## Arrangements

Masahiko Yoshinaga
(Kyoto University)
Algebraic
Geometry
Arrangements of Hyperplanes
Sapporo, 1-13, Aug. 2009

## 4 Vector bundles and plane curves

Today we are in $\ell=3$, consider $\mathbb{C}^{3}$ or $\mathbb{P}^{2}$.

- Some conditions are automatically satisfied. (e.g., local freeness, freeness of restricted multiarrangement.)
- Some numerical invariants are easily computed.


## 4 Vector bundles and plane curves

## Setting;

- $\mathcal{A}$ arrangement in $\mathbb{C}^{3}, \mathcal{A}=\left\{H_{0}, H_{1}, \ldots, H_{n}\right\}$ (Note $\sharp \mathcal{A}=n+1$ ).
- $H_{0}$ sometimes plays as "Hyperplane at $\infty$ "

Main object is rank 2 bundle:

$$
\mathcal{E}(\mathcal{A}):=\widehat{D_{H_{0}}}(\mathcal{A})
$$

## 4 Vector bundles and plane curves

$$
\delta \in D_{H_{0}}(\mathcal{A})=\left\{\delta \in D(\mathcal{A}) \mid \delta \alpha_{H_{0}}=0\right\}
$$


4.1 Chern classes

### 4.1 Chern classes

Thm. (Schenck)

- $c_{1}(\mathcal{E}(\mathcal{A}))=-n$,
- $c_{2}(\mathcal{E}(\mathcal{A}))=\sum \mu(p)$, where $p$ runs intersections which is not on $H_{0}$



### 4.1 Chern classes

Def. $\mathcal{A}$ is locally free if $\forall x \neq 0$,
$\mathcal{A}_{x}=\{H \in \mathcal{A} \mid H \ni x\}$ is free.


Rem. $\ell=3 \Longrightarrow$ automatically locally free.

### 4.1 Chern classes

Thm. (Mustață-Schenck)
$\mathcal{A}$ is a central arrangement in $\mathbb{C}^{\ell+1}$.
(1) $\mathcal{E}(\mathcal{A})=D_{H_{0}}(\mathcal{A})$ is a vector bundle iff $\mathcal{A}$ is locally free.
(2) Assume $\mathcal{A}$ : loc free. Let $c_{i}:=c_{i}(\mathcal{E})$ the $i$-th Chern number. Then

$$
\chi(\mathcal{A}, t)=(t-1)\left(t^{\ell}-c_{1} t^{\ell-1}+\cdots \pm c_{\ell}\right)
$$

4.2 What makes arrangement free?

### 4.2 What makes arrangement free?

Thm. (Ziegler)

$$
\left.\delta \in D_{H_{0}}(\mathcal{A}) \Longrightarrow \delta\right|_{H_{0}} \in D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right) .
$$



### 4.2 What makes arrangement free?

Thm. (Ziegler)

$$
\left.\delta \in D_{H_{0}}(\mathcal{A}) \Longrightarrow \delta\right|_{H_{0}} \in D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right) .
$$

Thm. (Z)
$\mathcal{A}$ is free with $\exp (\mathcal{A})=\left(1, d_{2}, \ldots, d_{\ell}\right)$,
$\Rightarrow\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is free with $\exp =\left(d_{2}, \ldots, d_{\ell}\right)$
Cor. $\mathcal{A}$ is free iff $D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is free, and
$D_{H_{0}}(\mathcal{A}) \rightarrow D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is surjective.

### 4.2 What makes arrangement free?

Thm. (Ziegler)

$$
\left.\delta \in D_{H_{0}}(\mathcal{A}) \Longrightarrow \delta\right|_{H_{0}} \in D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right) .
$$

Thm. (Z)
$\mathcal{A}$ is free with $\exp (\mathcal{A})=\left(1, d_{2}, \ldots, d_{\ell}\right)$,
$\Rightarrow\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is free with $\exp =\left(d_{2}, \ldots, d_{\ell}\right)$
Cor. $\mathcal{A}$ is free iff $D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is free, and
$D_{H_{0}}(\mathcal{A}) \rightarrow D \overline{\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right) \text { is surjective } . ~}$
automatically satisfied, when $\ell=3$
4.2 What makes arrangement free?
$\ell=3, \mathcal{A}$ is an arrangement in $\mathbb{C}^{3} . H_{0} \in \mathcal{A}$.
Prop. $\mathcal{A}$ is free iff the restriction map

$$
D_{H_{0}}(\mathcal{A}) \longrightarrow D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)
$$

is surjective.
How far are they from surjective?

### 4.2 What makes arrangement free?

Thm. Put $\exp \left(\mathcal{A}^{H_{0}}, \mathbf{m}\right)=\left(d_{2}, d_{3}\right)$. Then $\operatorname{dim} \operatorname{Coker}\left(D_{H_{0}}(\mathcal{A}) \rightarrow D\left(\mathcal{A}^{H_{0}}, \mathbf{m}\right)\right)=c_{2}-d_{2} d_{3}$.

Cor. $\mathcal{A}$ is free iff $c_{2}=d_{2} d_{3}$.


