 + x_2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Divided difference operators in cohomology

Theorem (Bernstein-Gelfand-Gelfand, Demazure, 1971) Let $w = s_{i_1} \dots s_{i_\ell}$ be a reduced representation. In the Borel presentation,

$$[X_w] = \delta_{i_\ell} \dots \delta_{i_1}[X_{id}],$$

where $[X_{id}]$ is the class of a point.

Remark For *GL_n*,

$$[X_{id}] = x_1^{n-1} x_2^{n-2} \cdots x_{n-1}.$$

For other reductive groups, there is sometimes no denominator-free formula.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Divided difference operators in cohomology

Theorem (Bernstein-Gelfand-Gelfand, Demazure, 1971) Let $w = s_{i_1} \dots s_{i_\ell}$ be a reduced representation. In the Borel presentation,

$$[X_w] = \delta_{i_\ell} \dots \delta_{i_1}[X_{id}],$$

where $[X_{id}]$ is the class of a point.

Remark

For GL_n ,

$$[X_{id}] = x_1^{n-1} x_2^{n-2} \cdots x_{n-1}.$$

For other reductive groups, there is sometimes no denominator-free formula.

Topological meaning of divided difference operators

Gysin morphism

Let P_i be the minimal parabolic subgroup, and $p_i : G/B \to G/P_i$ the natural projection. Then the action of δ_i on $H^*(G/B, \mathbb{Z})$ coincides with the action of $p_i^* \circ p_{i_*}$:

$$\delta_i: H^*(G/B,\mathbb{Z}) \xrightarrow{p_{i*}} H^*(G/P_i,\mathbb{Z}) \xrightarrow{p_i^*} H^*(G/B,\mathbb{Z}).$$

Example

If $G = GL_n$, then G/P_i is obtained by forgetting the *i*-th space in a flag.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Topological meaning of divided difference operators

Gysin morphism

Let P_i be the minimal parabolic subgroup, and $p_i : G/B \to G/P_i$ the natural projection. Then the action of δ_i on $H^*(G/B, \mathbb{Z})$ coincides with the action of $p_i^* \circ p_{i_*}$:

$$\delta_i: H^*(G/B,\mathbb{Z}) \xrightarrow{p_i} H^*(G/P_i,\mathbb{Z}) \xrightarrow{p_i^*} H^*(G/B,\mathbb{Z}).$$

Example

If $G = GL_n$, then G/P_i is obtained by forgetting the *i*-th space in a flag.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Generalized cohomology theories

Let A^* be a generalized oriented cohomology theory. Define generalized divided difference operator δ_i^A as the composition

$$\delta_i^A: A^*(G/B,\mathbb{Z}) \xrightarrow{p_i^A} A^*(G/P_i,\mathbb{Z}) \xrightarrow{p_i^{*A}} A^*(G/B,\mathbb{Z}).$$

(日) (四) (日) (日) (日)

- classical cohomology H* or Chow ring CH*
- K-theory K_0^*
- complex cobordism MU^* or algebraic cobordism Ω^*

Generalized cohomology theories

Let A^* be a generalized oriented cohomology theory. Define generalized divided difference operator δ_i^A as the composition

$$\delta_i^A: A^*(G/B,\mathbb{Z}) \xrightarrow{p_i^A} A^*(G/P_i,\mathbb{Z}) \xrightarrow{p_i^{*A}} A^*(G/B,\mathbb{Z}).$$

ション ふゆ く 山 マ チャット しょうくしゃ

- classical cohomology H* or Chow ring CH*
- K-theory K₀*
- complex cobordism MU^* or algebraic cobordism Ω^*

Generalized cohomology theories

Let A^* be a generalized oriented cohomology theory. Define generalized divided difference operator δ_i^A as the composition

$$\delta_i^A: A^*(G/B,\mathbb{Z}) \xrightarrow{p_i^A} A^*(G/P_i,\mathbb{Z}) \xrightarrow{p_i^{*A}} A^*(G/B,\mathbb{Z}).$$

ション ふゆ く 山 マ チャット しょうくしゃ

- classical cohomology H^* or Chow ring CH^*
- K-theory K^{*}₀
- complex cobordism MU^* or algebraic cobordism Ω^*

Generalized cohomology theories

Let A^* be a generalized oriented cohomology theory. Define generalized divided difference operator δ_i^A as the composition

$$\delta_i^A: A^*(G/B,\mathbb{Z}) \xrightarrow{p_i^A} A^*(G/P_i,\mathbb{Z}) \xrightarrow{p_i^{*A}} A^*(G/B,\mathbb{Z}).$$

ション ふゆ く 山 マ チャット しょうくしゃ

- classical cohomology H^* or Chow ring CH^*
- K-theory K^{*}₀
- complex cobordism MU^* or algebraic cobordism Ω^*

Generalized cohomology theories

Let A^* be a generalized oriented cohomology theory. Define generalized divided difference operator δ_i^A as the composition

$$\delta_i^A: A^*(G/B,\mathbb{Z}) \xrightarrow{p_i^A} A^*(G/P_i,\mathbb{Z}) \xrightarrow{p_i^{*A}} A^*(G/B,\mathbb{Z}).$$

ション ふゆ く 山 マ チャット しょうくしゃ

- classical cohomology H^* or Chow ring CH^*
- K-theory K_0^*
- complex cobordism MU^* or algebraic cobordism Ω^*

Question Is there an algebraic formula for δ_i^A ?

