Arrangements

Masahiko Yoshinaga
(Kyoto University)
Algebraic
Geometry
Arrangements of Hyperplanes
Sapporo, 1-13, Aug. 2009

- Focus: Log bundle of arrangements (Sheaf of logarithmic vector fields / forms).

$$
D(\mathcal{A}, \mathbf{m}), \Omega^{1}(\mathcal{A}, \mathbf{m})
$$

- Theme: Arrangements and AG.

Two directions.

- AG helps understanding Arrangements.
- "Arrangements" as special varieties.
(Arrangements cause AG problems.)

0 Contents

§1 Introduction.

- How AG is applied to Arrangements?
§2 Origin.
- Definitions, where do they come from?
§3 Coxeter multiarrangements.
- An application of Alg-Geom consideration to

Coxeter arrangements.
§4 Vector bundles and plane curves.

- What is free arrangements?

1 Introduction

$$
x=0
$$

$\begin{array}{ll}x-y=0 & \delta_{1}=x \partial_{x}+y \partial_{y} \\ \delta_{2}=x^{2} \partial_{x}+y^{2} \partial_{y}\end{array}$

1 Introduction

$$
x=0
$$

$\begin{array}{ll}x-y=0 & \delta_{1}=x \partial_{x}+y \partial_{y} \\ y=0 & \delta_{2}=x^{2} \partial_{x}+y^{2} \partial_{y} \\ \delta_{i} \alpha \in(\alpha), & \text { for } \alpha=x, y, x-y\end{array}$

$$
\text { e.g. } \delta_{2}(x-y)=x^{2}-y^{2}=(x-y)(x+y)
$$

1 Introduction

$$
x=0
$$

$\begin{array}{ll}x-y=0 & \delta_{1}=x \partial_{x}+y \partial_{y} \\ y=0 & \delta_{2}=x^{2} \partial_{x}+y^{2} \partial_{y} \\ \delta_{i} \alpha \in(\alpha), & \text { for } \alpha=x, y, x-y\end{array}$

$$
\text { e.g. } \delta_{2}(x-y)=x^{2}-y^{2}=(x-y)(x+y)
$$

$\operatorname{det}\left(\begin{array}{cc}x & y \\ x^{2} & y^{2}\end{array}\right)=x y^{2}-x^{2} y=-x y(x-y)$

1 Introduction

$$
x^{3}=0 \quad \begin{gathered}
(x-y)^{3}=0
\end{gathered} \begin{gathered}
\delta_{1}=x^{3}(x-2 y) \partial_{x} \\
+y^{3}(-2 x+y) \partial_{y} \\
y_{2}=x^{4}(3 x-5 y) \partial_{x} \\
+y^{4}(-5 x+3 y) \partial_{y}
\end{gathered}
$$

1 Introduction

$x^{3}=0$
$y^{3}=0 \begin{array}{r}(x-y)^{3}=0\end{array} \begin{gathered}\delta_{1}=x^{3}(x-2 y) \partial_{x} \\ +y^{3}(-2 x+y) \partial_{y} \\ \delta_{2}=x^{4}(3 x-5 y) \partial_{x} \\ +y^{4}(-5 x+3 y) \partial_{y}\end{gathered}$
$\delta_{i} \alpha \in\left(\alpha^{3}\right)$, for $\alpha=x, y, x-y$

$$
\text { e.g. } \delta_{2}(x-y)=(x-y)^{3}\left(3 x^{2}+4 x y+3 y^{2}\right)
$$

1 Introduction

$x^{3}=0$
$y^{y^{3}=0} \begin{gathered}x^{3}=0 \\ \delta_{i} \alpha \in\left(\alpha^{3}\right), \text { for } \alpha=x, y, x-y\end{gathered}$
e.g. $\delta_{2}(x-y)=(x-y)^{3}\left(3 x^{2}+4 x y+3 y^{2}\right)$
$\operatorname{det}\left(\begin{array}{cc}x^{3}(x-2 y) & y^{3}(-2 x+y) \\ x^{4}(3 x-5 y) & y^{4}(-5 x+3 y)\end{array}\right)=6 x^{3} y^{3}(x-y)^{3}$