### 4.2 What makes arrangement free?

Thm. Put $\exp \left(\mathcal{A}^{H_{0}}, \mathbf{m}\right)=\left(d_{2}, d_{3}\right)$. Then $\operatorname{dim} \operatorname{Coker}\left(D_{H_{0}}(\mathcal{A}) \rightarrow D\left(\mathcal{A}^{H_{0}}, \mathbf{m}\right)\right)=c_{2}-d_{2} d_{3}$.
(Proof). Set $M \subset D\left(\mathcal{A}^{H_{0}}, \mathbf{m}\right)$ is the image of the restriction map.

$$
0 \longrightarrow D_{H_{0}}(\mathcal{A}) \xrightarrow{\alpha_{0}} D_{H_{0}}(\mathcal{A}) \longrightarrow M \longrightarrow 0
$$

$\therefore H S(M, t)=(1-t) \cdot H S\left(D_{H_{0}}(\mathcal{A}), t\right)$
On the other hand, $H S\left(D_{H_{0}}(\mathcal{A}), t\right) \xrightarrow{S T-\text { formula }} c_{2}$
Then compare with $\operatorname{HS}\left(D\left(\mathcal{A}^{H_{0}}, \mathbf{m}\right), t\right)$.
4.2 What makes arrangement free?

Thy. Put $\exp \left(\mathcal{A}^{H_{0}}, \mathbf{m}\right)=\left(d_{2}, d_{3}\right)$. Then $\operatorname{dim} \operatorname{Coker}\left(D_{H_{0}}(\mathcal{A}) \rightarrow D\left(\mathcal{A}^{H_{0}}, \mathbf{m}\right)\right)=c_{2}-d_{2} d_{3}$.
Ex.
$\mathcal{A}$
$\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$


$c_{2}=6$
(Free)
$\exp =(2,3)$

### 4.2 What makes arrangement free?

## Free





### 4.2 What makes arrangement free?

Problems:
(Terao) $\mathcal{A}_{1}, \mathcal{A}_{2}$ arrangements in $\mathbb{C}^{\ell}, \mathcal{A}_{1}$ is free and $L\left(\mathcal{A}_{1}\right) \cong L\left(\mathcal{A}_{2}\right)$, then $\stackrel{? ? ?}{\Longrightarrow}$ Is $\mathcal{A}_{2}$ free?
(Saito) If $\mathcal{A}$ is free, then what is the homotopy type of the complement?

Are there further restrictions on $L(\mathcal{A})$ and the homotopy types?

### 4.3 Free arr's and plane curves

### 4.3 Free arr's and plane curves

$\mathcal{A}$ : an arr's in $\mathbb{C}^{3}, H_{0} \in \mathcal{A}$.
Def.
$\operatorname{Conf}(\mathcal{A})=\left\{(p, \mu(p)) \mid p\right.$ : intersection in $\left.\mathbb{P}^{2}\right\}$, and $\operatorname{Conf}(\mathcal{A}) \backslash H_{0}:=\{(p, \mu(p)) \in \operatorname{Conf}(\mathcal{A}) \mid$ $\left.p \notin H_{0}\right\}$

Def. Let $C_{1}, C_{2}$ be curves in $\mathbb{P}^{2}$ which do not share components. Then
$C_{1} \cdot C_{2}:=\left\{\left(p, \operatorname{mult}_{p}\left(C_{1}, C_{2}\right) \mid, p \in C_{1} \cap C_{2}\right\}\right.$

### 4.3 Free arr's and plane curves



### 4.3 Free arr's and plane curves

Thm. If $\mathcal{A}$ is free with $\exp =\left(1, d_{2}, d_{3}\right)$, then there exist plane curves $C_{i}$ of degree $d_{i}$ such that

$$
\operatorname{Conf}(\mathcal{A}) \backslash H_{0}=C_{1} \cdot C_{2} .
$$

(Proof) $\delta_{1}, \delta_{2} \in D_{H_{0}}(\mathcal{A})$ a basis. Take $\alpha$ be a generic linear form. Let us define a plane curve $C_{i}$ by $\delta_{i} \alpha=0$. The equality holds. (q.e.d.) Look closely at...

### 4.3 Free arr's and plane curves



$$
\begin{aligned}
& Q= x y z\left(x^{2}-y^{2}\right) \\
& \times\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) \\
& \theta_{E}= x \partial_{x}+y \partial_{y}+z \partial_{z} \\
& \delta_{1}= x\left(x^{2}-z^{2}\right) \partial_{x}+y\left(y^{2}-z^{2}\right) \partial_{y} \\
& \delta_{2}= x\left(x^{4}-z^{4}\right) \partial_{x}+y\left(y^{4}-z^{4}\right) \partial_{y} \\
& \delta_{1}, \delta_{2} \in D_{H_{0}}(\mathcal{A}) \\
& \quad \text { Consider } \delta_{i}(\varepsilon x+y) \\
&(0<\varepsilon<1)
\end{aligned}
$$

## 43 Free arr's and plane curves



## 43 Free arr's and plane curves

$\operatorname{Conf}(\mathcal{A}) \backslash H_{0}$

## 43 Free arr's and plane curves



### 4.3 Free arr's and plane curves


is not free.

### 4.3 Free arr's and plane curves



$$
c_{t}(\mathcal{E})=(1-3 t)^{2}
$$

If it is free, $\exp =(3,3)$
is not free.

### 4.3 Free arr's and plane curves



$$
c_{t}(\mathcal{E})=(1-3 t)^{2}
$$

If it is free, $\exp =(3,3)$
Contradicts Bezout
is not free.

### 4.3 Free arr's and plane curves

Thm.(Again) If $\mathcal{A}$ is free, then plane curves $\exists C_{i}$ s.t.

$$
\operatorname{Conf}(\mathcal{A}) \backslash H_{0}=C_{1} \cdot C_{2}
$$

## Final Questions

(1) Is the converse true?
(2) By Serre construction,
$\exists 0 \rightarrow \mathcal{O}\left(c_{1}\right) \rightarrow \mathcal{E}(\mathcal{A}) \rightarrow I_{Z} \rightarrow 0,\left(I_{Z}\right.$ : defining ideal of Conf). What is the extension class?
(3) $\exists$ any applications? (e.g. jumping lines etc.)

## Thank you very much for your attention!

