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Convex polytopes in algebraic geometry and in

representation theory

0. Toric geometry

Newton (or moment) polytopes

1. Representation theory

Gelfand�Zetlin polytopes and string polytopes

(Berenstein�Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton�Okounkov convex bodies

(Kaveh�Khovanskii, Lazarsfeld�Mustata, 2009)

1 & 2. Schubert calculus
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Flag varieties

De�nition
The �ag variety X is the variety of complete �ags in Cn:

X = {{0} = V 0 ⊂ V 1 ⊂ . . . ⊂ V n−1 ⊂ V n = Cn| dimV i = i}

Remark
Alternatively, X = GLn(C)/B , where B denotes the group of

upper-triangular matrices (Borel subgroup). In this form, the

de�nition can be extended to arbitrary connected reductive groups.

Dimension

dimX =
n(n − 1)

2
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Flag varieties and representation theory

De�nition
A collection of integers λ = (λ1, . . . , λn) ∈ Zn is a strictly dominant

weight of the group GLn(C) if λi < λi+1 for all i = 1, . . . , n − 1.

Fact
very ample line bundles on X ←→ irreducible representations of

GLn(C) with strictly dominant weights.

Construction

• Vλ � the irreducible GLn-module with the highest weight λ
=⇒ X ↪→ P(Vλ), g 7→ gvλ � embedding;

• L � very ample line bundle

=⇒ H0(X ,L)∗ = Vλ
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Representation theory and Gelfand�Zetlin polytopes

Gelfand�Zetlin polytope

For each strictly dominant weight λ, de�ne a convex polytope

Pλ ⊂ Rd (where d = n(n − 1)/2) with integer vertices.

Origins

Gelfand and Zetlin constructed a natural basis in Vλ. The basis

elements are parameterized by the integer points inside and at the

boundary of Pλ.

Dimension

dimPλ = d = dimX



Representation theory and Gelfand�Zetlin polytopes

Gelfand�Zetlin polytope

For each strictly dominant weight λ, de�ne a convex polytope

Pλ ⊂ Rd (where d = n(n − 1)/2) with integer vertices.

Origins

Gelfand and Zetlin constructed a natural basis in Vλ. The basis

elements are parameterized by the integer points inside and at the

boundary of Pλ.

Dimension

dimPλ = d = dimX



Representation theory and Gelfand�Zetlin polytopes

Gelfand�Zetlin polytope

For each strictly dominant weight λ, de�ne a convex polytope

Pλ ⊂ Rd (where d = n(n − 1)/2) with integer vertices.

Origins

Gelfand and Zetlin constructed a natural basis in Vλ. The basis

elements are parameterized by the integer points inside and at the

boundary of Pλ.

Dimension

dimPλ = d = dimX



Gelfand�Zetlin polytopes

The Gelfand�Zetlin polytope Pλ is de�ned by inequalities:

λ1 λ2 λ3 . . . λn
x1

1 x1
2 . . . x1

n−1

x2
1 . . . x2

n−2
. . . . . .

xn−2
1 xn−2

2

xn−1
1

where (x1
1 , . . . , x

1
n−1; . . . ; xn−1

1 ) are coordinates in Rd , and the

notation
a b

c

means a ≤ c ≤ b.



Gelfand�Zetlin polytopes

A Gelfand�Zetlin

polytope for GL3:

−1 0 1
x y

z



Flag varieties and Gelfand�Zetlin polytopes

Goal
Use combinatorics of Pλ to study geometry of X .

Results

• Relation between Schubert varieties and preimages of rc-faces

of Pλ under the Guillemin�Sternberg moment map X → Pλ
(Kogan, 2000)

• Degenerations of Schubert varieties to (reducible) toric

varieties given by (unions of) faces of Pλ (Kogan�Miller,

Knutson�Miller, 2003)

• Description of H∗(X ,Z) using volume polynomial of Pλ
(Kaveh, 2003)

• Schubert calculus: intersection product of Schubert cycles in

H∗(X ,Z) = intersection of faces in Pλ (K.�Smirnov�Timorin,

2011)
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Schubert calculus and Gelfand�Zetlin polytopes

De�nition
For each permutation w ∈ Sn, the Schubert variety Xw ⊂ X is

Xw = BwB,

where w acts on the standard basis vectors ei by the formula

ei 7→ ew(i).

Dimension
dimXw = `(w)

De�nition
The Schubert cycle [Xw ] is the class of Xw in H∗(X ,Z).
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Schubert calculus and Gelfand�Zetlin polytopes

[Xs1 ] = = [Xs2 ] = =

= [Xs1 ]+[Xs2 ]



Schubert calculus and Gelfand�Zetlin polytopes

[Xs1 ] = = [Xs2 ] = =

[Xs2s1 ]2 = · ( + ) = = [Xs1 ]



Schubert calculus and Gelfand�Zetlin polytopes

GLn
Any two Schubert cycles [Xw ] and [Xw ′ ] can be represented as sums

of faces so that every face appearing in the decomposition of [Xw ]
is transverse to every face appearing in the decomposition of [Xw ′ ]

1.