1 Introduction

1 Introduction

e.g. $\delta_{2}(x-y)=(x-y)^{5}(x+y)\left(x^{2}+5 x y+y^{2}\right)$

1 Introduction

$x^{5}=0$
$\int^{(x-y)^{5}=0 \quad \begin{array}{r}\delta_{1}=\end{array} x^{5}\left(2 x^{2}-7 x y+7 y^{2}\right) \partial_{x}} \begin{aligned} & +y^{5}\left(7 x^{2}-7 x y+y^{2}\right) \partial_{y}\end{aligned}$ $\delta_{2}=x^{5}\left(x^{3}+x^{2} y-14 x y^{2}+21 y^{3}\right) \partial_{x}$
$y^{5}=0$ $+y^{5}\left(21 x^{3}-14 x^{2} y+x y^{2}+y^{3}\right) \partial_{y}$
$\delta_{i} \alpha \in\left(\alpha^{5}\right)$, for $\alpha=x, y, x-y$
e.g. $\delta_{2}(x-y)=(x-y)^{5}(x+y)\left(x^{2}+5 x y+y^{2}\right)$
$\operatorname{det}\left(\begin{array}{cc}x^{5}\left(2 x^{2}-7 x y+7 y^{2}\right) & y^{5}\left(7 x^{2}-7 x y+y^{2}\right) \\ x^{5}\left(x^{3}+x^{2} y-14 x y^{2}+21 y^{3}\right) & y^{5}\left(21 x^{3}-14 x^{2} y+x y^{2}+y^{3}\right)\end{array}\right)$

$$
=35 x^{5} y^{5}(x-y)^{5}
$$

1 Introduction

$$
\begin{gathered}
x^{p}=0 \quad \begin{array}{c}
(x-y)^{r}=0 \\
\exists \delta_{1}=f_{1} \partial_{x}+f_{2} \partial_{y} \\
\exists \delta_{2}=g_{1} \partial_{x}+g_{2} \partial_{y} \\
y^{q}=0
\end{array} \\
\begin{array}{c}
\text { s.t. } \\
\delta_{i} \alpha \in\left(\alpha^{n}\right), \\
\operatorname{for} \alpha=x, y, x-y, \\
n=p, q, r \\
\operatorname{det}\left(\begin{array}{ll}
f_{1} & f_{2} \\
g_{1} & g_{2}
\end{array}\right)=x^{p} y^{q}(x-y)^{r} .
\end{array}
\end{gathered}
$$

See Wakamiko (2007), for explicit formula (Using Schur functions)

1 Introduction

$x^{p}=0$
$y^{(x-y)^{r}=0} \begin{aligned} & \exists \delta_{1}=f_{1} \partial_{x}+f_{2} \partial_{y} \\ & \exists \delta_{2}=g_{1} \partial_{x}+g_{2} \partial_{y}\end{aligned}$

$$
y^{q}=0 \quad \delta_{i} \alpha \in\left(\alpha^{n}\right)
$$

$$
\text { for } \alpha=x, y, x \mp y
$$

$$
n=p, q, r, s, \text { and }
$$

$$
(x+y)^{s}=0
$$

$$
\operatorname{det}\left(\begin{array}{ll}
f_{1} & f_{2} \\
g_{1} & g_{2}
\end{array}\right)=x^{p} y^{q}(x-y)^{r}(x+y)^{s} .
$$

1 Introduction

$$
\begin{aligned}
& x^{p}=0 \quad(x-y)^{r}=0 \quad \exists \delta_{1}=f_{1} \partial_{x}+f_{2} \partial_{y} \\
& \exists \delta_{2}=g_{1} \partial_{x}+g_{2} \partial_{y} \\
& \text { s.t. } \\
& \delta_{i} \alpha \in\left(\alpha^{n}\right) \\
& \text { for } \alpha=x, y, x \mp y \\
& n=p, q, r, s, \text { and } \\
& (x+y)^{s}=0 \\
& \operatorname{det}\left(\begin{array}{ll}
f_{1} & \begin{array}{l}
f_{2} \\
g_{1}
\end{array} \\
g_{2}
\end{array}\right)=x^{p} y^{q}(x-y)^{r}(x+y)^{s} .
\end{aligned}
$$

But....

