The Puzzle conjecture for 2-step flag varieties

Anders Buch*, Andrew Kresch, Kevin Purbhoo, Harry Tamvakis.

Def (Knutson): A puzzle piece is a (small) triangle from the following list:

May be rotated, but not reflected.

The Puzzle conjecture for 2-step flag varieties

Anders Buch*, Andrew Kresch, Kevin Purbhoo, Harry Tamvakis.

Def (Knutson): A puzzle piece is a (small) triangle from the following list:

May be rotated, but not reflected.

Interpretation of labels as decreasing trees of integers:

Simple labels: Composed labels:

0 1 2
$$3 = 10$$
 4 = 21, 5 = 20, 6 = 2(10), and 7 = (21)0

Def: (Knutson) A puzzle is a triangle made from puzzle pieces with matching side labels.

Def: (Knutson) A puzzle is a triangle made from puzzle pieces with matching side labels.

Note: The composed labels are uniquely determined by simple labels.

Two-step flag variety: Let 0 < a < b < n.

$$X = \operatorname{Fl}(a, b; n) = \{(A, B) \mid A \subset B \subset \mathbb{C}^n ; \dim(A) = a ; \dim(B) = b\}$$

Def: A 012-string for X is a permutation of $0 := 0^a 1^{b-a} 2^{n-b}$.

E.g. u = 10212 is a 012-string for FI(1, 3; 5).

$$\mathbb{C}^n$$
 has basis $\{e_1, e_2, \dots, e_n\}$. $u = (u_1, u_2, \dots, u_n)$ 012-string.

Set $A_u = \operatorname{Span}\{e_i : u_i = 0\}$ and $B_u = \operatorname{Span}\{e_i : u_i \leq 1\}$.

$$\mathbf{B} \subset \mathrm{GL}(\mathbb{C}^n)$$
 lower triangular matrices.

Schubert variety:
$$X_u = \overline{\mathbf{B}.(A_u, B_u)}$$

$$codim(X_u; X) = \ell(u) = \#\{i < j \mid u_i > u_j\}$$

Schubert structure constants:

$$H^*(X) = \bigoplus_{u} \mathbb{Z}[X_u]$$
 ; $[X_u] \cdot [X_v] = \sum_{w} c_{u,v}^w [X_w]$

$\textbf{Conjecture} \; (\textbf{Knutson}) \; / \; \textbf{Theorem} \; (\textbf{BKPT}) :$

 $c_{u,v}^w = \#$ puzzles with border labels $u,\ v,\ w$:

$\textbf{Conjecture} \; (\textbf{Knutson}) \; / \; \textbf{Theorem} \; (\textbf{BKPT}) :$

 $c_{u,v}^w = \#$ puzzles with border labels $u,\ v,\ w$:

Example:
$$u = 102021$$
, $v = 010212$, $w = 120201$: $c_{u,v}^w = ?$

$\textbf{Conjecture} \; (\textbf{Knutson}) \; / \; \textbf{Theorem} \; (\textbf{BKPT}) :$

 $c_{u,v}^w = \#$ puzzles with border labels u, v, w:

Example: u = 102021, v = 010212, w = 120201: $c_{u,v}^w = 2$

- 1999: Knutson circulated puzzle conjecture for all partial flag varieties $SL(n)/P = FI(a_1, a_2, ..., a_m; n)$.
- Shortly after: Knutson found counter example for FI(1, 2, 3, 4; 5).
- 2001: Knutson, Tao, Woodward proved puzzle rule for Gr(m, n).
- 2001: Knutson and Tao proved generalization for $H_T^*(Gr(m, n))$.
- 2002: Buch, Kresch, Tamvakis: All (3-point, genus zero) Gromov-Witten invariants of degree d on Gr(m,n) are equal to Schubert structure constants $c_{u,v}^w$ of Fl(m-d,m+d;n).
 - Suggested that conjecture is true for two-step flag varieties.
 - Verified conjecture for all FI(a, b; n) with $n \le 16$.
- 2007: Coskun proved different LR rule for FI(a, b; n) using Mondrian tableaux.
- 2010: Knutson and Purbhoo proved that special case of Knutson's original conjecture for SL(n)/P computes Belkale-Kumar coefficients.

Exercise:

Let R be an associative ring with unit 1. Let $S \subset R$ be a subset that generates R as a \mathbb{Z} -algebra.

Let M be a left R-module.

Let M be a left R-module.

Let $\mu: R \times M \to M$ be any \mathbb{Z} -bilinear map.

Assume that for all $r \in R$, $s \in S$, and $m \in M$ we have

- $(1) \quad \mu(1,m)=m \qquad \text{and} \qquad$
 - (2) $\mu(rs, m) = \mu(r, sm)$.
- Then $\mu(r, m) = rm$ for all $r \in R$ and $m \in M$.