Formal group law

There exists a formal power series $F_A(x, y) = x + y + ...$ with coefficients in A^0 such that

$$F(c_1^A(L), c_1^A(M)) = c_1^A(L \otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X. Examples

$\begin{array}{l} CH^* \ F(x,y) = x + y \\ K_0^* \ F(x,y) = x + y - xy \\ \Omega^* \ F(x,y) = x + y - [\mathbb{P}^1]xy + ([\mathbb{P}^1]^2 - [\mathbb{P}^2])x^2y + \dots \\ & \text{universal formal group law} \end{array}$

Question

Is there an algebraic formula for δ_i^A ?

Formal group law

There exists a formal power series $F_A(x, y) = x + y + ...$ with coefficients in A^0 such that

$$F(c_1^A(L),c_1^A(M))=c_1^A(L\otimes M)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

in $A^*(X)$ for any pair of line bundles L and M on a variety X. Examples

$CH^* F(x, y) = x + y$ $K_0^* F(x, y) = x + y - xy$ $O^* F(x, y) = y + y - imlow + (imlow)$

 $\sigma(x, y) = x + y - [x +]xy + ([x +] - [x +])x$ universal formal group law

Question

Is there an algebraic formula for δ_i^A ?

Formal group law

There exists a formal power series $F_A(x, y) = x + y + ...$ with coefficients in A^0 such that

$$F(c_1^A(L),c_1^A(M))=c_1^A(L\otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X. Examples

$$\begin{array}{l} CH^* \ F(x,y) = x+y \\ K_0^* \ F(x,y) = x+y-xy \\ \Omega^* \ F(x,y) = x+y - [\mathbb{P}^1]xy + ([\mathbb{P}^1]^2 - [\mathbb{P}^2])x^2y + \dots \\ & \text{universal formal group law} \end{array}$$

Question

Is there an algebraic formula for δ_i^A ?

Formal group law

There exists a formal power series $F_A(x, y) = x + y + ...$ with coefficients in A^0 such that

$$F(c_1^A(L),c_1^A(M))=c_1^A(L\otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X. Examples

$\begin{array}{l} CH^* \ F(x,y) = x + y \\ K_0^* \ F(x,y) = x + y - xy \\ \Omega^* \ F(x,y) = x + y - [\mathbb{P}^1]xy + ([\mathbb{P}^1]^2 - [\mathbb{P}^2])x^2y + \dots \\ \text{universal formal group law} \end{array}$

Question

Is there an algebraic formula for δ_i^A ?

Formal group law

There exists a formal power series $F_A(x, y) = x + y + ...$ with coefficients in A^0 such that

$$F(c_1^A(L),c_1^A(M))=c_1^A(L\otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X. Examples

$$CH^* F(x,y) = x + y$$

$$K_0^* F(x,y) = x + y - xy$$

$$\Omega^* F(x,y) = x + y - [\mathbb{P}^1]xy + ([\mathbb{P}^1]^2 - [\mathbb{P}^2])x^2y + \dots$$
universal formal group law

Question

Is there an algebraic formula for δ_i^A ?

Formal group law

There exists a formal power series $F_A(x, y) = x + y + ...$ with coefficients in A^0 such that

$$F(c_1^A(L),c_1^A(M))=c_1^A(L\otimes M)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

in $A^*(X)$ for any pair of line bundles L and M on a variety X. Examples

$$\begin{array}{ll} CH^* & F(x,y) = x+y \\ K_0^* & F(x,y) = x+y-xy \\ \Omega^* & F(x,y) = x+y-[\mathbb{P}^1]xy+([\mathbb{P}^1]^2-[\mathbb{P}^2])x^2y+\dots \\ & \text{universal formal group law} \end{array}$$

Theorem

$$\delta_i^A = (1+s_i)\frac{1}{x_i - A_i x_{i+1}}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Applications

Formulas for "Schubert cycles" in the "Borel presentation" for $A^*(G/B)$. Algorithms for multiplying "Schubert cycles".

- H* Bernstein-Gelfand-Gelfand, Demazure, 1973
- *K*₀^{*} Demazure, 1974
- MU* Bressler-Evens, 1992
 - Ω^* Hornbostel-K., Calmés-Petrov-Zainoulline, 2009
 - Ω^*_T K.-Krishna, 2011

Theorem

$$\delta_i^A = (1+s_i)\frac{1}{x_i - A x_{i+1}}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Applications

Formulas for "Schubert cycles" in the "Borel presentation" for $A^*(G/B)$. Algorithms for multiplying "Schubert cycles".

H* Bernstein-Gelfand-Gelfand, Demazure, 1973

*K*₀^{*} Demazure, 1974

MU* Bressler-Evens, 1992

 Ω^* Hornbostel-K., Calmés-Petrov-Zainoulline, 2009

 Ω^*_T K.-Krishna, 2011

Theorem

$$\delta_i^{\mathcal{A}} = (1+s_i)\frac{1}{x_i - A_i + 1}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Applications

Formulas for "Schubert cycles" in the "Borel presentation" for $A^*(G/B)$. Algorithms for multiplying "Schubert cycles".