Corollary

Intersection of any two Schubert cycles can be represented by linear

combinations of faces with nonnegative coe�cients.

Question
Why intersecting faces is better than multiplying Schubert

polynomials?

1see arXiv:1101.0278v1 [math.AG] for precise formulas



Schubert calculus and Gelfand�Zetlin polytopes

GLn
Any two Schubert cycles [Xw ] and [Xw ′ ] can be represented as sums

of faces so that every face appearing in the decomposition of [Xw ]
is transverse to every face appearing in the decomposition of [Xw ′ ]

1.

Corollary

Intersection of any two Schubert cycles can be represented by linear

combinations of faces with nonnegative coe�cients.

Question
Why intersecting faces is better than multiplying Schubert

polynomials?

1see arXiv:1101.0278v1 [math.AG] for precise formulas



Schubert calculus and Gelfand�Zetlin polytopes

GLn
Any two Schubert cycles [Xw ] and [Xw ′ ] can be represented as sums

of faces so that every face appearing in the decomposition of [Xw ]
is transverse to every face appearing in the decomposition of [Xw ′ ]

1.

Corollary

Intersection of any two Schubert cycles can be represented by linear

combinations of faces with nonnegative coe�cients.

Question
Why intersecting faces is better than multiplying Schubert

polynomials?

1see arXiv:1101.0278v1 [math.AG] for precise formulas



Schubert calculus and Gelfand�Zetlin polytopes

Answer
Faces are more �positive� than monomials: all computations with

faces are cancelation free.

Example for GL3

Compute [Xs1 ] · [Xs2s1 ] in two ways: via Schubert polynomials and

via faces.

x1x2(x1 + x2) = x2
1x2 − x1x

2
2 = 1− 1 = 0 (cancelation)

· = 0

intersection is empty (no

cancelation)
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Schubert calculus and Gelfand�Zetlin polytopes

Arbitrary reductive groups

How to relate Schubert cycles to (unions of) faces of polytopes?

Main tool
A convex geometric incarnation of divided di�erence operators.
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Tool: divided di�erence operators

De�nition (for GLn)

Divided di�erence operator δi (for i = 1,. . . , n − 1) acts on
Z[x1, . . . , xn] as follows:

δi : f 7→ f − si (f )

xi − xi+1
.

Example

δ1(x2
1 ) =

x2
1 − x2

2

x1 − x2
= x1 + x2
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Divided di�erence operators in cohomology

Theorem (Bernstein�Gelfand�Gelfand, Demazure, 1971)

Let w = si1 . . . si` be a reduced representation. In the Borel

presentation,

[Xw ] = δi` . . . δi1 [Xid ],

where [Xid ] is the class of a point.

Remark
For GLn,

[Xid ] = xn−1
1 xn−2

2 · · · xn−1.

For other reductive groups, there is sometimes no denominator-free

formula.
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Topological meaning of divided di�erence operators

Gysin morphism

Let Pi be the minimal parabolic subgroup, and pi : G/B → G/Pi

the natural projection. Then the action of δi on H∗(G/B,Z)
coincides with the action of p∗i ◦ pi ∗:

δi : H∗(G/B,Z)
pi∗−→ H∗(G/Pi ,Z)

p∗i−→ H∗(G/B,Z).

Example

If G = GLn, then G/Pi is obtained by forgetting the i-th space in a

�ag.
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Generalizations of divided di�erence operators

Generalized cohomology theories

Let A∗ be a generalized oriented cohomology theory. De�ne

generalized divided di�erence operator δAi as the composition

δAi : A∗(G/B,Z)
pAi ∗−→ A∗(G/Pi ,Z)

p∗Ai−→ A∗(G/B,Z).

Examples

• classical cohomology H∗ or Chow ring CH∗

• K -theory K ∗0
• complex cobordism MU∗ or algebraic cobordism Ω∗
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Generalizations of divided di�erence operators

Question
Is there an algebraic formula for δAi ?

Formal group law

There exists a formal power series FA(x , y) = x + y + . . . with
coe�cients in A0 such that

F (cA1 (L), cA1 (M)) = cA1 (L⊗M)

in A∗(X ) for any pair of line bundles L and M on a variety X .

Examples

CH∗ F (x , y) = x + y

K ∗0 F (x , y) = x + y − xy

Ω∗ F (x , y) = x + y − [P1]xy + ([P1]2 − [P2])x2y + . . .
universal formal group law
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Generalizations of divided di�erence operators

Theorem

δAi = (1 + si )
1

xi −A xi+1

Applications

Formulas for �Schubert cycles� in the �Borel presentation� for

A∗(G/B). Algorithms for multiplying �Schubert cycles�.