Exercise:

Let R be an associative ring with unit 1.

Let $S \subset R$ be a subset that generates R as a \mathbb{Z} -algebra.

Let M be a left R-module.

Let $\mu: R \times M \to M$ be any \mathbb{Z} -bilinear map.

Assume that for all $r \in R$, $s \in S$, and $m \in M$ we have

- (1) $\mu(1, m) = m$ and
- (2) $\mu(rs, m) = \mu(r, sm)$.

Then $\mu(r, m) = rm$ for all $r \in R$ and $m \in M$.

Application:

Def: $C_{u,v}^w = \#$ puzzles with border labels u, v, w.

Def:
$$\mu: H^*(X) \times H^*(X) \to H^*(X)$$
 by $\mu([X_u], [X_v]) = \sum_{u} C_{u,v}^w [X_w]$

Enough to show: $\mu([X_u], [X_v]) = [X_u] \cdot [X_v]$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

$$\mathbf{0} = {0^a} {1^{b-a}} {2^{n-b}} = \underbrace{0000}_{a} \underbrace{11111}_{b-a} \underbrace{2222}_{n-b} ; \qquad [X_0] = 1 \in H^*(X)$$

Pieri rule

Let u and u' be 012-strings.

Def: Write $u \xrightarrow{1} u'$ if u' is obtained from u by a substitution $02 \mapsto 20$ or $100 \dots 02 \mapsto 200 \dots 01$

Def: $u \xrightarrow{1} u'$ has index (i,j) if i < j and $u_i \neq u'_i$ and $u_j \neq u'_j$.

Pieri rule

Let u and u' be 012-strings.

Def: Write
$$u \xrightarrow{1} u'$$
 if u' is obtained from u by a substitution $02 \mapsto 20$ or $100 \dots 02 \mapsto 200 \dots 01$

Def:
$$u \xrightarrow{1} u'$$
 has index (i,j) if $i < j$ and $u_i \neq u'_i$ and $u_j \neq u'_j$.

Let
$$r \in \mathbb{N}$$
.

Def: Write $u \xrightarrow{r} u'$ if $\exists u = u^0 \xrightarrow{1} u^1 \xrightarrow{1} \cdots \xrightarrow{1} u^r = u'$ such that if $u^{t-1} \xrightarrow{1} u^t$ has index (i_t, j_t) then $j_{t-1} \le i_t$ for each t.

Example:
$$12021022 \xrightarrow{3} 22011202$$
 because: $12021022 \xrightarrow{1} 21021022 \xrightarrow{1} 22011022 \xrightarrow{1} 22011202$

Given $r \in [0, n-b]$, identify r = 0000011112221222

Given
$$p \in [0, a]$$
, define $\tilde{p} = \underbrace{0001000111122222}_{0.000111122222}$

Special Schubert classes:

Pieri rule: X = FI(a, b; n)

$[X_r] = c_r(\mathcal{B}/\mathbb{C}_X^n)$ and $[X_{\widetilde{p}}] = c_p(\mathcal{A}^{\vee})$ where $\mathcal{A} \subset \mathcal{B} \subset \mathbb{C}_X^n = \mathbb{C}^n \times X$ tautological flag on X.

$$H^*(X)$$
 is generated by $S = \{[X_1], [X_2], \dots, [X_{n-b}], [X_{\tilde{1}}], [X_{\tilde{2}}], \dots, [X_{\tilde{a}}]\}$

Pieri rule: X = FI(a, b; n)

Given
$$r \in [0, n-b]$$
, identify $r = \underbrace{00000}_{a} \underbrace{1111}_{b-a-1} \underbrace{222}_{r} \underbrace{1222}_{n-b-r}$

Given
$$p \in [0, a]$$
, define $\widetilde{p} = \underbrace{0001000}_{a-p} \underbrace{1111}_{p} \underbrace{22222}_{b-a-1}$

Special Schubert classes:

$$[X_r] = c_r(\mathcal{B}/\mathbb{C}_X^n)$$
 and $[X_{\widetilde{p}}] = c_p(\mathcal{A}^{\vee})$ where $\mathcal{A} \subset \mathcal{B} \subset \mathbb{C}_X^n = \mathbb{C}^n \times X$ tautological flag on X .

$$H^*(X)$$
 is generated by $S = \{[X_1], [X_2], \dots, [X_{n-b}], [X_{\tilde{1}}], [X_{\tilde{2}}], \dots, [X_{\tilde{a}}]\}$