H* Bernstein-Gelfand-Gelfand, Demazure, 1973

 K_0^* Demazure, 1974

MU^{*} Bressler–Evens, 1992

- Ω^* Hornbostel-K., Calmés-Petrov-Zainoulline, 2009
- Ω^*_{T} K.–Krishna, 2011

Theorem

$$\delta_i^{\mathcal{A}} = (1+s_i)\frac{1}{x_i - A_i + 1}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Applications

Formulas for "Schubert cycles" in the "Borel presentation" for $A^*(G/B)$. Algorithms for multiplying "Schubert cycles".

H* Bernstein-Gelfand-Gelfand, Demazure, 1973

K_0^* Demazure, 1974

MU* Bressler-Evens, 1992

- Ω^* Hornbostel-K., Calmés-Petrov-Zainoulline, 2009
- Ω^*_T K.–Krishna, 2011

Theorem

$$\delta_i^{\mathcal{A}} = (1+s_i)\frac{1}{x_i - A_i + 1}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Applications

Formulas for "Schubert cycles" in the "Borel presentation" for $A^*(G/B)$. Algorithms for multiplying "Schubert cycles".

- H* Bernstein-Gelfand-Gelfand, Demazure, 1973
- K₀^{*} Demazure, 1974
- MU* Bressler-Evens, 1992

 Ω^* Hornbostel–K., Calmés–Petrov–Zainoulline, 2009 $\Omega^*_{\mathcal{T}}$ K.–Krishna, 2011

Theorem

$$\delta_i^A = (1+s_i)\frac{1}{x_i - A x_{i+1}}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Applications

Formulas for "Schubert cycles" in the "Borel presentation" for $A^*(G/B)$. Algorithms for multiplying "Schubert cycles".

- H* Bernstein-Gelfand-Gelfand, Demazure, 1973
- K₀^{*} Demazure, 1974
- MU* Bressler-Evens, 1992
 - Ω^* Hornbostel–K., Calmés–Petrov–Zainoulline, 2009

 Ω^*_T K.-Krishna, 2011

Theorem

$$\delta_i^A = (1+s_i)\frac{1}{x_i - A x_{i+1}}$$

Applications

Formulas for "Schubert cycles" in the "Borel presentation" for $A^*(G/B)$. Algorithms for multiplying "Schubert cycles".

- H* Bernstein-Gelfand-Gelfand, Demazure, 1973
- K₀^{*} Demazure, 1974
- MU* Bressler-Evens, 1992
 - Ω^* Hornbostel-K., Calmés-Petrov-Zainoulline, 2009
 - Ω^*_T K.-Krishna, 2011

Demazure operators

Notation

Let G be a connected reductive group of semisimple rank r, Λ_G the weight lattice of G, and $\mathbb{Z}[\Lambda_G]$ the group ring. Simple roots of G are denoted by $\alpha_1, \ldots, \alpha_r$.

Remark

Elements of Λ_G are written in the form

$$\sum_{\mu\in\Lambda_G}m(\mu)e^{\mu}.$$

Definition

Demazure operator D_i (for i = 1, ..., n) acts on $\mathbb{Z}[\Lambda_G]$ as follows:

$$D_i: f\mapsto rac{f-e^{lpha_i}s_i(f)}{1-e^{lpha_i}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

Demazure operators

Notation

Let G be a connected reductive group of semisimple rank r, Λ_G the weight lattice of G, and $\mathbb{Z}[\Lambda_G]$ the group ring. Simple roots of G are denoted by $\alpha_1, \ldots, \alpha_r$.

Remark

Elements of Λ_G are written in the form

$$\sum_{\mu\in\Lambda_G}m(\mu)e^{\mu}.$$

Definition

Demazure operator D_i (for i = 1, ..., n) acts on $\mathbb{Z}[\Lambda_G]$ as follows:

$$D_i: f \mapsto rac{f - e^{lpha_i} s_i(f)}{1 - e^{lpha_i}}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・
Notation

Let G be a connected reductive group of semisimple rank r, Λ_G the weight lattice of G, and $\mathbb{Z}[\Lambda_G]$ the group ring. Simple roots of G are denoted by $\alpha_1, \ldots, \alpha_r$.

Remark

Elements of Λ_G are written in the form

$$\sum_{\mu\in\Lambda_G}m(\mu)e^{\mu}.$$

Definition

Demazure operator D_i (for i = 1, ..., n) acts on $\mathbb{Z}[\Lambda_G]$ as follows:

$$D_i: f\mapsto rac{f-e^{lpha_i}s_i(f)}{1-e^{lpha_i}}.$$

◆□▶ ◆圖▶ ◆目▶ ◆目▶ 目 のへで

Example for GL_n

$$D_1(e^{lpha_2}) = rac{e^{lpha_2} - e^{lpha_1}e^{lpha_1+lpha_2}}{1 - e^{lpha_1}} = e^{lpha_2} + e^{lpha_1+lpha_2}$$

Exercise

Define (λ, α_i) by the identity $s_i(\lambda) = \lambda - (\lambda, \alpha_i)\alpha_i$.

