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Introduction to the introduction

The goal of this introduction is to try to convince the novices
that Hyperplane Arrangement theory interacts with a vast
variety of areas of mathematics. Trying to do this in two hours
restricts the means very much, for instance, no proofs will be
given. Some of these interactions will be discussed in more
depth in other lectures of the conference.
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Setup and notation

By a hyperplane arrangement we understand the set A of
several hyperplanes of an ` - dimensional affine space V over a
field K . If all the hyperplanes are linear, i.e., passing through a
common point (called 0) , then A is central. If 0 is the only
common point then A is essential. Often we will order A and
then write A = {H1, . . . , Hn}.

Any time when it is convenient, we fix a linear basis (x1, . . . , x`)
of V ∗ and identify V with K ` using the dual basis in V . Then for
each hyperplane H of K ` we fix a degree 1 polynomial
αH ∈ S = K [x1, . . . , x`] such that H is the zero locus of αH . This
polynomial is uniquely defined up to multiplication by a nonzero
element from K . If A is central all αH are homogeneous. We
will abbreviate αHi as αi .
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Combinatorics of arrangements

For many invariants of arrangements hyperplanes themselves
are not needed; these invariants are determined by the
combinatorics of arrangements. There are two essentially
equivalent combinatorial objects that A determines: a
geometric lattice and a simple matroid. We will briefly discuss
the former referring the listener for details to the lectures by
Richard Stanley.

For an arrangement A its intersection lattice L = L(A) consists
of intersections of all subsets of hyperplanes from A (including
V itself as the intersection of the empty set of hyperplanes).
The partial order on L is the reverse inclusion of subspaces. In
particular the unique minimal element of L is V and the unique
maximal element is

⋂n
i=1 Hi (even if it is ∅). A itself becomes

the set of all elements of L following the minimal element,
called atoms.
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Example of L
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Geometric lattices

The poset L is far from arbitrary. Let us collect the following
three properties of L. We are assuming for simplicity that A is
central.

(i) it is atomic, i.e., its every element is the join (the least upper
bound) of some atoms;
(ii) it is ranked, i.e., every nonrefinable flag (chain)
(V < X1 < · · · < Xr = X ) from V to a fixed X ∈ L has the same
number of elements, namely the codimension of X ; (in lattice
theory, this number is called the rank of X and denoted by
rk X );
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Geometric lattices

(iii) for every X , Y ∈ L the following semimodular inequality
holds

rk X + rk Y ≥ rk(X ∨ Y ) + rk(X ∧ Y )

where the symbols ∨ and ∧ denote respectively the join and
meet (i.e., the greatest lower bound).
Lattices satisfying the above properties are called geometric.
The rank rk L of a geometric lattice L is the maximal rank of its
elements. Clearly rk L ≤ ` and rk L = ` if and only if the
arrangement is essential.
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Möbius function

An important invariant of L (as of every poset) is its Möbius
function. It is the function µ : L× L → Z satisfying the
conditions µ(X , X ) = 1, µ(X , Z ) = 0 unless X ≤ Z , and∑

Y∈L,X≤Y≤Z

µ(X , Y ) = 0

for every X , Z ∈ L, X < Z . We put µ(X ) = µ(V , X ) for every
X ∈ L.

Example

If H is an atom of L then µ(H) = 1. If X ∈ L is of rank 2 with
precisely k atoms below it then µ(X ) = (k − 1).

For L the following generating function
πL(t) =

∑
X∈L µ(X )(−t)rk X is called the characteristic or

Poincarè polynomial of L.
8
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Homology of a of a poset

For an arbitrary poset, all its flags (i.e., the linearly ordered
subsets) form an (abstract) simplicial complex called the order
complex on the set of all its elements. The homotopy invariants
of this complex are attributed to the poset itself. If the poset is a
lattice then by its homotopy invariants one usually means those
of its subposet with the largest and smallest elements deleted.
If again the poset is a lattice than the order complex can be
substituted by another (usually much smaller) simplicial
complex Ξ. It is defined on the set of all atoms A and a subset
σ ⊂ A is a simplex (of dimension |σ| − 1) if

∨
(σ) is not the

greatest element. This complex is called atomic and it is
homotopy equivalent to the order complex. Below we will need
the pair (∆,Ξ) of complexes where ∆ is the simplex on all the
atoms.
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Complexes of a poset
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Exterior algebra