1 Introduction

$$
\begin{aligned}
& x^{p}=0 \quad(x-y)^{r}=0 \quad \exists \delta_{1}=f_{1} \partial_{x}+f_{2} \partial_{y} \\
& \exists \delta_{2}=g_{1} \partial_{x}+g_{2} \partial_{y} \\
& \text { s.t. } \\
& \delta_{i} \alpha \in\left(\alpha^{n}\right) \\
& \text { for } \alpha=x, y, x \mp y \\
& n=p, q, r, s \text {, and } \\
& (x+y)^{s}=0 \\
& \operatorname{det}\left(\begin{array}{ll}
f_{1} & \begin{array}{l}
f_{2} \\
g_{1}
\end{array} \\
g_{2}
\end{array}\right)=x^{p} y^{q}(x-y)^{r}(x+y)^{s}
\end{aligned}
$$

But....

Explicit formula is NOT KNOWN!

(Even $\operatorname{deg} \delta_{i}$ is unclear.)

1 Introduction

Exponents:

$$
\exp =\left(\operatorname{deg} \delta_{1}, \operatorname{deg} \delta_{2}\right)=(1,2)
$$

Compare
\sharp bdd. chamber $=0=(1-1)(2-1)$
\sharp chamber $=6=(1+1)(2+1)$

1 Introduction

$$
\begin{array}{rr}
x^{3}=0 \\
& \begin{array}{r}
(x-y)^{3}=0 \\
y^{3}=0
\end{array} \\
\begin{array}{c}
\delta_{2}=y^{3}(x-2 y) \partial_{x} \\
x^{4}(3 x-5 y) \partial_{x} \\
+y^{4}(-5 x+3 y) \partial_{y}
\end{array}
\end{array}
$$

Exponents:
$\exp =\left(\operatorname{deg} \delta_{1}, \operatorname{deg} \delta_{2}\right)=(4,5)$

\uparrow Compare
\sharp bdd. chamber $=12=(4-1)(5-1)$
\sharp chamber $=30=(4+1)(5+1)$

1 Introduction

$$
\exp =\left(\operatorname{deg} \delta_{1}, \operatorname{deg} \delta_{2}\right)=(7,8)
$$

\sharp bdd. chamber $=42=(7-1)(8-1)$
\sharp chamber $=72=(7+1)(8+1)$

1 Introduction

Exponents

bid. chamber

$=\left(\operatorname{deg} \delta_{1}, \operatorname{deg} \delta_{2}\right)$ chamber
$(1,2)$

$$
\begin{aligned}
& 0=(1-1)(2-1) \\
& 6=(1+1)(2+1)
\end{aligned}
$$

$(4,5)$

$$
\begin{aligned}
& 12=(4-1)(5-1) \\
& 30=(4+1)(5+1)
\end{aligned}
$$

$(7,8)$

$$
\begin{aligned}
& 42=(7-1)(8-1) \\
& 72=(7+1)(8+1)
\end{aligned}
$$

1 Introduction

Exponents

bdd. chamber

$=\left(\operatorname{deg} \delta_{1}, \operatorname{deg} \delta_{2}\right)$ chamber

$$
\begin{aligned}
& (1,2) \\
& 0=(1-1)(2-1) \\
& 6=(1+1)(2+1) \\
& 12=(4-1)(5-1) \\
& 30=(4+1)(5+1) \\
& (4,5) \\
& +3 \\
& (7,8) \\
& 42=(7-1)(8-1) \\
& 72=(7+1)(8+1)
\end{aligned}
$$

1 Introduction

Exponents

bdd. chamber

$=\left(\operatorname{deg} \delta_{1}, \operatorname{deg} \delta_{2}\right)$ chamber

$$
\begin{aligned}
& (1,2) \\
& 0=(1-1)(2-1) \\
& 6=(1+1)(2+1) \\
& (4,5) \\
& 12=(4-1)(5-1) \\
& 30=(4+1)(5+1) \\
& (7,8) \\
& 42=(7-1)(8-1) \\
& 72=(7+1)(8+1)
\end{aligned}
$$

Are they accidental? No, they are related!

Log vector fields, $\delta \in D(\mathcal{A})$

Solomon-Terao Formula
N
Apply
(bdd.)chambers Betti numbers
ombinatorics
of \mathcal{A}
Algebraic
Geometry

2 Origin

Def. $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$,
$0 \in H_{i} \subset \mathbb{C}^{\ell}, H_{i}=\alpha_{H}^{-1}(0)$ α_{H} is a linear form.