$$\begin{cases} D_i(e^{\lambda}) = e^{\lambda}(1 + e^{\alpha_i} + \ldots + e^{-(\lambda, \alpha_i)\alpha_i}), & (\lambda, \alpha_i) \le 0\\ D_i(e^{\lambda}) = 0, & (\lambda, \alpha_i) = 1\\ D_i(e^{\lambda}) = -e^{\lambda}(1 + e^{-\alpha_i} + \ldots + e^{-((\lambda, \alpha_i) - 2)\alpha_i}), & (\lambda, \alpha_i) > 1 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example for GL_n

$$D_1(e^{lpha_2}) = rac{e^{lpha_2} - e^{lpha_1}e^{lpha_1+lpha_2}}{1 - e^{lpha_1}} = e^{lpha_2} + e^{lpha_1+lpha_2}$$

Exercise

Define (λ, α_i) by the identity $s_i(\lambda) = \lambda - (\lambda, \alpha_i)\alpha_i$.

$$\begin{cases} D_i(e^{\lambda}) = e^{\lambda}(1 + e^{\alpha_i} + \ldots + e^{-(\lambda, \alpha_i)\alpha_i}), & (\lambda, \alpha_i) \leq 0\\ D_i(e^{\lambda}) = 0, & (\lambda, \alpha_i) = 1\\ D_i(e^{\lambda}) = -e^{\lambda}(1 + e^{-\alpha_i} + \ldots + e^{-((\lambda, \alpha_i) - 2)\alpha_i}), & (\lambda, \alpha_i) > 1 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remark

For $G = GL_n$, put $x_i := 1 + e^{\chi_i}$ where the character χ_i is given by the *i*-th entry of the diagonal torus. Then

$$D_i = -\delta_i^K,$$

that is, the Demazure operator is equal up to a sign to the K-theory divided difference operator (= isobaric divided difference operator).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Definition

Demazure B-module $V_{\lambda,w} := H^0(X_w, \mathcal{L}_\lambda|_{X_w})^*$ is the dual space to the space of global sections of the line bundle \mathcal{L}_λ on G/B (corresponding to V_λ) restricted to X.

Definition

Demazure character $\chi_w(\lambda)$ of $V_{\lambda,w}$ is the sum over all basis weight vectors of the exponentials of the corresponding weights:

$$\chi_w(\lambda) := \sum_{\mu \in \Lambda} m_{\lambda,w}(\mu) e^{\mu}$$

Demazure character formula [Andersen, 1985, \ldots] Let $w=s_{i_1}\ldots s_{i_\ell}$ be a reduced representation. Then

$$\chi_w(\lambda) = D_{i_1} \dots D_{i_\ell} e^{\lambda}$$

(日) (伊) (日) (日) (日) (0) (0)

Definition

Demazure B-module $V_{\lambda,w} := H^0(X_w, \mathcal{L}_\lambda|_{X_w})^*$ is the dual space to the space of global sections of the line bundle \mathcal{L}_λ on G/B (corresponding to V_λ) restricted to X.

Definition

Demazure character $\chi_w(\lambda)$ of $V_{\lambda,w}$ is the sum over all basis weight vectors of the exponentials of the corresponding weights:

$$\chi_w(\lambda) := \sum_{\mu \in \Lambda} m_{\lambda,w}(\mu) e^{\mu}$$

Demazure character formula [Andersen, 1985, \ldots] Let $w = s_{i_1} \ldots s_{i_\ell}$ be a reduced representation. Then

$$\chi_w(\lambda) = D_{i_1} \dots D_{i_\ell} e^{\lambda}$$

Definition

Demazure B-module $V_{\lambda,w} := H^0(X_w, \mathcal{L}_\lambda|_{X_w})^*$ is the dual space to the space of global sections of the line bundle \mathcal{L}_λ on G/B (corresponding to V_λ) restricted to X.

Definition

Demazure character $\chi_w(\lambda)$ of $V_{\lambda,w}$ is the sum over all basis weight vectors of the exponentials of the corresponding weights:

$$\chi_w(\lambda) := \sum_{\mu \in \Lambda} m_{\lambda,w}(\mu) e^{\mu}$$

Demazure character formula [Andersen, 1985, ...] Let $w = s_{i_1} \dots s_{i_\ell}$ be a reduced representation. Then

$$\chi_w(\lambda) = D_{i_1} \dots D_{i_\ell} e^{\lambda}$$

(日) (伊) (日) (日) (日) (0) (0)

Examples

•
$$V_{\lambda,id} = \mathbb{C}_{\lambda}, \ \chi_{id}(\lambda) = e^{\lambda}$$

• $V_{\lambda,w_0}=V_{\lambda}$, $\chi_{w_0}(\lambda)-$ Weyl character

Remark

For GL_n , the definition of Gelfand-Zetlin polytopes implies that

$$\chi_{w_0}(\lambda) = \sum_{x \in P_\lambda \cap \mathbb{Z}^d} e^{p(x)},$$

where $p(x) := (\sum_{j=1}^{n-1} x_j^1) \alpha_1 + (\sum_{j=1}^{n-2} x_j^1) \alpha_2 + \ldots + x_1^{n-1} \alpha_{n-1}$ is the weight of x.