The lattice L determines the most important algebra associated
with an arrangement. Let A = (H1, . . . , Hn) be an arrangement
and k an arbitrary field (not necessarily equal to K ). Let E be
the exterior algebra over k with generators e1, . . . , en in degree
1. Notice that the indices define a bijection from A to the
generating set. Sometimes we will denote the generator
corresponding to H ∈ A by eH .
The algebra E is graded via E = ⊕n

p=1Ep where E1 = ⊕n
j=1kej

and Ep =
∧pE1. The linear space Ej has the distinguished

basis consisting of monomials eS = ei1 · · ·eip where
S = {i1, . . . , ip} is running through all the subsets of
[n] = {1, 2, . . . , n} of cardinality p and i1 < i2 < · · · < ip.
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DGA

The graded algebra E is a (commutative) DGA with respect to
the differential ∂ of degree -1 uniquely defined by the
conditions: linearity, ∂ei = 1 for every i = 1, . . . , n, and the
graded Leibniz formula. Then for every S ⊂ [n] of cardinality p

∂eS =

p∑
j=1

(−1)j−1eSj

where Sj is the complement in S to its j th element.

For every S ⊂ [n], put
⋂

S =
⋂

i∈S Hi and call S dependent if⋂
S 6= ∅ and the set of linear polynomials {αi |i ∈ S} is linearly

dependent. Notice that being dependent is a combinatorial
property - a set of atoms S is such if and only if rk

∨
S < |S|.
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OS algebra

Definition

Consider the ideal I = I(A) of E generated by all eS with⋂
S = ∅ and all ∂eS with S dependent. The algebra

A = A(A) = E/I(A) is called the Orlik-Solomon (abbreviated as
OS) algebra of A. This algebra has been called also Brieskorn,
BOS, and Arnold-Brieskorn.

Clearly the ideal I is homogeneous whence A is a graded
algebra; we write A = ⊕pAp where Ap is the component of
degree p. In particular the linear spaces E1 and A1 are
isomorphic and we will identify them.
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Other relations

Notice that for any nonempty S ⊂ [n] and i ∈ S one has
ei∂eS = ±eS whence I contains eS for every dependent set S.
This implies that A is generated as a linear space by the
emages of eS such that

⋂
S 6= ∅ and S is independent.

Sometimes it is useful to write the generators of I in a different
form making clear that they are pure tensors in E . Indeed if
S = {1, 2, . . . , p} then

∂eS =
∏
i≥2

(e1 − ei).
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Homological interpretation

Since the Orlik - Solomon algebra is determined by L it is not
very surprising that it has an interpretation in terms of the
homology of L.
Let us first define the relative atomic complex ∇ = ∇(L). It is
the chain complex over k with a linear basis consisting of all
σ ⊂ A; deg σ = |σ|. The differential is defined by

d(σ) =
∑

i|
W

(σ\{Hi})=
W

(σ)

(−1)iσ \ {Hi}.

15



The chain complex ∇ is graded by L, i.e., ∇ = ⊕X∈L∇X where
∇X is the subcomplex generated by all σ with

∨
σ = X .

It is easy to notice that ∇X is the relative chain complex for the
pair (∆,Ξ)X for the lattice LX = {Y ∈ L|Y ≤ X}.

Also notice that if σ is an independent subset of A then it is a
cycle in ∇. Denote by [σ] its homology class.
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Multiplication

Define

σ · τ =


0, if

∨
(σ ∪ τ) = ∅,

0, if rk(
∨

(σ ∪ τ)) 6= rk(
∨

(σ)) + rk(
∨

(τ)),

ε(σ, τ)σ ∪ τ, otherwise.

(1)
where ε(σ, τ) is the sign of the permutation of σ ∪ τ putting all
elements of τ after elements of σ and preserving fixed orders
inside these sets (the shuffle of σ and τ ).

Theorem

The multiplication defined above converts ∇ to a (commutative)
DGA graded by L. The correspondence ei 7→ [{i}] generates an
isomorphism A → H∗(∇; k) of graded algebras.
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Corollary

The following statements follow from the previous theorem.

Corollary

(i) The algebra A is graded by L, i.e., A = ⊕X∈LAX where AX is
a graded linear subspace of A (in fact homogeneous)
generated by eS with

∨
S = X and AX AY ⊂ AX∨Y .

(ii)The Hilbert series H(A, t) = πL(t).

This corollary uses not only the theorem but also certain
property of homology of geometric lattices (namely the
Folkman theorem).
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Cohomology of M

From know on we assume K = k = C.

Theorem

Let A be an arrangement in C` and M its complement,
(i) The de Rham homomorphism for M restricts to an
isomorphism of the graded algebras F and H∗(M, C) where F
is the subalgebra of the algebra of closed holomorphic forms
on M generated by all the forms dαH

αH
(H ∈ A);

(ii) Let [ω] be the cohomology class of a form ω. Then the
correspondence [dαH

αH
] 7→ eH defines a graded algebra

isomorphism H∗(M, C) ' A.