H∗ Bernstein�Gelfand�Gelfand, Demazure, 1973

K ∗0 Demazure, 1974

MU∗ Bressler�Evens, 1992

Ω∗ Hornbostel�K., Calm�es�Petrov�Zainoulline, 2009

Ω∗T K.�Krishna, 2011
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Demazure operators

Notation
Let G be a connected reductive group of semisimple rank r , ΛG the

weight lattice of G , and Z[ΛG ] the group ring. Simple roots of G
are denoted by α1,. . . , αr .

Remark
Elements of ΛG are written in the form∑

µ∈ΛG

m(µ)eµ.

De�nition
Demazure operator Di (for i = 1,. . . , n) acts on Z[ΛG ] as follows:

Di : f 7→ f − eαi si (f )

1− eαi
.
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Demazure operators

Example for GLn

D1(eα2) =
eα2 − eα1eα1+α2

1− eα1
= eα2 + eα1+α2

Exercise
De�ne (λ, αi ) by the identity si (λ) = λ− (λ, αi )αi .

Di (e
λ) = eλ(1 + eαi + . . .+ e−(λ,αi )αi ), (λ, αi ) ≤ 0

Di (e
λ) = 0, (λ, αi ) = 1

Di (e
λ) = −eλ(1 + e−αi + . . .+ e−((λ,αi )−2)αi ), (λ, αi ) > 1
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Demazure operators

Remark
For G = GLn, put xi := 1 + eχi where the character χi is given by

the i-th entry of the diagonal torus. Then

Di = −δKi ,

that is, the Demazure operator is equal up to a sign to the K -theory

divided di�erence operator (= isobaric divided di�erence operator).



Demazure characters

De�nition
Demazure B-module Vλ,w := H0(Xw ,Lλ|Xw )∗ is the dual space to

the space of global sections of the line bundle Lλ on G/B
(corresponding to Vλ) restricted to X .

De�nition
Demazure character χw (λ) of Vλ,w is the sum over all basis weight

vectors of the exponentials of the corresponding weights:

χw (λ) :=
∑
µ∈Λ

mλ,w (µ)eµ

Demazure character formula [Andersen, 1985, . . . ]

Let w = si1 . . . si` be a reduced representation. Then

χw (λ) = Di1 . . .Di`e
λ
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Demazure characters

Examples

• Vλ,id = Cλ, χid(λ) = eλ

• Vλ,w0 = Vλ, χw0(λ) � Weyl character

Remark
For GLn, the de�nition of Gelfand�Zetlin polytopes implies that

χw0(λ) =
∑

x∈Pλ∩Zd

ep(x),

where p(x) := (
∑n−1

j=1 x1
j )α1 + (

∑n−2
j=1 x1

j )α2 + . . .+ xn−1
1 αn−1 is

the weight of x .
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Demazure characters and Gelfand�Zetlin polytopes

A Gelfand�Zetlin polytope for

GL3:

−1 0 1
x y

z

p(x , y , z) = (x + y , z)



Demazure characters and Gelfand�Zetlin polytopes

The weight polytope (=image of

Pλ under the projection p):



Convex geometric Demazure operators

Goal
De�ne operators D1,. . . , Dr on convex polytopes in Rd and a

weight map Rd → Rr such that for any reduced decomposition

w = si1 . . . si` the sequence of polytopes

pt(λ)
Di1−→ P1(λ)

Di2−→ P2(λ)
Di3−→ . . .

Di`−→ P`(λ)

yields the sequence of the Demazure characters

eλ
Di1−→ χsi1

(λ)
Di2−→ χsi1 si2

(λ)
Di3−→ . . .

Di`−→ χw (λ)

that is,

χw (λ) =
∑

x∈P`(λ)∩Zd

ep(x).



Convex geometric Demazure operators

De�nition
A root space of rank r is a real vector space Rd together with a

direct sum decomposition

Rd = Rd1 ⊕ . . .⊕ Rdr

and a collection of linear functions l1, . . . , lr ∈ (Rd)∗ such that li
vanishes on Rdi .

De�nition
A convex polytope P ⊂ Rd is called a parapolytope if for all

i = 1,. . . , r , and any vector c ∈ Rd the intersection of P with the

parallel translate c + Rdi of Rdi is a coordinate parallelepiped.
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Convex geometric Demazure operators

A coordinate

parallelepiped in R3

Notation
Coordinates in Rd : (x1

1 , . . . , x
1
d1

; . . . ; xn1 , . . . , x
n
dn

).