(□) (圖) (E) (E) [E]

Examples

•
$$V_{\lambda,id} = \mathbb{C}_{\lambda}, \ \chi_{id}(\lambda) = e^{\lambda}$$

• $V_{\lambda,w_0}=V_{\lambda},~\chi_{w_0}(\lambda)-$ Weyl character

Remark

For GL_n , the definition of Gelfand-Zetlin polytopes implies that

$$\chi_{w_0}(\lambda) = \sum_{x \in P_\lambda \cap \mathbb{Z}^d} e^{p(x)},$$

where $p(x) := (\sum_{j=1}^{n-1} x_j^1) \alpha_1 + (\sum_{j=1}^{n-2} x_j^1) \alpha_2 + \ldots + x_1^{n-1} \alpha_{n-1}$ is the weight of x.

(□) (圖) (E) (E) [E]

Examples

•
$$V_{\lambda,id} = \mathbb{C}_{\lambda}, \ \chi_{id}(\lambda) = e^{\lambda}$$

• $V_{\lambda,w_0}=V_{\lambda}$, $\chi_{w_0}(\lambda)$ — Weyl character

Remark

For GL_n , the definition of Gelfand-Zetlin polytopes implies that

$$\chi_{w_0}(\lambda) = \sum_{x \in P_\lambda \cap \mathbb{Z}^d} e^{p(x)},$$

where $p(x) := (\sum_{j=1}^{n-1} x_j^1) \alpha_1 + (\sum_{j=1}^{n-2} x_j^1) \alpha_2 + \ldots + x_1^{n-1} \alpha_{n-1}$ is the weight of x.

- 日本 - 4 日本 - 4 日本 - 日本

Examples

•
$$V_{\lambda,id} = \mathbb{C}_{\lambda}, \ \chi_{id}(\lambda) = e^{\lambda}$$

• $V_{\lambda,w_0} = V_{\lambda}, \ \chi_{w_0}(\lambda)$ — Weyl character

Remark

For GL_n , the definition of Gelfand-Zetlin polytopes implies that

$$\chi_{w_0}(\lambda) = \sum_{x \in P_{\lambda} \cap \mathbb{Z}^d} e^{p(x)},$$

where $p(x) := (\sum_{j=1}^{n-1} x_j^1) \alpha_1 + (\sum_{j=1}^{n-2} x_j^1) \alpha_2 + \ldots + x_1^{n-1} \alpha_{n-1}$ is the weight of x.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Demazure characters and Gelfand-Zetlin polytopes

A Gelfand–Zetlin polytope for *GL*₃:

$$\begin{array}{cccc}
-1 & 0 & 1 \\
 & x & y \\
 & z \\
\end{array}$$

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

E 990

p(x,y,z) = (x+y,z)

Demazure characters and Gelfand-Zetlin polytopes

The weight polytope (=image of P_{λ} under the projection p):

Goal

Define operators D_1, \ldots, D_r on convex polytopes in \mathbb{R}^d and a weight map $\mathbb{R}^d \to \mathbb{R}^r$ such that for any reduced decomposition $w = s_{i_1} \ldots s_{i_\ell}$ the sequence of polytopes

$$pt(\lambda) \xrightarrow{D_{i_1}} P_1(\lambda) \xrightarrow{D_{i_2}} P_2(\lambda) \xrightarrow{D_{i_3}} \dots \xrightarrow{D_{i_\ell}} P_\ell(\lambda)$$

yields the sequence of the Demazure characters

$$e^{\lambda} \xrightarrow{D_{i_1}} \chi_{s_{i_1}}(\lambda) \xrightarrow{D_{i_2}} \chi_{s_{i_1}s_{i_2}}(\lambda) \xrightarrow{D_{i_3}} \dots \xrightarrow{D_{i_{\ell}}} \chi_w(\lambda)$$

that is,

$$\chi_w(\lambda) = \sum_{x \in P_\ell(\lambda) \cap \mathbb{Z}^d} e^{p(x)}.$$

Definition

A root space of rank r is a real vector space \mathbb{R}^d together with a direct sum decomposition

$$\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_r}$$

and a collection of linear functions $I_1, \ldots, I_r \in (\mathbb{R}^d)^*$ such that I_i vanishes on \mathbb{R}^{d_i} .

Definition

A convex polytope $P \subset \mathbb{R}^d$ is called a *parapolytope* if for all i = 1, ..., r, and any vector $c \in \mathbb{R}^d$ the intersection of P with the parallel translate $c + \mathbb{R}^{d_i}$ of \mathbb{R}^{d_i} is a *coordinate parallelepiped*.

Definition

A root space of rank r is a real vector space \mathbb{R}^d together with a direct sum decomposition

$$\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_r}$$

and a collection of linear functions $I_1, \ldots, I_r \in (\mathbb{R}^d)^*$ such that I_i vanishes on \mathbb{R}^{d_i} .

Definition

A convex polytope $P \subset \mathbb{R}^d$ is called a *parapolytope* if for all i = 1, ..., r, and any vector $c \in \mathbb{R}^d$ the intersection of P with the parallel translate $c + \mathbb{R}^{d_i}$ of \mathbb{R}^{d_i} is a *coordinate parallelepiped*.

A coordinate parallelepiped in \mathbb{R}^3

(ロト (聞) (ヨ) (ヨ) 三日

Notation

Coordinates in \mathbb{R}^d : $(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^n, \ldots, x_{d_n}^n)$.