Remark. The theorem still holds if one defines all three
algebras over Z. In particular the cohomology of M is torsion
free.
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Poincaré polynomial

That theorem has important corollaries.

Corollary

(i) The Poincarè polynomial of M coincides with the
characteristic polynomial πL(t) of L.
(ii) Space M is formal, i.e., the DGA of differential holomorphic
forms on it is quasi-isomorphic to its cohomology algebra.

20



Braid arrangements

Example. Fix a positive integer n and consider the arrangement
An−1 in Cn given by linear functionals xi − xj , 1 ≤ i < j ≤ n. In
fact An−1 consists of all reflecting hyperplanes of the Coxeter
group of type An−1. The complement Mn of this arrangement
can be identified with the configuration space of n distinct
ordered points in C. Considering loops in this space makes it
pretty clear that π1(Mn) is the pure braid group on n strings.

The natural way to study Mn is to project it to Mn−1 ignoring the
last coordinate of points in Cn. This defines a fiber bundle
projection that is the restriction to Mn of the projection
Cn → Cn/X where X is a coordinate line (Mn is linearly
fibered). The fiber of the projection is C without n − 1 points.
Repeating this process one obtains a sequence of such
projections with decreasing n that ends at projecting to a point.
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Fiber-type arrangements

Generalizing that construction one obtains a recursive definition
of a fiber-type arrangement.
For X ∈ L we put AX = {H ∈ A|H ⊃ X} (cf. LX ).

Definition

An arrangement A in V is fiber-type if there is a line X ∈ L(A)
for which AX is fiber-type and M(A) is linearly fibered over
M(AX ). Also arrangement of one hyperplane is fiber-type.

Using the sequence of consecutive fiber bundles it is possible
to prove for every fiber-type arrangement that
(1) M is a K [π, 1]-space;
(2) π1(M) is a semidirect product of free groups.
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Supersolvable lattices

It turns out that being fiber-type is a combinatorial property of
an arrangement.

Let L here be an arbitrary geometric lattice. Then X ∈ L is
modular if

rk X + rk Y = rk(X ∨ Y ) + rk(X ∧ Y )

for every Y ∈ L. The lattice L is supersolvable if it contains a
maximal flag of modular elements. If for an arrangement A its
lattice is supersolvable we say A is.

Theorem

An arrangement is fiber-type if and only if it is supersolvable.
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Examples

(1) All central arrangements of lines are supersolvable.

(2) A non-central arrangement A of lines is supersolvable if and
only if there is a point P ∈ L(A) such that for any other point
Q ∈ L(A) the line PQ ∈ A.
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S/S and not S/S
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(3) A Coxeter arrangement, i.e., the arrangement of all
reflecting hyperplanes of a Coxeter groups, may be
supersolvable or not. For instance, types An and Bn are
supersolvable for all n, but type Dn is not for n ≥ 4.

Remark. In spite of the last comment about Dn, for every
reflection arrangement A, i.e., the arrangement of all reflecting
hyperplanes of a finite reflection group, M(A) is K [π, 1].
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Modules of derivations

We consider central arrangements in V ' C`. Recall that
S = C[x1, . . . , x`] (or, invariantly, the symmetric algebra of the
dual space V ∗) .

Definition

A derivation of S is a C-linear map θ : S → S satisfying the
Leibniz condition

θ(fg) = θ(f )g + gθ(f )

for every f , g ∈ S.

The set Der(S) of all derivations is naturally an S-module. This
is the graded free module of rank ` with a basis consisting of
partial derivatives Di = ∂

∂xi
, (i = 1, . . . , `).

27



Module D(A)

The following S-module relates closer to the arrangement. Let
A be a central arrangement and Q =

∏
H∈A αH its defining

polynomial.

Definition

The module of A-derivations is

D(A) = {θ ∈ Der(S)|θ(Q) ∈ QS}.

D(A) is a graded submodule of Der(S) which is not necessarily
free though. For every θ ∈ D(A) we still have θ =

∑
i θiDi with

uniquely defined θi ∈ S but in general Di 6∈ D(A). θ is
homogeneous if deg θi does not depend on i and then this
degree is called the degree of θ.
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Free arrangements

Definition

A central arrangement A is free if the S-module D(A) is free.