Theorem: (Lascoux–Schützenberger 1982, Sottile 1996):

$$[X_r] \cdot [X_u] = \sum_{u \xrightarrow{r} u'} [X_{u'}]$$

Similar formula for $[X_{\widetilde{p}}] \cdot [X_u]$

$$\mu([X_u] \cdot [X_r] , [X_v]) = \mu([X_u] , [X_r] \cdot [X_v])$$

$$\mu([X_u] \cdot [X_r] , [X_v]) = \mu([X_u] , [X_r] \cdot [X_v])$$

 $\Leftrightarrow \sum \mu([X_{u'}], [X_v]) = \sum \mu([X_u], [X_v])$

$$\Leftrightarrow \sum_{r} \mu([X_{u'}], [X_{v}]) = \sum_{r} \mu([X_{u}], [X_{v'}])$$

$$\mu([X_{u}] \cdot [X_{r}] , [X_{v}]) = \mu([X_{u}] , [X_{r}] \cdot [X_{v}])$$

$$\Leftrightarrow \sum_{u \to u'} \mu([X_{u'}], [X_{v}]) = \sum_{v \to v'} \mu([X_{u}], [X_{v'}])$$

$$\Leftrightarrow \sum_{u \stackrel{r}{\sim} u'} C_{u',v}^w = \sum_{v \stackrel{r}{\sim} v'} C_{u,v'}^w$$

$$\mu([X_{u}] \cdot [X_{r}], [X_{v}]) = \mu([X_{u}], [X_{r}] \cdot [X_{v}])$$

$$\Leftrightarrow \sum_{u \xrightarrow{r} u'} \mu([X_{u'}], [X_{v}]) = \sum_{v \xrightarrow{r} v'} \mu([X_{u}], [X_{v'}])$$

$$\Leftrightarrow \sum_{u \xrightarrow{r} u'} C_{u',v}^{w} = \sum_{v \xrightarrow{r} v'} C_{u,v'}^{w}$$

TODO: Given 012-strings u, v, w, enough to construct bijection between puzzles with border u', v, w such that $u \xrightarrow{r} u'$, and puzzles with border u, v', w such that $v \xrightarrow{r} v'$.

Easiest case: Assume r = 1.

$$u = 20121$$
, $v = 11022$.

$$u = 20121$$
, $v = 11022$.

OK!

$$u = 10221$$
, $v = 11022$.

Problem: We have v' = 12102, but $v \neq v'$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

$$u = 10221$$
, $v = 11022$.

This time we have v' = 12021 and $v \xrightarrow{2} v'$. OK!!

Lemma: $C_{u,v}^w = \#$ rhombus shaped puzzles with border u, $\mathbf{0}$, v, w:

Lemma: $C_{u,v}^w = \#$ rhombus shaped puzzles with border u, $\mathbf{0}$, v, w:

Lemma: $C_{u,v}^w = \#$ rhombus shaped puzzles with border u, $\mathbf{0}$, v, w:

TODO: Given 012-strings u, v', w^1 , w^2 , and $r \in \mathbb{N}$, construct bijection between puzzles with border (w^1, u', v', w^2) such that $u \stackrel{r}{\to} u'$, and puzzles with border (w^1, u, v, w^2) such that $v \stackrel{r}{\to} v'$.

Generalized Pieri relation

Def: A label string is any finite sequence of integers from

 $[0,7] = \{0,1,2,3,4,5,6,7\}.$

Generalized Pieri relation

Def: A **label string** is any finite sequence of integers from $[0,7] = \{0,1,2,3,4,5,6,7\}.$

Def: Write $u \xrightarrow{\mathcal{R}} u'$ if u' is obtained from u by a substitution

Rule:
$$\mathcal{R} = \frac{a_1}{b_1} S * \frac{a_2}{b_2}$$
 where $a_1, b_1, a_2, b_2 \in [0, 7]$ and $S \subset [0, 7]$.

 $(a_1, s_1, \ldots, s_k, a_2) \mapsto (b_1, s_1, \ldots, s_k, b_2)$, where $s_i \in S$.

We say $u \xrightarrow{\mathcal{R}} u'$ has index (i,j) if i < j and $u_i \neq u'_i$ and $u_j \neq u'_j$.

Example:
$$\mathcal{R} = \frac{\frac{1}{2} - 03^* - \frac{5}{7}}{\text{Index: (4,8)}}$$
 Then 7041303562 $\xrightarrow{\mathcal{R}}$ 7042303762

Generalized Pieri relation

Def: A label string is any finite sequence of integers from $[0,7] = \{0,1,2,3,4,5,6,7\}.$

Rule:
$$\mathcal{R} = \frac{a_1}{b_1} S * \frac{a_2}{b_2}$$
 where $a_1, b_1, a_2, b_2 \in [0, 7]$ and $S \subset [0, 7]$.

