Dave Anderson (joint with Linda Chen)

MSJ-SI, Osaka City University July 23, 2012

Fl(n): variety of flags in \mathbb{C}^n , $V_{\bullet} = (V_1 \subset \cdots \subset V_n = \mathbb{C}^n)$.

Schubert calculus: fix 3 flags E_{\bullet} , F_{\bullet} , G_{\bullet} .

How many V_{\bullet} ...

Write

$$c_{u,v,w} = #$$
 of V_{\bullet} satisfying conditions u, v, w
= # of points in $\Omega_u \cap \Omega_v \cap \Omega_w$.

Reindexing a bit, make a ring out of these numbers: $H^*Fl(n)$ has basis elements σ_w (w in S_n), multiplication

$$\sigma_{u} \cdot \sigma_{v} = \sum_{w} c_{u,v}^{w} \sigma_{w}.$$

Quantum Schubert calculus is similar, but use

$$c_{u,v,w}^d = \#$$
 of degree d curves through $\Omega_u, \Omega_v, \Omega_w$.

Similar reindexing, get (associative!) ring $QH^*Fl(n)$ with basis elements σ_w and multiplication

$$\sigma_u \star \sigma_v = \sum_{w,d} q^d c_{u,v}^{w,d} \sigma_w.$$

(Degree is $d = (d_1, \ldots, d_{n-1})$, and the parameter is $q = (q_1, \ldots, q_{n-1})$. So $QH^*Fl(n)$ is an algebra over $\mathbb{Z}[q]$.)

The equivariant versions, H_T^* and QH_T^* , encode the action of the torus $T = (\mathbb{C}^*)^n$.

Have product

$$\sigma_u \circ \sigma_v = \sum_{w,d} q^d c_{u,v}^{w,d}(t) \sigma_w.$$

in $QH_T^*FI(n)$, similar to before.

The equivariant quantum structure constants $c_{u,v}^{w,d}(t)$ are polynomials in $t = (t_1, \ldots, t_n)$. (Defined as equivariant integrals on moduli space of maps $\mathbb{P}^1 \to Fl(n)$.) Key features of equivariant cohomology:

- $H^*_T(\text{pt}) = \mathbb{Z}[t] = \mathbb{Z}[t_1, \dots, t_n]$ is nontrivial. $H^*_T X$ is an algebra over $\mathbb{Z}[t]$.
- **②** For some spaces (e.g. FI(n)), can compute via restriction to fixed points X^T. (H^{*}_TX → H^{*}_TX^T is *injective*.)

Defined via *Borel construction*. (Fiber bundle, with fiber X.)

Equivariant quantum Schubert calculus

Why care about equivariant Schubert calculus?

- General principle: extra structure, extra information.
- The ring $QH_T^*FI(n)$ specializes to all the others.
- $QH_T^*Fl(n)$ related to $H_*^T\mathcal{G}r$, double k-Schur functions. [Peterson, Lam-Shimozono]

Equivariant quantum Schubert calculus

Goal: algebraic model for $QH_T^*FI(n)$.

Need

- presentation of the ring, and
- 2 polynomial representatives for the basis elements σ_w .

Then computing the equivariant quantum structure constants $c_{u,v}^{w,d}(t)$ is "reduced" to multiplying polynomials.

Equivariant quantum Schubert calculus

Presentations:

- For $H^*FI(n)$, $H^*_TFI(n)$ [Borel]
- For $QH^*FI(n)$ [Givental-Kim]
- For $QH_T^*FI(n)$ [Kim]

$$QH_T^*(Fl(n)) = \mathbb{Z}[q, x, t]/(e_1^q(x) - e_1(t), \dots, e_n^q(x) - e_n(t)),$$

where e_i is an elementary symmetric polynomial, and e_i^q is a **quantum elementary polynomial**.

To get the others, set t, q, or both to zero.

Polynomial representatives for σ_w in...

