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The problem

The Schubert polynomial sw ∈ Z[x1, x2, . . .] is a polynomial repre-
sentation for the Schubert class of w in the cohomology of the flag
manifold.

Loosely, sw is the unique homogeneous polynomial of degree `(w),
the length of w, representing the Schubert cycle of w.

Schubert polynomials form an additive basis for Z[x1, x2, . . .]:

su · sv =
∑

w∈S∞

cw
u,vsw

The coefficients cw
u,v enumerate flags in a suitable triple intersection

of Schubert varieties, and so they are known to be nonnegative.
Fundamental Problem: Find a positive combinatorial construc-

tion for cw
u,v.

Possibly, cw
u,v counts (saturated) chains in Bruhat order from u to

w satisfying some conditions imposed by v. (Recall, Bruhat order
corresponds to inclusion of Schubert varieties.)

Special case: Littlewood–Richardson Rule
The Schur functions {sλ} form an orthonormal basis for the ring of

symmetric functions. For given λPar(n), the Schur function sλ(x1,...,xk)

is the character of the irreducible representation of GLk indexed by λ.
The Littlewood–Richardson rule states

sλ · sµ =
∑

ν

cν
λ,µsν

where cν
λ,µ counts the number of saturated chains in Young’s lattice

from λ to ν with weight µ.
The Grassmannian permutation associated to a partition λ and pos-

itive integer k, where λ ⊆ (n− k)k, is the unique permutation of shape
λ with a descent at k, i.e.

v(λ, k) : i 7→ i + λk+1−i
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Schubert polynomials indexed by Grassmannian permutations are
Schur functions:

sλ(x1, . . . , xk) = sv(λ,k)

Therefore the Littlewood–Richardson rule is indeed a special case.
The case we consider in this talk is that of a Schubert polynomimal

times a Schur polynomial:

su · sλ(x1, . . . , xk) =
∑

w∈S∞

cw
u,v(λ,k)

Our approach is threefold:

• Bergeron and Sottile (1998) used the Grassmannian-Bruhat or-
der to translate this problem into that finding the Schur coef-
ficients of a certain quasisymmetric function.

• Assaf used dual equivalence to find the Schur coefficients of
certain quasisymmetric functions.

• Billey, Billera, Stanley organized a Banff workshop on qua-
sisymmetric functions and invited Assaf, Bergeron and Sottile.

Grassmannian-Bruhat order

Bruhat order on S∞ as cover relations

u l w if `(w) = `(u) + 1 and w = u · (a, b)

Young’s lattice on Par has cover relations

µ l ν if |ν| = |µ|+ 1 and ν ⊃ µ

Monk’s Rule states that for λ = (1), where v(λ, k) = (k, k +1), we
have

su · (x1 + · · ·+ xk) =
∑

a≤k<b
`(u·(a,b)=`(w)+1

There is a nice proof of this using insertion, similar to proving RSK.
Motivated by this rule, define the Grassmannian-Bruhat order on

S∞ by cover relations

u lk w if `(w) = `(u) + 1 and w = u · (a, b) and a ≤ k < b

The Grassmannian-Bruhat interval [u, w]k is the set of saturated
chains in this order from u to w, e.g.

C : {u = x1
(a1,b1)−→ x2

(a2,b2)−→ · · · (an,bn)−→ xn+1 = w

Define the descent set of such a chain by

Des(C) = {i | bi > bi+1} ⊆ [n− 1]
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Theorem (Bergeron–Sottile 1998)

G[u,w]k

def
=

∑
C∈[u,w]k

QDes(C)
thm
=

∑
λ

cw
u,v(λ,k)sλ

The idea of the proof is to use the formula

(x1 + · · ·+ xk)
n =

∑
λ∈Par(n)

fλsλ(x1, . . . , xk)

to deduce that
|[u, w]k| =

∑
λ

fλcw
u,v(λ,k)

Quasisymmetric functions

Quasisymmetric functions are a superset of symmetric functions with
monomial basis

M1,3 = x1x
2
2x3 + x1x

2
2x4 + x1x

2
3x4 + x2x

2
3x4

Gessel’s fundamental basis for quasisymmetric functions is

QD =
∑

i1≤···≤in
j∈D⇒ij<ij+1

xi1 · · ·xin

These two basis are triangularly related

Q1,3 = M1,3 + M1,2,3

A standard Young tableau is a saturated chain in Young’s lattice.
The descent set of a tableau is

Des(T ) = {i | box for i + 1 lies above box for i}
Theorem (Gessel 1984) For λ a partition, we have∑

T∈SYT(λ)

QDes(T ) = sλ

Dual equivalence

Haiman defined involutions di, 1 < i < n, that interchanges i and
i± 1, whichever is further away in the reading order.

Theorem (Haiman 1992) For T ∈ SYT(λ), we have

[T ] = SYT(λ)

Therefore we can shift paradigms∑
T∈[Tλ]

QDes(T ) = sλ
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where Tλ is the superstandard tableau of shape λ.
Definition (Assaf) Given any set of combinatorial objects A and

any descent statistic Des : A → 2[n−1], a family of involutions {ϕi}
(1 < i < n) is a strong dual equivalence if

(i) ϕi has specific fixed points
(ii) ϕi changes descents in a specific way
(iii) ϕi = ϕi+1 under specific conditions
(iv) ϕi ◦ ϕj = ϕj ◦ ϕi whenever |i− j| ≥ 3
(v) a non-local minimality condition (painful to verify)

Theorem (Assaf) If {ϕi} is a strong dual equivalence for (A, Des),
then ∑

T∈A

QDes(T ) =
∑

λ

aλsλ

where aλ has a simple, explicit description corresponding to dual equiv-
alence classes.

Definition (Assaf) A weak dual equivalence excludes condition (v),
weakens condition (iii), and must arise ”from words”.

Theorem (Assaf) If {ϕi} is a weak dual equivalence for (A, Des),
then ∑

T∈A

QDes(T ) =
∑

λ

aλsλ

where aλ has an explicit description, but isn’t so easy to describe.

The solution

Bergeron and Sottile developed a monoid(e) structure from the Grassmannian-
Bruhat order that involves a six case involution on chains in the Grassmannian-
Bruhat order.

Theorem (Assaf–Bergeron–Sottile) These involutions give a weak
dual equivalence for ([u, w]k, Des). Therefore we have a combinatorial
proof that cw

u,v(λ,k) ∈ N.

Theorem (Assaf–Bergeron–Sottile) If wu−1 avoids six specific pat-
terns of length up to 7, then these involutions give a strong dual equiv-
alence. Therefore we have a nice combinatorial formula for cw

u,v(λ,k) in
this case.


