The 3rd MSJ-SI The Mathematical Society of Japan, Seasonal Institute Development of Galois-Teichmüller Theory and Anabelian Geometry

October 28 Thursday, 14:30–15:20

Y. Ihara (Kyoto University)

Arithmetic questions on $\pi_1(\mathbf{P}^1 - \{0, 1, \infty\})$ at p

For an odd prime p, let Π_p (resp. $\bar{\Pi}_p$) denote the quotient of the algebraic fundamental group of $X = \mathbf{P}^1 - \{0, 1, \infty\}$ over $\bar{\mathbf{Q}}_p$ (resp. $\bar{\mathbf{F}}_p$) defined by the condition: the ramification indices above $0, 1, \infty$ are not divisible by p. Let $\Pi_p^0 = \bar{\Pi}_p^0$ denote the Galois group of the tower of modular curves $\{X(2N)/X\}_{N \neq 0(p)}$ of level 2N over these fields under the identification X = X(2). Look at the canonical surjective homomorphisms $f: \Pi_p \to \bar{\Pi}_p, \quad g: \bar{\Pi}_p \to \Pi_p^0$. Then we see that (i) the kernel of $g \circ f$ is generated by p conjugacy classes, (ii) that of g is generated by (p+1)/2 conjugacy classes essentially coming from (p-1)/2 supersingular Frobenius elements. These follow easily from our old work on the connections between modular curves over \mathbf{F}_{p^2} and the modular groups over $\mathbf{Z}[1/p]$, which we shall first briefly review. We then go on to discuss some basic (mostly open) questions related to these conjugacy classes and the kernels.

Back