Def: Write $u \xrightarrow{\mathcal{R}} u'$ if u' is obtained from u by a substitution $(a_1, s_1, \ldots, s_k, a_2) \mapsto (b_1, s_1, \ldots, s_k, b_2)$, where $s_j \in S$.

We say $u \xrightarrow{\mathcal{R}} u'$ has index (i,j) if i < j and $u_i \neq u'_i$ and $u_j \neq u'_j$.

Example:
$$\mathcal{R} = \frac{1}{2} \frac{03*}{03} = \frac{5}{7}$$
 Then $7041303562 \xrightarrow{\mathcal{R}} 7042303762$ Index: $(4,8)$

Def: Write $u \xrightarrow{1} u'$ iff $u \xrightarrow{\mathcal{R}} u'$ for some rule \mathcal{R} from the following list:

Basic rules:

Def: Write
$$u \xrightarrow{r} u'$$
 iff $\exists u = u^0 \xrightarrow{1} u^1 \xrightarrow{1} \cdots \xrightarrow{1} u^r = u'$, such that if $u^{t-1} \xrightarrow{1} u^t$ has index (i_t, j_t) , then $j_1 < j_2 < \cdots < j_r$.

Example: 04730202245
$$\xrightarrow{5}$$
 40720522015 because: 04730202245 $\xrightarrow{1}$ 40720302245 $\xrightarrow{1}$ 40720302245 $\xrightarrow{1}$ 40720320245 $\xrightarrow{1}$

 $40720320245 \xrightarrow{1}
40720322045 \xrightarrow{1}
40720522015$

Exercise:

This relation restricts to the classical Pieri relation on 012-strings.

Main Technical Result:

Let u and v' be label strings, let $c_1, c_2 \in \{0, 1, 2\}$, and let $r \in \mathbb{N}$. There is an explicit bijection between single-row puzzles with border (c_1, u', v', c_2) such that $u \xrightarrow{r} u'$, and single-row puzzles with border (c_1, u, v, c_2) such that $v \xrightarrow{r} v'$.

Method: Propagate one gash at the time. 80 rules are required.

$$u = 0241$$
, $v = 5410$, $r = 2$.

$$u = 0241$$
, $v = 5410$, $r = 2$.

$$u = 0241$$
, $v = 5410$, $r = 2$.

Propagation rules:

$$u = 0241$$
, $v = 5410$, $r = 2$.

Propagation rules:

$$u = 0241$$
, $v = 5410$, $r = 2$.

$$u = 0241$$
, $v = 5410$, $r = 2$.

$$u = 0241$$
, $v = 5410$, $r = 2$.

$$u = 0241$$
, $v = 5410$, $r = 2$.

$$u = 0241$$
, $v = 5410$, $r = 2$.

$$u = 10212$$
, $v = 22011$, $r = 2$.

$$u = 10212$$
, $v = 22011$, $r = 2$.

$$u = 10212$$
, $v = 22011$, $r = 2$.

$$u = 10212$$
, $v = 22011$, $r = 2$.

$$u = 10212$$
, $v = 22011$, $r = 2$.

$$u = 10212$$
, $v = 22011$, $r = 2$.

$$u = 10212$$
, $v = 22011$, $r = 2$.

$$u = 10212$$
, $v = 22011$, $r = 2$.

$$u = 10212$$
, $v = 22011$, $r = 2$.

Question: What does the braid group element mean?

Equivariant pieces: (May NOT be rotated.)

Conjecture for $H_T^*(X)$ (Buch, printed in Coskun–Vakil's 2006 survey)

$$c_{u,v}^w = \sum_{P} \prod_{\bigotimes \in P} \operatorname{weight}(\bigotimes)$$

sum over equivariant puzzles P with border labels u, v, w.

Equivariant pieces: (May NOT be rotated.)

Conjecture for $H_T^*(X)$ (Buch, printed in Coskun–Vakil's 2006 survey)

$$c_{u,v}^w = \sum_{P} \prod_{\bigotimes \in P} \mathsf{weight}(\bigotimes)$$

sum over equivariant puzzles P with border labels u, v, w.

FALSE!!!

Equivariant pieces: (May NOT be rotated.)

Equivariant pieces: (May NOT be rotated.)

Theorem (Buch)

$$c_{u,v}^w = \sum_{P} \prod_{\bigotimes \in P} \text{weight}(\bigotimes)$$

Equivariant pieces: (May NOT be rotated.)

Theorem (Buch)

$$c_{u,v}^w = \sum_{P} \prod_{\bigotimes \in P} \operatorname{weight}(\bigotimes)$$

Consequence: Equivariant quantum Littlewood-Richardson rule for $QH_T(Gr(m, n))$.

This uses [Buch-Mihalcea 2011].