A multiplicity is a map

$$
\mathbf{m}: \mathcal{A} \longrightarrow \mathbb{Z}_{\geq 0} .
$$

2 Origin

A multiplicity is a map $\mathbf{m}: \mathcal{A} \longrightarrow \mathbb{Z}_{\geq 0}$.

$$
S=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right]
$$

$$
\delta=\sum_{i=1}^{\ell} f_{i} \partial_{x_{i}} \in \operatorname{Der}_{S}=\bigoplus_{i=1}^{\ell} S \cdot \partial_{x_{i}}
$$

is called derivation or vector fields.
$D(\mathcal{A}, \mathbf{m})=\left\{\delta \in \operatorname{Der}_{S} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{\mathbf{m}(H)}\right), \forall H\right\}$
is logarithmic vector fields (with mult. m).

2 Origin

$$
D(\mathcal{A}, \mathbf{m})=\left\{\delta \in \operatorname{Der}_{S} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{\mathbf{m}(H)}\right), \forall H\right\}
$$

$$
\delta_{1}=x^{3} \partial_{x}+y^{3} \partial_{y}, \text { and }
$$

$$
\delta_{2}=y^{2}(x-y) \partial_{y}
$$

$$
\text { are in } D(\mathcal{A}, \mathbf{m})
$$

$\operatorname{det}\left(\begin{array}{cc}x^{3} & y^{2} \\ 0 & y^{2}(x-y)\end{array}\right)=\prod \alpha_{H}^{\mathbf{m}(H)} \Longrightarrow \Longrightarrow\left\{\begin{array}{c}D(\mathcal{A}, \mathbf{m}) \text { is free }, \\ \delta_{1}, \delta_{2} \text { is a basis }\end{array}\right.$

2 Origin

$$
D(\mathcal{A}, \mathbf{m})=\left\{\delta \in \operatorname{Der}_{S} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{\mathbf{m}(H)}\right), \forall H\right\}
$$

Where do they come from?
(Geometry? Singularity?)

2 Origin

$$
D(\mathcal{A}, \mathbf{m})=\left\{\delta \in \operatorname{Der}_{S} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{\mathbf{m}(H)}\right), \forall H\right\}
$$

Where do they come from?
(Geometry? Singularity?)
Example. $f: X_{1}=\mathbb{C} \rightarrow X_{2}=\mathbb{C},\left(x \mapsto x^{2}=t\right)$ When vector field $\delta=f(t) \frac{d}{d t}$ liftable?

2 Origin

$$
D(\mathcal{A}, \mathbf{m})=\left\{\delta \in \operatorname{Der}_{S} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{\mathbf{m}(H)}\right), \forall H\right\}
$$

Where do they come from?
(Geometry? Singularity?)
Example. $f: X_{1}=\mathbb{C} \rightarrow X_{2}=\mathbb{C},\left(x \mapsto x^{2}=t\right)$ When vector field $\delta=f(t) \frac{d}{d t}$ liftable?

$$
\frac{d}{d t}=\frac{d x}{d t} \frac{d}{d x}=\left(\frac{d t}{d x}\right)^{-1} \frac{d}{d x}=\frac{1}{2 x} \frac{d}{d x}, \text { pole appears }
$$

2 Origin

$$
D(\mathcal{A}, \mathbf{m})=\left\{\delta \in \operatorname{Der}_{S} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{\mathbf{m}(H)}\right), \forall H\right\}
$$

Where do they come from?
(Geometry? Singularity?)
Example. $f: X_{1}=\mathbb{C} \rightarrow X_{2}=\mathbb{C},\left(x \mapsto x^{2}=t\right)$ When vector field $\delta=f(t) \frac{d}{d t}$ liftable?
$\frac{d}{d t}=\frac{d x}{d t} \frac{d}{d x}=\left(\frac{d t}{d x}\right)^{-1} \frac{d}{d x}=\frac{1}{2 x} \frac{d}{d x}$, pole appears
$t \frac{d}{d t}=\frac{x}{2} \frac{d}{d x}$, liftable!