D(A) is free if and only if it is generated by ` homogeneous
generators. Another (Saito’s) criterion says D(A) is free if and
only if it contains a system of ` homogeneous linearly
independent over S derivations with the sum of there degrees
equal n = |A|.
Examples.
(1) Every central arrangement of lines is free.
(2) Consider the arrangement in C3 given by
Q = xyz(x + y + z). Then it can be seen that D(A) does not
contain two linearly independent derivations of degree less or
equal one (one of such is the Euler derivation θE =

∑
i xiDi ).

Since n = 4 Saito’s criterion cannot be satisfied and A is not
free. 29



Free arrangements

Definition

A central arrangement A is free if the S-module D(A) is free.

D(A) is free if and only if it is generated by ` homogeneous
generators. Another (Saito’s) criterion says D(A) is free if and
only if it contains a system of ` homogeneous linearly
independent over S derivations with the sum of there degrees
equal n = |A|.
Examples.
(1) Every central arrangement of lines is free.
(2) Consider the arrangement in C3 given by
Q = xyz(x + y + z). Then it can be seen that D(A) does not
contain two linearly independent derivations of degree less or
equal one (one of such is the Euler derivation θE =

∑
i xiDi ).

Since n = 4 Saito’s criterion cannot be satisfied and A is not
free. 29



Free arrangements and combinatorics

The following results (by Terao) about free arrangements shows
that the freeness is related to combinatorics.

Theorem

(i) Every supersolvable arrangement is free.
(ii) If an arrangement A is free then the characteristic
polynomial

πL(A)(t) =
∏̀
i=1

(1 + bi t)

where bi are the degrees of the homogeneous generators of
D(A).

Terao Conjecture. The property of arrangement being free is
combinatorial, i.e., it is determined by L(A).
There are many partial results supported the conjecture.
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Multiarrangements

A multiarrangement is a pair (A, m) where A is a central
arrangement and m : A → Z≥0 is a multiplicity function.
There are several instances in arrangement theory where a
multiplicity function appears naturally. Here are two examples.
(i) Suppose A is a central arrangement and H0 ∈ A. The
restriction of A to H0 is the arrangement
AH0 = {H ∩ H0 | H ∈ A \ {H0}}. For every H̄ from the
restriction there is the natural mutiplicities
m(H̄) = |{H ∈ A | H ∩ H0 = H̄}|.
(ii) Let A be a reflection arrangement of a finite reflection group
G. In the theory of invariants of G the following multiplicity is
often used: m(H) = oH − 1 where H ∈ A and oH is the order in
G of the reflection at H.
We refer to Yoshinaga’s lecture for his criterion of freeness
using multiarrangements.
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Resonance varieties

Let A be an essential central arrangement in C` and A = A(A).
If x ∈ A1 then x2 = 0 whence the multiplication by x defines the
differential A → A of degree +1, i.e., converts A into the cochain
complex that we denote by (A, x).

Definition. A p-th resonance variety Rp = Rp(M) is the
(determinantal) subvariety of A1 defined as
Rp = {x ∈ A1 | Hp(A, x) 6= 0}.
There are several properties of varieties Rp for arrangement
complements that hold for all p, 0 ≤ p ≤ `.

• (linearity of components) Rp is almost always reducible. Its
irreducible components are linear subspaces of A1.

• (general position) If
∑

i xi 6= 0 then Rp = 0 for all p.

•(propagation of cohomology) If Hp(A, x) 6= 0 for some p then
Hq(A, x) 6= 0 (i.e., Rp ⊂ Rq) for every q, p ≤ q ≤ `.
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Aomoto complex

Although the propagation of cohomology is a simple statement
no straightforward proof of it is known (except for p = 1).

The existing proof is based on the fact which seems to be
interesting by itself. Put T = C[x1, . . . , xn] and consider the
complex of free T -modules

A⊗ T : 0 → A0 ⊗ T → A1 ⊗ T → · · · → A` ⊗ T → 0

with differentials a⊗ 1 7→
∑n

i=1 eia⊗ xi for every a ∈ Ap and
every p. The complex is called the Aomoto complex.

The interesting fact implying the propagation is that the Aomoto
complex is exact except in A` ⊗ S whence is a free resolution of
an S-module F(A). This follows from a very general duality
(called the BGG-correspondence) using a non-trivial result that
A has a linear injective resolution as the exterior algebra
module.

33



Aomoto complex

Although the propagation of cohomology is a simple statement
no straightforward proof of it is known (except for p = 1).

The existing proof is based on the fact which seems to be
interesting by itself. Put T = C[x1, . . . , xn] and consider the
complex of free T -modules

A⊗ T : 0 → A0 ⊗ T → A1 ⊗ T → · · · → A` ⊗ T → 0

with differentials a⊗ 1 7→
∑n

i=1 eia⊗ xi for every a ∈ Ap and
every p. The complex is called the Aomoto complex.