Definition

A coordinate parallelepiped in \mathbb{R}^{d_i} is

 $\Pi(\mu,\nu) = \{(x_1^i,\ldots,x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1,\ldots,d_i\}.$

A coordinate parallelepiped in \mathbb{R}^3

(ロト (聞) (ヨ) (ヨ) 三日

Notation

Coordinates in \mathbb{R}^d : $(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^n, \ldots, x_{d_n}^n)$.

Definition

A coordinate parallelepiped in \mathbb{R}^{d_i} is

 $\Pi(\mu,\nu) = \{(x_1^i,\ldots,x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1,\ldots,d_i\}.$

A coordinate parallelepiped in \mathbb{R}^3

・ロト ・聞ト ・ヨト ・ヨト

Э

Notation

Coordinates in \mathbb{R}^d : $(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^n, \ldots, x_{d_n}^n)$.

Definition

A coordinate parallelepiped in \mathbb{R}^{d_i} is

$$\Pi(\mu,\nu) = \{(x_1^i,\ldots,x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1,\ldots,d_i\}.$$

A coordinate parallelepiped in \mathbb{R}^3

(ロ)、(部)、(E)、(E)、 E

Notation Coordinates in \mathbb{R}^d : $(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^n, \ldots, x_{d_n}^n)$.

Definition

A coordinate parallelepiped in \mathbb{R}^{d_i} is

 $\Pi(\mu,\nu) = \{(x_1^i,\ldots,x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1,\ldots,d_i\}.$

A coordinate parallelepiped in \mathbb{R}^3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Notation

Coordinates in \mathbb{R}^d : $(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^n, \ldots, x_{d_n}^n)$.

Definition

A coordinate parallelepiped in \mathbb{R}^{d_i} is

$$\mathsf{\Pi}(\mu,\nu) = \{(x_1^i,\ldots,x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1,\ldots,d_i\}.$$

Example

$$d = \frac{n(n-1)}{2}, r = (n-1)$$

 $\mathbb{R}^d = \mathbb{R}^{n-1} \oplus \mathbb{R}^{n-2} \oplus \ldots \oplus \mathbb{R}^1$

Exercise

The Gelfand–Zetlin polytope P_{λ} is a parapolytope.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- $\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$
- The slices $\{z = \frac{1}{2}\}$ and $\{z = -\frac{1}{2}\}$ are coordinate rectangles.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Convex geometric Demazure operators Definition

1. $P = \Pi(\mu, \nu) \subset (c + \mathbb{R}^{d_i})$ — coordinate parallelepiped Choose the smallest $j = 1, ..., d_i$ such that $\mu_j = \nu_j$. Put

$$D_i(P) := \Pi(\mu, \nu'),$$

where $u_k' =
u_k$ for all $k \neq j$ and u_j' is defined by the equality

$$\sum_{k=1}^{d_i} (\mu_k + \nu'_k) = l_i(c).$$

2. *P* — any parapolytope

$$D_i(P) = \bigcup_{c \in \mathbb{R}^d} \{ D_i(P \cap (c + \mathbb{R}^{d_i})) \}$$

Convex geometric Demazure operators Definition

1. $P = \Pi(\mu, \nu) \subset (c + \mathbb{R}^{d_i})$ — coordinate parallelepiped Choose the smallest $j = 1, ..., d_i$ such that $\mu_j = \nu_j$. Put

$$D_i(P) := \Pi(\mu, \nu'),$$

where $u_k' =
u_k$ for all k
eq j and u_j' is defined by the equality

$$\sum_{k=1}^{d_i}(\mu_k+\nu'_k)=l_i(c).$$

2. *P* — any parapolytope

$$D_i(P) = \bigcup_{c \in \mathbb{R}^d} \{ D_i(P \cap (c + \mathbb{R}^{d_i})) \}$$

Convex geometric Demazure operators Definition

1. $P = \Pi(\mu, \nu) \subset (c + \mathbb{R}^{d_i})$ — coordinate parallelepiped Choose the smallest $j = 1, ..., d_i$ such that $\mu_j = \nu_j$. Put

$$D_i(P) := \Pi(\mu, \nu'),$$

where $u_k' =
u_k$ for all k
eq j and u_j' is defined by the equality

$$\sum_{k=1}^{d_i}(\mu_k+\nu'_k)=l_i(c).$$

2. P — any parapolytope

$$D_i(P) = igcup_{c \in \mathbb{R}^d} \{ D_i(P \cap (c + \mathbb{R}^{d_i})) \}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Examples $\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \ l_1(x, y, z) = z, \ l_2(x, y, z) = x + y$ $P = \{(a, b, c)\}$ — a point

a' = c - a - 2b

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Examples

$$\mathbb{R}^{3} = \mathbb{R}^{2} \oplus \mathbb{R}, \ l_{1}(x, y, z) = z, \ l_{2}(x, y, z) = x + y$$

$$P = \{(a, b, c)\} - a \text{ point}$$

$$D_{1}(P) = [(a, b, c), (a', b, c)]$$
where a is defined by the equality
$$a + b + a' + b = h_{1}(a, b, c),$$

a' = c - a - 2b

Examples $\mathbb{R}^{3} = \mathbb{R}^{2} \oplus \mathbb{R}, \ l_{1}(x, y, z) = z, \ l_{2}(x, y, z) = x + y$ $P = \{(a, b, c)\} - a \text{ point}$ $D_{1}(P) = [(a, b, c), (a', b, c)],$

where a' is defined by the equality

$$a + b + a' + b = l_1(a, b, c),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

that is

Examples

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x, y, z) = z$, $l_2(x, y, z) = x + y$