2 Origin

$$
D(\mathcal{A}, \mathbf{m})=\left\{\delta \in \operatorname{Der}_{S} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{\mathbf{m}(H)}\right), \forall H\right\}
$$

Where do they come from?
(Geometry? Singularity?)
Example. $f: X_{1}=\mathbb{C} \rightarrow X_{2}=\mathbb{C},\left(x \mapsto x^{2}=t\right)$ When vector field $\delta=f(t) \frac{d}{d t}$ liftable?

$$
\frac{d}{d t}=\frac{d x}{d t} \frac{d}{d x}=\left(\frac{d t}{d x}\right)^{-1} \frac{d}{d x}=\frac{1}{2 x} \frac{d}{d x}, \text { pole appears }
$$

$t \frac{d}{d t}=\frac{x}{2} \frac{d}{d x}$, liftable!
δ is liftable $\Longleftrightarrow \delta \in D(\mathcal{A}, \mathbf{1})$

2 Origin

In more complicated promlems, multiplicities also appear.
\mathfrak{g} : simple Lie alg
G: Adjoint group $\mathfrak{h} \curvearrowleft W$:
Cartan and Weyl $\chi: \mathfrak{g} \rightarrow \mathfrak{h} / W$

$$
\mathfrak{h} \longrightarrow S \longrightarrow \mathfrak{h} / W=\mathfrak{g} / / G
$$

Adjoint quotient map
Thm. If \mathfrak{g} is ADE, ω is the Kostant-Kirillov form, then $\nabla \cdot \omega: D(\mathcal{A}, \mathbf{3})^{W} \xrightarrow{\simeq} \mathbb{R}^{2} \chi_{*} \Omega_{\mathfrak{g} / S},\left(\delta \longmapsto \nabla_{\delta} \omega\right)$ is isom.

2.1 Solomon-Terao Formula

For $(\mathcal{A}, \mathbf{m})$, define $Q=\prod_{H} \alpha_{H}^{\mathbf{m}(H)}$.
Def.
$\Omega^{p}(\mathcal{A}, \mathbf{m})=\left\{\left.\omega \in \frac{1}{Q} \Omega^{p} \right\rvert\, d \alpha_{H} \wedge \omega\right.$ has no pole along $\left.H\right\}$
Thm (S-T)
Hilbert series
$\chi(\mathcal{A}, t)=\lim _{x \rightarrow 1} \sum_{p=0}^{\ell} H S\left(\Omega^{p}(\mathcal{A}), x\right)(t(1-x)-1)^{p}$
Thm (Orlik-Solomon, Zaslavsky) "of deconing"
$\lim _{t \rightarrow 1}|\chi(\mathcal{A}, t) /(t-1)|=\sharp$ bdd. chombers
$\lim _{t \rightarrow-1}|\chi(\mathcal{A}, t) /(t-1)|=\sharp$ chambers

2.2 Summary/Comments

- $D(\mathcal{A}, \mathbf{m})=\left\{\delta \in \operatorname{Der}_{S} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{\mathbf{m}(H)}\right)\right\}$ introduced by Ziegler, appeared geom problems of singularity.
- $\ell=2 \Longrightarrow D(\mathcal{A}, \mathbf{m})$ is free, but difficult to find the basis.
- $\ell=2$, generically stable i.e., $\left|\operatorname{deg} \delta_{1}-\operatorname{deg} \delta_{2}\right| \leq 1$ (Yuzvinsky-Wakefield).
- $\ell \geq 2$, \exists many techniques (addition-deletion, characteristic poly) to study freeness
(Abe-Terao-Wakefield)

3 Coxeter arrangements.
3.1 Basic Techniques

3.1 Basic Techniques

$D(\mathcal{A}):=D(\mathcal{A}, \mathbf{1})=\left\{\delta \mid \delta \alpha_{H} \in\left(\alpha_{H}\right), \forall H\right\}$
$\theta_{E}=\sum_{i} x_{i} \partial_{i}$: Euler vect field. $\in D(\mathcal{A})$.
Def. Let $H_{0} \in \mathcal{A}$.

$$
D_{H_{0}}(\mathcal{A}):=\left\{\delta \in D(\mathcal{A}) \mid \delta \alpha_{H_{0}}=0\right\}
$$

3.1 Basic Techniques

$D(\mathcal{A}):=D(\mathcal{A}, \mathbf{1})=\left\{\delta \mid \delta \alpha_{H} \in\left(\alpha_{H}\right), \forall H\right\}$
$\theta_{E}=\sum_{i} x_{i} \partial_{i}$: Euler vect field. $\in D(\mathcal{A})$.
Def. Let $H_{0} \in \mathcal{A}$.

$$
D_{H_{0}}(\mathcal{A}):=\left\{\delta \in D(\mathcal{A}) \mid \delta \alpha_{H_{0}}=0\right\}
$$

Prop. $\quad D(\mathcal{A})=\left\langle\theta_{E}\right\rangle \oplus D_{H_{0}}(\mathcal{A})$.