The interesting fact implying the propagation is that the Aomoto
complex is exact except in A` ⊗ S whence is a free resolution of
an S-module F(A). This follows from a very general duality
(called the BGG-correspondence) using a non-trivial result that
A has a linear injective resolution as the exterior algebra
module.

33



The first resonance variety

The propagation property allows one to focus on the first
non-vanishing Rp. For instance, for R1 much more results are
known.

First we projectivize the linear space and study an arrangement
of projective hyperplanes in the complex projective space. The
cohomology algebra of the porjectivized complement (that we
still denote by A and call the OS algebra) is the graded
subalgebra of the OS algebra of the central arrangement
generated by ei − ej for i 6= j .

In order to get most results about R1 it suffices to work with a
arrangements of lines in P2. Indeed intersect arbitrary A with a
generic plane and apply the Lefschetz hyperplane section
theorem.
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Local components

Here we describe the simplest components of R1 (trivial in
some sense).
Suppose P ∈ P2 is a point where k lines of A intersect, k ≥ 3.
Denote by e1, . . . , ek the respective generators of A. Then the
linear subspace

VP = {x =
k∑

i=1

xiei |
∑

xi = 0}

of A1 is a component (of dimension k − 1) of R1. This
component is called local component of R1.

Notice that there is no uniformed upper bound for the
dimensions of local components of arrangements. This makes
these components different from all others.
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Nets in P2

Now we will discuss the non-local components. Our goal is to
state the theorem that gives at least two different
characterizations of them. For that we need to define the terms
to be used.

First we need some special configurations of lines and points in
P2.

Definition An arrangement A of lines partitioned in k blocks
A = ∪k

j=1Aj is a k -net if for every point P which is the
intersection of lines from different blocks there is a precisely
one line from each block passing through P.
It is easy to see that all blocks have the same number of lines.
We denote this number by d and say that the net is a (k , d)-net.
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Examples of nets

Nets can be defined purely combinatorially using an incidence
relation. Then after identifying two blocks of a (k , d) -net with
each other, every other block gives a Latin square of size d and
these squares are pairwise orthogonal. If k = 3 identifying all
blocks gives a multiplication table of a quasi-group.

A (k , 1)-net consists of k lines passing through a point with
each block consisting of one line . This case is considered to
be trivial. Clearly (k , 1)-nets correspond to local components of
R1.
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Examples of nets

The combinatorial nets that can be realized in P2 form a very
special class (e.g., see the restrictions on k below). However
there are plenty of examples of 3-nets in P2. The simplest
nontrivial one is given by all the reflection lines of the Coxeter
group of type A3. In appropriate coordinates the blocks can be
described by the equation

[(x2 − y2)][(x2 − z2)][(y2 − z2)] = 0.

This is essentially the only example of a (3, 2)-net.

As a classical example of a (3, 3)-net one can use the famous
generic Pappus configuration taking for X all the triple points.
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A (3,2)-net on Coxeter A3

A A

B

B

C

C
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A (3,4)-multinet on Coxeter B3

A A

B

B

C

C

A

B

C

2

2

2
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Multinets and pencils

Viewing the picture of the projectivized Coxeter arrangement of
type B3 we see that it is not a net but becomes a kind of a net if
we assign some multiplicities to the lines and points (this is
another case were the multiplicities come naturally). Such
structures we call multinets.

Now we need to recall pencils of plane curves. We will identify
a homogeneous polynomial in three variables with the
projective plane curve. A pencil of plane curves is a line in the
projective space of homogeneous polynomials of some fixed
degree. Thus for every its curves C1, C2 an arbitrary curve in
the pencil (called a fiber) is aC1 + bC2, [a : b] ∈ P1. We
consider only pencils whose fibers do not have a common
component. Also curve of the form

∏q
i=1 αmi

i , where αi are
different linear forms will be called completely reducible.
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Characterization of R1

Now we can characterize the resonance variety R1.

Theorem

Let (A, m) be a multi-arrangement of lines in P2 and, as usual,
fix for each line H a defining linear polynomial αH . The
following are equivalent:

(i) There exists a partition on (A, m) that gives a (k , d)-multinet;

(ii) A is the union of all the factors of k completely reducible
fibers of a pencil with irreducible generic fiber of degree d;

(iii) There is an irreducible component of R1 for A of dimension
k − 1.
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Details for the theorem

More precisely
(i)⇔(ii) For the partition from (i) let A1, . . .Ak be its blocks.
Then the curves Ci =

∏
`∈Ai

α
m(`)
` are fibers of the pencil from

(ii) (generated by any two of them);

(ii)⇒(iii) The cohomology classes in A1 of the logarithmic forms
dCi
Ci
− dC1

C1
, i = 2, 3, . . . , k (see above), form a basis of the

component of R1 from (iii).
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Upper bound on k

Using the previous theorem it is possible to find a strong
restriction on the dimension of R1.