De�nition
A coordinate parallelepiped in Rdi is

Π(µ, ν) = {(x i1, . . . , x idi ) ∈ Rdi |µj ≤ x ij ≤ νj , j = 1, . . . , di}.
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Convex geometric Demazure operators

Example

d = n(n−1)
2 , r = (n − 1)

Rd = Rn−1 ⊕ Rn−2 ⊕ . . .⊕ R1

Exercise
The Gelfand�Zetlin polytope Pλ is a parapolytope.

λ1 λ2 λ3 . . . λn
x1

1 x1
2 . . . x1

n−1

x2
1 . . . x2

n−2
. . . . . .

xn−2
1 xn−2

2

xn−1
1



Convex geometric Demazure operators

R3 = R2 ⊕ R

The slices {z = 1
2} and

{z = −1
2} are coordinate

rectangles.



Convex geometric Demazure operators

De�nition

1. P = Π(µ, ν) ⊂ (c + Rdi ) � coordinate parallelepiped

Choose the smallest j = 1,. . . , di such that µj = νj . Put

Di (P) := Π(µ, ν ′),

where ν ′k = νk for all k 6= j and ν ′j is de�ned by the equality

di∑
k=1

(µk + ν ′k) = li (c).

2. P � any parapolytope

Di (P) =
⋃

c∈Rd

{Di (P ∩ (c + Rdi ))}
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Convex geometric Demazure operators

Examples

R3 = R2 ⊕ R, l1(x , y , z) = z , l2(x , y , z) = x + y

P = {(a, b, c)} � a point

D1(P) = [(a, b, c), (a′, b, c)],

where a′ is de�ned by the equality

a + b + a′ + b = l1(a, b, c),

that is,

a′ = c − a− 2b
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Convex geometric Demazure operators

R3 = R2 ⊕ R, l1(x , y , z) = z , l2(x , y , z) = x + y

P = [(a, b, c), (a′, b, c)] � segment

D2(P) =
⋃

x∈[a,a′]

[(x , b, c), (x , b, c ′(x))],

where

c ′(x) = x + b − c
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Convex geometric Demazure operators

R3 = R2 ⊕ R, l1(x , y , z) = z , l2(x , y , z) = x + y

P = D2D1({(λ1, λ2, λ1)}) � trapezoid

P

−→

D1(P)
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Convex geometric Demazure operators

R3 = R2 ⊕ R, l1(x , y , z) = z , l2(x , y , z) = x + y

Exercise
D1D2D1({(λ1, λ2, λ1)}) � Gelfand�Zetlin polytope for

λ = (λ1, λ2,−λ1 − λ2).

· D1−→ D2−→ D1−→
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Convex geometric Demazure operators

GLn root space

Rd = Rn−1 ⊕ Rn−2 ⊕ . . .⊕ R1

Functions li

li (x) = σi−1(x) + σi+1(x),

where σi (x) =
∑di

j=1 x
i
j (=sum of coordinates in the i-th row) for

i = 1,. . . , n − 1 and σ0 = σn = 0

x1
1 x1

2 . . . x1
n−1

x2
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n−2
. . . . . .

xn−2
1 xn−2

2

xn−1
1



Convex geometric Demazure operators

GLn root space

Rd = Rn−1 ⊕ Rn−2 ⊕ . . .⊕ R1

Functions li

li (x) = σi−1(x) + σi+1(x),

where σi (x) =
∑di

j=1 x
i
j (=sum of coordinates in the i-th row) for

i = 1,. . . , n − 1 and σ0 = σn = 0

x1
1 x1

2 . . . x1
n−1

x2
1 . . . x2

n−2
. . . . . .

xn−2
1 xn−2

2

xn−1
1



Convex geometric Demazure operators

Proposition

The Gelfand�Zetlin polytope Pλ coincides with

[(D1 . . .Dn−1)(D1 . . .Dn−2) . . . (D1)] (p),

where p ∈ Rd is the point (λ1, . . . , λn−1;λ1, . . . , λn−2; . . . ;λ1).



Convex geometric Demazure operators

w 0

Fix a reduced decomposition w0 = si1 . . . sid of the longest element

in the Weyl group of G .

(G ,w 0) root space

Rd = Rd1 ⊕ . . .⊕ Rdr ,

where di is the number of sij in w0 such that ij = i .

li (x) =
∑
k 6=i

(αk , αi )σk(x).

Example

For G = GLn and w0 = (s1 . . . sn−1)(s1 . . . sn−2) . . . (s1), we get

GLn root space.
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Convex geometric Demazure operators

Theorem
For each dominant weight λ of G , there exists a point pλ ∈ Rd

such that the polytope

P := Di1 . . .Did (pλ)

yields the Weyl character χ(Vλ) of the irreducible G -module Vλ,
namely,

χ(Vλ) =
∑

x∈P∩Zd

ep(x).
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D1D2D1(p) = D1D2(p) =

D2D1(p) = ∼