3.1 Basic Techniques

$D(\mathcal{A}):=D(\mathcal{A}, \mathbf{1})=\left\{\delta \mid \delta \alpha_{H} \in\left(\alpha_{H}\right), \forall H\right\}$ $\theta_{E}=\sum_{i} x_{i} \partial_{i}$: Euler vest field. $\in D(\mathcal{A})$.

Def. Let $H_{0} \in \mathcal{A}$.

$$
D_{H_{0}}(\mathcal{A}):=\left\{\delta \in D(\mathcal{A}) \mid \delta \alpha_{H_{0}}=0\right\}
$$

Prop. $D(\mathcal{A})=\left\langle\theta_{E}\right\rangle \oplus D_{H_{0}}(\mathcal{A})$.
Proof.

$$
\delta=\frac{\delta \alpha_{0}}{\alpha_{0}} \theta_{E}+\left(\delta-\frac{\delta \alpha_{0}}{\alpha_{0}} \theta_{E}\right)
$$

Since $\theta_{E} \alpha_{0}=\alpha_{0}$, we have $\left(\delta-\frac{\delta \alpha_{0}}{\alpha_{0}} \theta_{E}\right) \alpha_{0}=0$

3.1 Basic Techniques

$$
\operatorname{dim}=\ell
$$

$$
\operatorname{dim}=\ell-1
$$

\mathcal{A}

$$
\mathbf{m}_{H_{0}}(K)=2
$$

$\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$

3.1 Basic Techniques

Thm. (Ziegler)

$$
\left.\delta \in D_{H_{0}}(\mathcal{A}) \Longrightarrow \delta\right|_{H_{0}} \in D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right) .
$$

3.1 Basic Techniques

Thm. (Ziegler)

$$
\left.\delta \in D_{H_{0}}(\mathcal{A}) \Longrightarrow \delta\right|_{H_{0}} \in D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)
$$

3.1 Basic Techniques

Thy. (Ziegler)
$\left.\delta \in D_{H_{0}}(\mathcal{A}) \Longrightarrow \delta\right|_{H_{0}} \in D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$.

$Q=x y z\left(x^{2}-y^{2}\right)$

$$
\times\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right)
$$

$$
\theta_{E}=x \partial_{x}+y \partial_{y}+z \partial_{z}
$$

$$
\delta_{1}=x\left(x^{2}-z^{2}\right) \partial_{x}+y\left(y^{2}-z^{2}\right) \partial_{y}
$$

$$
\delta_{2}=x\left(x^{4}-z^{4}\right) \partial_{x}+y\left(y^{4}-z^{4}\right) \partial_{y}
$$

$$
\begin{aligned}
& \delta_{1}, \delta_{2} \in D_{H_{0}}(\mathcal{A}) \\
& \left.\delta_{1}\right|_{z=0}=x^{3} \partial_{x}+y^{3} \partial_{y} \\
& \left.\delta_{2}\right|_{z=0}=x^{5} \partial_{x}+y^{5} \partial_{y}
\end{aligned}
$$

3.1 Basic Techniques

Thm. (Ziegler)
$\left.\delta \in D_{H_{0}}(\mathcal{A}) \Longrightarrow \delta\right|_{H_{0}} \in D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$.

$$
Q=x y z\left(x^{2}-y^{2}\right)
$$

$$
\times\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right)
$$

$$
\theta_{E}=x \partial_{x}+y \partial_{y}+z \partial_{z}
$$

$$
\delta_{1}=x\left(x^{2}-z^{2}\right) \partial_{x}+y\left(y^{2}-z^{2}\right) \partial_{y}
$$

$$
\delta_{2}=x\left(x^{4}-z^{4}\right) \partial_{x}+y\left(y^{4}-z^{4}\right) \partial_{y}
$$

$$
\begin{aligned}
& \delta_{1}, \delta_{2} \in D_{H_{0}}(\mathcal{A}) \\
& \left.\delta_{1}\right|_{z=0}=x^{3} \partial_{x}+y^{3} \partial_{y} \\
& \left.\delta_{2}\right|_{z=0}=x^{5} \partial_{x}+y^{5} \partial_{y}
\end{aligned}
$$