 $P = \{(a, b, c)\} - a \text{ point} \\ D_1(P) = [(a, b, c), (a', b, c)],$

where a' is defined by the equality

$$a+b+a'+b=l_1(a,b,c),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

that is,

$$a' = c - a - 2b$$

Examples

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x, y, z) = z$, $l_2(x, y, z) = x + y$

 $P = \{(a, b, c)\} - a \text{ point} \\ D_1(P) = [(a, b, c), (a', b, c)],$

where a' is defined by the equality

$$a+b+a'+b=l_1(a,b,c),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

that is,

$$a' = c - a - 2b$$

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \ l_1(x, y, z) = z, \ l_2(x, y, z) = x + y$$
$$P = [(a, b, c), (a', b, c)] - \text{segment}$$

where

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \ l_1(x, y, z) = z, \ l_2(x, y, z) = x + y$$
$$P = [(a, b, c), (a', b, c)] - \text{segment}$$

$$D_2(P) = \bigcup_{x \in [a,a']} [(x,b,c), (x,b,c'(x))],$$

where

$$c'(x) = x + b - c$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \ l_1(x, y, z) = z, \ l_2(x, y, z) = x + y$$
$$P = [(a, b, c), (a', b, c)] - \text{segment}$$

$$D_2(P) = \bigcup_{x \in [a,a']} [(x,b,c), (x,b,c'(x))],$$

where

$$c'(x) = x + b - c$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

32

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \ l_1(x, y, z) = z, \ l_2(x, y, z) = x + y$$
$$P = [(a, b, c), (a', b, c)] - \text{segment}$$

$$D_2(P) = \bigcup_{x \in [a,a']} [(x,b,c), (x,b,c'(x))],$$

where

$$c'(x) = x + b - c$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

32

$$\mathbb{R}^{3} = \mathbb{R}^{2} \oplus \mathbb{R}, \ l_{1}(x, y, z) = z, \ l_{2}(x, y, z) = x + y$$
$$P = D_{2}D_{1}(\{(\lambda_{1}, \lambda_{2}, \lambda_{1})\}) - \text{trapezoid}$$

$$\mathbb{R}^{3} = \mathbb{R}^{2} \oplus \mathbb{R}, \ l_{1}(x, y, z) = z, \ l_{2}(x, y, z) = x + y$$
$$P = D_{2}D_{1}(\{(\lambda_{1}, \lambda_{2}, \lambda_{1})\}) - \text{trapezoid}$$

$$\mathbb{R}^{3} = \mathbb{R}^{2} \oplus \mathbb{R}, \ l_{1}(x, y, z) = z, \ l_{2}(x, y, z) = x + y$$
$$P = D_{2}D_{1}(\{(\lambda_{1}, \lambda_{2}, \lambda_{1})\}) - \text{trapezoid}$$

$$\mathbb{R}^{3} = \mathbb{R}^{2} \oplus \mathbb{R}, \ l_{1}(x, y, z) = z, \ l_{2}(x, y, z) = x + y$$
$$P = D_{2}D_{1}(\{(\lambda_{1}, \lambda_{2}, \lambda_{1})\}) - \text{trapezoid}$$

$$\mathbb{R}^{3} = \mathbb{R}^{2} \oplus \mathbb{R}, \ l_{1}(x, y, z) = z, \ l_{2}(x, y, z) = x + y$$
$$P = D_{2}D_{1}(\{(\lambda_{1}, \lambda_{2}, \lambda_{1})\}) - \text{trapezoid}$$

SQC.

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x, y, z) = z$, $l_2(x, y, z) = x + y$

Exercise

 $D_1D_2D_1(\{(\lambda_1,\lambda_2,\lambda_1)\})$ — Gelfand-Zetlin polytope for $\lambda = (\lambda_1,\lambda_2,-\lambda_1-\lambda_2).$

(日) (四) (日) (日)

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x, y, z) = z$, $l_2(x, y, z) = x + y$

Exercise

 $D_1D_2D_1(\{(\lambda_1,\lambda_2,\lambda_1)\})$ — Gelfand-Zetlin polytope for $\lambda = (\lambda_1,\lambda_2,-\lambda_1-\lambda_2).$

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x, y, z) = z$, $l_2(x, y, z) = x + y$

Exercise

 $D_1D_2D_1(\{(\lambda_1,\lambda_2,\lambda_1)\})$ — Gelfand-Zetlin polytope for $\lambda = (\lambda_1,\lambda_2,-\lambda_1-\lambda_2).$

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x, y, z) = z$, $l_2(x, y, z) = x + y$

Exercise

 $D_1D_2D_1(\{(\lambda_1,\lambda_2,\lambda_1)\})$ — Gelfand-Zetlin polytope for $\lambda = (\lambda_1,\lambda_2,-\lambda_1-\lambda_2).$

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x, y, z) = z$, $l_2(x, y, z) = x + y$