Theorem

A non-local component of R1 has dimension either 2 or 3.

While there are plenty of examples with dim R1 = 2, there is
only one known example of dimension 3. It corresponds to the
Hesse pencil generated by x3 + y3 + z3 and xyz that has 4
completely reducible fibers. The only other possible examples
would correspond to (still unknown) nets with d ≥ 7.
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Fundamental group of M

We will consider central arrangements only. Using as before
the Lefschetz hyperplane section theorem it suffices to
consider arrangements of planes in C3.
An important result about π1(M) is negative - this group is not
determined by the lattice L. The example (by G. Rybnikov in
1994) consists of two arrangements of 13 hyperplanes each
with rk L = 4. It is still not very well understood, in particular no
general group invariant is known that distinguishes π1 for the
two arrangemens in the example.
π1 is generated by a set {z1, z2, . . . , zn} which is in
correspondence with A. There are several known presentations
of π1 = π1(M) using this set. None of them is sufficiently simple
to describe it in general in the introduction. We give several
examples.
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Examples

Examples. (i) First we define generic arrangements. A in C3 is
generic if every subset of it of rank 2 is independent. For a
generic arrangement π1(M) = Zn. Moreover πp(M) = 0 for
1 < p < `.

(ii) Let A be a Coxeter arrangement corresponding to a Coxeter
group G. Then π1 is the pure Artin group corersponding to G.
(Moreover M is K [π, 1].)

(iii) Let A be given by the polynomial
Q = x(x − y)(x + y)(2x − y + z). Then π1 is given by
presentation〈

x1, x2, x3, x4|x1x2x4 = x4x1x2 = x2x4x1,

[x1, x3] = [x2, x3] = [x4, x3] = 1
〉
.

It gives π1 ' F2 × Z2 where F2 is the free group on two
generators.
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Open problems

In spite of known presentations the following questions about
π1 are open in general.
(1) Is it torsion-free?
(2) Is it residually nilpotent?
(3) Is it residually finite?
(4) Find a group invariant that distinguishes two groups in the
Rybnikov example.
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Higher homotopy groups

Although very little is known about πp(M) for all arrangements
there is an interesting class of arrangements to which the result
for generic arrangements can be generalized.
Let A be a projective arrangement in a space P`−1, B its proper
subarrangement , and B̄ = A \ B. Then (A,B) is a solvable
extension if the following conditions are satisfied:
(i) No H ∈ B̄ form a dependent triple with H1, H2 ∈ B (B is
closed in A);
(ii) For every distinct H1, H2 ∈ B̄ there exists H ∈ B making a
dependent triple with them; H is unique due to (i) and denoted
by h(H1, H2);
(iii) For every distinct H1, H2, H3 ∈ B̄ the three hyperplanes
h(Hi , Hj) are dependent.
Note that rkA− rkB ≤ 1.
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Hypersolvable arrangements

Definition An arrangement is hypersolvable if it has an
ascending chain of subarrangements

A1 ⊂ · · · ⊂ A`

with ranks strictly increasing and with each extension (Ai+1,Ai)
being solvable.

Theorem

Let A be a hypersolvable arrangement. Then
(1) M is a K [π, 1] if and only if A is supersolvable;
(2) The first non-trivial higher homotopy group of M is πp−1
where p is the smallest integer such that
dim Hp(M, Q) 6= dim Hp(K [π1, 1], Q).

Hypersolvble arrangements have a surprising algebraic
property.
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Quadratic and Koszul algebras

A distinguished class of graded algebras is formed by Koszul
algebras. One of many equivalent definitions of this class is as
follows. A graded connected algebra over an arbitrary field k is
Koszul if the minimal free graded resolution of its trivial module
k is linear, i.e., the matrices of all mappings in it have all their
entries of degree one. If an algebra is Koszul then it is
generated in degree one and the ideal of relations among
generators is generated in degree two. An algebra with these
two properties is a quadratic algebra.

A quadratic algebra A = ⊕Ap (A0 = k ) can be represented as
A = T (A1)/J where T (A1) is the tensor algebra on the space
A1 in degree one and J is the graded ideal of relations. Then
the quadratic algebra A! = T (A∗

1)/J∗ where A∗
1 is the dual linear

space of A1 and J∗ is the annihilator of J is called the quadratic
dual (“shriek”) of A.
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Properties of Koszul algebras

The following implications are very well-known.