3.1 Basic Techniques

Thm. (Ziegler)

$$
\left.\delta \in D_{H_{0}}(\mathcal{A}) \Longrightarrow \delta\right|_{H_{0}} \in D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right) .
$$

Thm. (Z)
\mathcal{A} is free with $\exp (\mathcal{A})=\left(1, d_{2}, \ldots, d_{\ell}\right)$,
$\Rightarrow\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is free with $\exp =\left(d_{2}, \ldots, d_{\ell}\right)$
Cor. \mathcal{A} is free iff $D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is free, and $D_{H_{0}}(\mathcal{A}) \rightarrow D\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is surjective.
3.2 AG aspects

3.2 AG aspects

$$
S=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right]
$$

" M : a graded S-module"

$$
\begin{gathered}
" \widetilde{M}: \text { a sheaf on } \mathbb{P}^{\ell-1 "} \\
\text { s.t. } H^{0}\left(\mathbb{P}^{\ell-1}, \widetilde{M} \otimes \mathcal{O}(d)\right)=M_{d} .
\end{gathered}
$$

3.2 AG aspects

$$
S=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right]
$$

" M : a graded S-module"

$$
\begin{array}{r}
" \widetilde{M}: \text { a sheaf on } \mathbb{P}^{\ell-1 "} \\
\text { s.t. } H^{0}\left(\mathbb{P}^{\ell-1}, \widetilde{M} \otimes \mathcal{O}(d)\right)=M_{d} .
\end{array}
$$

Using this correspondence,

3.2 AG aspects

$$
S=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right]
$$

" M : a graded S-module"

$$
\begin{gathered}
" \widetilde{M}: \text { a sheaf on } \mathbb{P}^{\ell-1 "} \\
\text { s.t. } H^{0}\left(\mathbb{P}^{\ell-1}, \widetilde{M} \otimes \mathcal{O}(d)\right)=M_{d} .
\end{gathered}
$$

Using this correspondence,
Free with

$$
\exp =\left(d_{1}, \ldots, d_{\ell}\right)
$$

Freeness \Longleftrightarrow Splitting

3.3 Local version of Ziegler

Def. \mathcal{A} is locally free along H_{0} if $\forall x \in H_{0} \backslash\{0\}$, $\mathcal{A}_{x}=\{H \in \mathcal{A} \mid H \ni x\}$ is free.

3.3 Local version of Ziegler

Def. \mathcal{A} is locally free along H_{0} if $\forall x \in H_{0} \backslash\{0\}$,

$$
\mathcal{A}_{x}=\{H \in \mathcal{A} \mid H \ni x\} \text { is free. }
$$

Under this assumption, (put $\mathcal{F}=\widetilde{D_{H_{0}}(\mathcal{A})}$)

$$
\begin{aligned}
0 \longrightarrow \mathcal{F}(-1) \longrightarrow \mathcal{F} \longrightarrow D\left(\overparen{\mathcal{A}^{H_{0}}}, \mathbf{m}_{H_{0}}\right) \longrightarrow 0 \\
\text { is exact (of sheaves). }
\end{aligned}
$$

$$
\therefore \quad D\left(\overparen{\mathcal{A}^{H_{0}}}, \mathbf{m}_{H_{0}}\right)=\left.\mathcal{F}\right|_{\mathbb{P}\left(H_{0}\right)}
$$

3.4 Splitting criterion

Thm. (Horrocks) $H \subset \mathbb{P}^{m},(m \geq 3)$: a hyperplane E is a holomorphic vector bundle on \mathbb{P}^{m}. Then E splits iff $\left.E\right|_{H}$ splits.

Rem. The above is true for E : reflexive (Abe, -)

3.5 Characterizing freeness

Thm. \mathcal{A} : central arr in $\mathbb{C}^{\ell}, H_{0} \in \mathcal{A}$.
(1) When $\ell \geq 4, \mathcal{A}$ is free iff
$-\mathcal{A}$ is locally free along H_{0}, and - $\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is free.
(2) When $\ell=3, \mathcal{A}$ is free iff
$-\chi(\mathcal{A}, t)=(t-1)\left(t-d_{2}\right)\left(t-d_{3}\right)$,

- $\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is free with $\exp =\left(d_{2}, d_{3}\right)$.