- *H***Fl*(*n*): $\mathfrak{S}_w(x)$ [Lascoux-Schützenberger, BGG, ...]
- *H*^{*}_T*Fl*(*n*): 𝔅_w(*x*, *t*) [Lascoux-Schützenberger, Fehér-Rimányi, Knutson-Miller, ...]
- QH^{*}FI(n): 𝔅^q_W(x) [Fomin-Gelfand-Postnikov, Ciocan-Fontanine, Chen]

Theorem (A.-Chen) In $QH_T^*FI(n)$, we have

$$\sigma_w = \mathfrak{S}^q_w(x,t),$$

a specialization of Fulton's universal double Schubert polynomial. (Also equal to Kirillov-Maeno's polynomial.) (To be explained...)

(Lam-Shimozono also gave a different proof of this. Theirs is more combinatorial; ours is more geometric.)

Many ways to define $\mathfrak{S}^q_w(x, t)$.

Notation: $e_i(k)$ is the *i*th elementary symmetric polynomial in variables x_1, \ldots, x_k .

The *Schubert polynomial* of Lascoux-Schützenberger can be written uniquely

$$\mathfrak{S}_w(x) = \sum_{i_1,\ldots,i_n} a_{i_1,\ldots,i_n} e_{i_1}(1) \cdots e_{i_n}(n),$$

for some integers $a_{i_1,...,i_n}$.

The *quantum Schubert polynomial* of Gelfand-Fomin-Postnikov is defined as

$$\mathfrak{S}^q_w(x) = \sum_{i_1,\ldots,i_n} a_{i_1,\ldots,i_n} e^q_{i_1}(1) \cdots e^q_{i_n}(n),$$

where $e_i^q(k)$ is a quantum elementary polynomial.

The equivariant quantum Schubert polynomial is equal to

$$\mathfrak{S}^q_w(x,t) = \sum_{v^{-1}u=w} \mathfrak{S}^q_u(x) \mathfrak{S}_v(-t).$$

(There are other definitions, starting from the *universal Schubert polynomials* and specializing.)

Proofs

Proofs, aka, "why wasn't this easy?"

Proofs for $QH^*FI(n)$ use moving lemmas not available equivariantly.

Key input:

Theorem (A.-Chen)

The equivariant quantum coefficients $c_{u,v}^{w,d}(t)$ from

$$\sigma_u \circ \sigma_v = \sum_{w,d} q^d c_{u,v}^{w,d}(t) \sigma_w$$

are equal to certain (equivariant) integrals on a quot scheme. Proof uses equivariant moving lemma, and "almost transitive" action of a group Γ on $\mathbb{E}T \times^{T} Fl(n)$. Consequence: can use equivariant techniques on the quot scheme Q_d to study $QH_T^*FI(n)$.

Equivariant geometry of Q_d is (somewhat) understood. [Braden-Chen-Sottile]

More applications of $H^*_T \mathcal{Q}_d$??

Aside: All the above works for partial flags, too. Even for Grassmannians, the relation between $c_{u,v}^{w,d}(t)$ and $H_T^*Q_d$ is new.

As with $H_T^* FI(n)$ and $K_T FI(n)$, the equivariant moving lemma implies positivity in $QH_T^* FI(n)$:

Corollary (Mihalcea, A.-Chen)

Written as a sum of monomials in variables $(t_1 - t_2), (t_2 - t_3), \dots, (t_{n-1} - t_n), t_n$, the polynomial $c_{u,v}^{w,d}(t)$ has ≥ 0 coefficients.

Examples

Equivariant quantum Schubert polynomials for FI(3).

W	$\mathfrak{S}^{q}_{w}(x,t)$
123	1
213	$x_1 - t_1$
132	$x_1 + x_2 - t_1 - t_2$
231	$x_1 x_2 + q_1 - (x_1 + x_2) t_1 + t_1^2$
312	$x_1^2 - q_1 - x_1 \left(t_1 + t_2 ight) + t_1 t_2$
321	$(x_1 - t_2)(x_1 x_2 + q_1 - (x_1 + x_2) t_1 + t_1^2)$

These multiply like Schubert classes—on the nose! So get (somewhat efficient) algorithm for computing $c_{u,v}^{w,d}$.