(1) A quadratic algebra A is Koszul if and only if A! is Koszul.

(2) If A is Koszul then the following relation between the Hilbert
series holds

H(A, t) · H(A!,−t) = 1.

The converse of (2) is false in general.

For the listeners who know what a Gröbner basis is we can give
also a sufficient condition (for a commutative or graded
commutative) algebras to be Koszul.

(3) If J has a quadratic (i.e., of degree 2) Gröbner basis then A
is Koszul.

If an algebra A is not quadratic then one can work with its
quadratic closure Ā where Ā = T (A1)/(J2) where (J2) is the
ideal generated by the elements of degree 2 of J.
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Koszul and quadratic OS algebras

Recall that an OS-algebra A is graded commutative and
generated in degree one.

(1) A is not necessarily quadratic. There are several necessary
conditions on L but no nice equivalent condition is known.

(2) On the other hand, if A is supersolvable then A is Koszul
whence also quadratic. Moreover A is supresolvable if and only
if the defining ideal of A has a quadratic Gröbner basis.

(3) If A is hypersolvable then A is not necessarily quadratic but
Ā is Koszul.

(4) A being Koszul is equivalent to a topological property of the
complement M. A space with this property is called a rational
K [π, 1] and can be defined using the rational model of the
space. The definition may be given in Kohno’s lectrure.
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One corollary of A being Koszul (equiv., M being a rational
K [π, 1]) is a connection between G = π1(M) and A.

More precisely assume A is quadratic and let
Γ1 = G ⊃ Γ2 ⊃ · · · ⊃ Γp ⊃ · · · be the lower central series of G
(i.e., Γp = [G, Γp−1]). The Abelian group G∗ = (⊕pΓP/Γp−1)⊗Q
has the natural structure of a graded Lie algebra induced by
taken commutators in G. If U is the universal enveloping
algebra of G∗ then U ' A! and the Hilbert series of U is

H(U, t) =
∏
p≥1

(1− tn)−φp

where φp = rk Γp/Γp+1.
Now if A is Koszul then

π(L,−t) = H(A,−t) = H(U, t)−1 =
∏
p≥1

(1− tn)φp .

It is an old problem to obtain a formula (an LCS-formula) for the
numbers φp in general. 53
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Open problems

The interesting open problems in that circle of questions are as
follows.
Which of the following implications can be inverted in the realm
of OS algebras:
The defining ideal of A has a quadratic Gröbner basis =⇒ A is
Koszul =⇒ H(A, t) · H(A!,−t) = 1.
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Local systems

As above we consider arrangements of projective hyperplanes
in P`−1. Every x ∈ A1 defines a local system L(x) on M
associated with the one-dimensional representation of π1(M)
sending its generator corresponding to Hi to exp(2π

√
−1xi). In

other words, the 1-form ωx =
∑

i xi
dαi
αi

on M defines the
integrable connection ∇x = d + ωx on the (topologically trivial)
vector bundle of rank 1 (here d is the exterior differential).
The sheaf L(x) is formed by the flat sections with respect to
this connection. The cohomology H∗(M,L(x)) can be defined
as the cohomology of the complex

Ω = (0 → Ω∗ → Ω1 → · · · → Ω`−1 → 0)

which is the global de Rham complex on M provided with the
twisted differential d + ωx∧.
The first part of the theorem about H∗(M, C) gives the
embedding ε of the complexes ε : (A, x) → Ω.
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Comparison results

Theorem

Suppose that x ∈ A1 and for all X ∈ L (such that AX is
irreducible), the sum

∑
i∈X xi is not a positive integer. Then the

embedding ε is a quasiisomorphism.

Corollary

For every a ∈ Ā1 and every p

dim Hp(M,L(x)) ≥ dim Hp(A, x).
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Characteristic varieties

The set of all rank 1 local systems on M can be identified with
the torus H1(M, C∗) = Hom(π1(M), C∗) ∼= (C∗)n. For an integer
p ≥ 1 the characteristic variety Σp of M is the algebraic
subvariety of the torus consisting of those local systems L for
which Hp(M,L) 6= 0. The characteristic and resonance
varieties relate as follows.