Exercise

 $D_1D_2D_1(\{(\lambda_1,\lambda_2,\lambda_1)\})$ — Gelfand-Zetlin polytope for $\lambda = (\lambda_1,\lambda_2,-\lambda_1-\lambda_2).$

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x,y,z) = z$, $l_2(x,y,z) = x + y$

Exercise

 $D_1D_2D_1(\{(\lambda_1,\lambda_2,\lambda_1)\})$ — Gelfand-Zetlin polytope for $\lambda = (\lambda_1,\lambda_2,-\lambda_1-\lambda_2).$

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x,y,z) = z$, $l_2(x,y,z) = x + y$

Exercise

 $D_1D_2D_1(\{(\lambda_1,\lambda_2,\lambda_1)\})$ — Gelfand-Zetlin polytope for $\lambda = (\lambda_1,\lambda_2,-\lambda_1-\lambda_2).$

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x,y,z) = z$, $l_2(x,y,z) = x + y$

Exercise

 $D_1D_2D_1(\{(\lambda_1,\lambda_2,\lambda_1)\})$ — Gelfand-Zetlin polytope for $\lambda = (\lambda_1,\lambda_2,-\lambda_1-\lambda_2).$

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$
, $l_1(x,y,z) = z$, $l_2(x,y,z) = x + y$

Exercise

 $D_1D_2D_1(\{(\lambda_1,\lambda_2,\lambda_1)\})$ — Gelfand-Zetlin polytope for $\lambda = (\lambda_1,\lambda_2,-\lambda_1-\lambda_2).$

 GL_n root space $\mathbb{R}^d = \mathbb{R}^{n-1} \oplus \mathbb{R}^{n-2} \oplus \ldots \oplus \mathbb{R}^1$

Functions *I*_i

$$l_i(x) = \sigma_{i-1}(x) + \sigma_{i+1}(x),$$

where $\sigma_i(x) = \sum_{j=1}^{d_i} x_j^i$ (=sum of coordinates in the *i*-th row) for i = 1, ..., n-1 and $\sigma_0 = \sigma_n = 0$

うして ふゆう ふほう ふほう うらつ

 GL_n root space $\mathbb{R}^d = \mathbb{R}^{n-1} \oplus \mathbb{R}^{n-2} \oplus \ldots \oplus \mathbb{R}^1$

Functions I_i

$$I_i(x) = \sigma_{i-1}(x) + \sigma_{i+1}(x),$$

where $\sigma_i(x) = \sum_{j=1}^{d_i} x_j^i$ (=sum of coordinates in the *i*-th row) for i = 1, ..., n-1 and $\sigma_0 = \sigma_n = 0$

うして ふゆう ふほう ふほう うらつ

Proposition The Gelfand–Zetlin polytope P_{λ} coincides with

$$[(D_1 \dots D_{n-1})(D_1 \dots D_{n-2}) \dots (D_1)](p),$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where $p \in \mathbb{R}^d$ is the point $(\lambda_1, \ldots, \lambda_{n-1}; \lambda_1, \ldots, \lambda_{n-2}; \ldots; \lambda_1)$.

\overline{W}_0

Fix a reduced decomposition $w_0 = s_{i_1} \dots s_{i_d}$ of the longest element in the Weyl group of G.

 (G, \overline{w}_0) root space

 $\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_r},$

where d_i is the number of s_{i_i} in \overline{w}_0 such that $i_j = i$.

$$l_i(x) = \sum_{k \neq i} (\alpha_k, \alpha_i) \sigma_k(x).$$

Example

For $G = GL_n$ and $w_0 = (s_1 \dots s_{n-1})(s_1 \dots s_{n-2}) \dots (s_1)$, we get GL_n root space.

\overline{W}_0

Fix a reduced decomposition $w_0 = s_{i_1} \dots s_{i_d}$ of the longest element in the Weyl group of G.

 (G, \overline{w}_0) root space

$$\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_r},$$

where d_i is the number of s_{i_i} in \overline{w}_0 such that $i_j = i$.

$$l_i(x) = \sum_{k \neq i} (\alpha_k, \alpha_i) \sigma_k(x).$$

Example

For $G = GL_n$ and $w_0 = (s_1 \dots s_{n-1})(s_1 \dots s_{n-2}) \dots (s_1)$, we get GL_n root space.

\overline{W}_0

Fix a reduced decomposition $w_0 = s_{i_1} \dots s_{i_d}$ of the longest element in the Weyl group of G.

 (G, \overline{w}_0) root space

$$\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_r},$$

where d_i is the number of s_{i_i} in \overline{w}_0 such that $i_j = i$.

$$l_i(x) = \sum_{k \neq i} (\alpha_k, \alpha_i) \sigma_k(x).$$

Example

For $G = GL_n$ and $w_0 = (s_1 \dots s_{n-1})(s_1 \dots s_{n-2}) \dots (s_1)$, we get GL_n root space.

Theorem

For each dominant weight λ of G, there exists a point $p_{\lambda} \in \mathbb{R}^d$ such that the polytope

$$P:=D_{i_1}\ldots D_{i_d}(p_\lambda)$$

yields the Weyl character $\chi(V_{\lambda})$ of the irreducible *G*-module V_{λ} , namely,

$$\chi(V_{\lambda}) = \sum_{x \in P \cap \mathbb{Z}^d} e^{p(x)}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Geometric mitosis

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Geometric mitosis