Theorem

(i) The tangent cone of Σ1 at the torus identity 1 coincides with
R1.
(ii) Let V be an irreducible component of the resonance variety
R1. Then the image of V under the map x 7→ L(x) is a
universal covering of an irreducible component (passing
through 1) of Σ1. Any positive dimensional component of Σ1

containing 1 is covered in this sense by a component of R1.
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Classical hypergeometric integral

Let λ = (λ1λ2, λ3) ∈ C3 be a triple of parameters and fix
x ∈ C \ {0, 1}. Then

Φ(u, λ, x) = (1− u)λ1uλ2(1− xu)λ3

is a multivalued holomorphic function on the complement M in
C to the set 1, 0, x−1. The logarithmic 1-form

ωλ =
dΦ

Φ
= −λ1

du
1− u

+ λ2
du
u
− λ3

xdu
1− xu

is well-defined and holomorphic on M.

π1(M) is a free group with 3 generators γ1, γ2 and γ3 that can
be represented as loops starting at a fixed point P ∈ C and
going once around respectively 1, 0, and x−1. Thus putting
ρ(γi) = exp(−2π

√
−1λi) defines a representation π1 → C∗

whence a rank one dual local systems L = Lλ and L∨ = L−λ

on M.
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Generalization to several variables

Now let A be an arbitrary hyperplane arrangement and
λ : A → C (complex weights). Then we define a multivalued
function as

Φ =
∏

H∈A
α

λ(H)
H

and define the local systems L and L∨ exactly as above. Recall
that L can be defined from the exact sequence of sheaves

0 → L → Ω0 → Ω1 → · · · → Ω` → 0

where the differential is twisted: ∇ = d + ωλ∧.
The local system L (L∨) determines the cohomology H∗(M,L)
(homology H∗(M,L∨)) and a non-degenerate pairing
Hp(M,L)× Hp(M,L∨) → C.
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This pairing can be defined by the integral

〈ω, σ〉 =

∫
σ

Φω

where ω ∈ Ωp(M,L) is a closed form and σ is a locally smooth
cycle with values in L∨. This formula is well-defined due to the
‘twisted Stokes theorem’:

〈ω, ∂σ〉 = 〈∇(ω), σ〉.

In particular in the classical case we recover the classical
hypergeometric integral∫

γ
(1− u)λ1uλ2(1− xu)λ3 f (u)du

where γ is a twisted cycle in the complement of C to three
points.
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Families of arrangements

In the classical theory, it is not assumed that x is fixed. This
corresponds in higher dimension to considering a family of
arrangements depending on parameters whose combinatorial
structures are isomorphic. In this case even to describe this
moduli space of arrangements with a fixed combinatorial type is
a hard problem in general.

Assuming that this structure is known there is another
simplifying assumption that the weight function λ is in general
position. One can choose the general position so that the
cohomology Hp(M,L) vanishes unless p = `. Under these
assumptions there is a tool to deal with a family of
arrangements called the Gauss-Manin connection that can be
computed in some cases. For examples we refer the listeners
to Varchenko’s and Kohno’s lectures.
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Motion planning

From several topics of applied arrangement theory I will talk
only about topological robotics.
Let X be a topological space, thought of as the configuration
space of a mechanical system. Given two points A, B ∈ X , one
wants to connect them by a path in X ; this path represents a
continuous motion of the system from one configuration to the
other. A solution to this motion planning problem is a rule
(algorithm) that takes (A, B) ∈ X × X as an input and produces
a path from A to B as an output.

Let PX denote the space of all continuous paths γ : [0, 1] → X ,
equipped with the compact-open topology, and let
f : PX → X × X be the map assigning the end points to a path:
f (γ) = (γ(0), γ(1)). The map f is a fibration whose fiber is the
based loop space ΩX . The motion planning problem consists
of finding a section s of this fibration.
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Topological complexity

The section s cannot be continuous, unless X is contractible.
M.Farber has defined TC(X ), the topological complexity of X ,
as the smallest number k such that X × X can be covered by
open sets U1, . . . , Uk , so that for every i = 1, . . . , k there exists
a continuous section si : Ui → PX , f ◦ si = id.

Farber’s topological complexity has various properties allowing
one to obtain several lower and upper bounds for it in terms of
other invariants. However precise computation of TC(X ) for
concrete X is often a challenging problem.
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TC(M)

Arrangement complements (as well as configuration spaces of
points in Rn) can be very naturally viewed as configuration
spaces of mechanical systems. For instance, for a braid
arrangement the complement M appears for the system of
several robots on a large plane. The complement of an
arbitrary arrangement in C` would appear if a robot has 2`
parameters and the hyperplanes represent linear obstructions.

The known results about TC(M) are as follows:
(1) If A is an arrangement of n hyperplanes in general position
in C` then TC(M(A)) = min{n + 1, 2` + 1}.

(2) Let A be a Coxeter arrangement of classical types (A,B, or
D). Then TC(M(A) = 2 rk(A).

Probably more details will be given in Dan Cohen’s talk.
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