Rem. Freeness is characterized by informations around H_{0} only.
3.6 Applications to affine Weyl arrangements
$V=\mathbb{R}^{\ell}$: Euclidean space,
$\Phi \subset V^{*}:$ a root system, (irred, reduced) $\Phi_{+}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset \Phi$: fix a positive system, e_{1}, \ldots, e_{ℓ} : exponents, and h : the Coxeter number.
3.6 Applications to affine Weyl arrangements
$V=\mathbb{R}^{\ell}$: Euclidean space,
$\Phi \subset V^{*}:$ a root system, (irred, reduced) $\Phi_{+}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset \Phi$: fix a positive system, e_{1}, \ldots, e_{ℓ} : exponents, and h : the Coxeter number.

Def. Let $a, b \in \mathbb{Z}, a \leq b$.

$$
\mathcal{A}_{\Phi}^{[a, b]}:=\left\{\alpha^{-1}(k) \mid \alpha \in \Phi_{+}, k \in \mathbb{Z}, a \leq k \leq b\right\}
$$

3.6 Applications to affine Weyl arrangements

$$
\mathcal{A}_{\Phi}^{[a, b]}:=\left\{\alpha^{-1}(k) \mid \alpha \in \Phi_{+}, k \in \mathbb{Z}, a \leq k \leq b\right\}
$$

$$
\begin{aligned}
& \text { Type } B_{2} \\
& \Phi_{+}=\{x, y, x+y, x-y\}
\end{aligned}
$$

$$
\mathcal{A}_{\Phi}^{[-1,1]}
$$

3.6 Applications to affine Weyl arrangements

$$
\mathcal{A}_{\Phi}^{[a, b]}:=\left\{\alpha^{-1}(k) \mid \alpha \in \Phi_{+}, k \in \mathbb{Z}, a \leq k \leq b\right\}
$$

There are many works on $\chi\left(\mathcal{A}_{\Phi}^{[a, b]}, t\right)$.
Thm. (Athanasiadis) $m_{\ell} \geq 0$, then

$$
\chi\left(\mathcal{A}_{\Phi}^{[-m, m]}, t\right)=\prod_{i=1}^{\ell}\left(t-e_{i}-m h\right) .
$$

Conj. (Postnikov-Stanley) $m>0$, then The real part of zeros of $\chi\left(\mathcal{A}_{\Phi}^{[0, m]}, t\right)=0$ is $(m+1) h / 2$.
3.6 Applications to affine Weyl arrangements

3.6 Applications to affine Weyl arrangements

Thu. Let $m \geq 0$

- $c \mathcal{A}^{[-m, m]}$ is free with

$$
\exp =\left(1, e_{1}+m h, \ldots, e_{\ell}+m h\right)
$$

- $c \mathcal{A}^{[1-m, m]}$ is free with

$$
\exp =(1, m h, m h, \ldots, m h) .
$$

Cor.

- $\chi\left(\mathcal{A}^{[-m, m]}, t\right)=\prod_{i}\left(t-e_{i}-m h\right)$.
- $\chi\left(\mathcal{A}^{[1-m, m]}, t\right)=(t-m h)^{\ell}$

3.6 Applications to affine Weyl arrangements

Thm. Let $m \geq 0$

- $c \mathcal{A}^{[-m, m]}$ is free with

$$
\exp =\left(1, e_{1}+m h, \ldots, e_{\ell}+m h\right)
$$

- $c \mathcal{A}^{[1-m, m]}$ is free with

$$
\exp =(1, m h, m h, \ldots, m h) .
$$

(Sketch of proof).
Thm. \mathcal{A} : central arr in $\mathbb{C}^{\ell}, H_{0} \in \mathcal{A}$.
(1) When $\ell \geq 4, \mathcal{A}$ is free iff

- \mathcal{A} is locally free along H_{0}, and
- $\left(\mathcal{A}^{H_{0}}, \mathbf{m}_{H_{0}}\right)$ is free.

Check!: (i) $c \mathcal{A}_{\Phi}^{[a, b]}$ is loc free along $H_{0} \Leftarrow$ lower rank cases. (ii) $\left(\left(c \mathcal{A}_{\Phi}^{[a, b]}\right)^{H_{0}}, m_{H_{0}}\right)$ is free. \Leftarrow next page.

3.6 Applications to affine Weyl arrangements

3.7 Coxeter multiarrangements

Thm. (Terao) \mathcal{A} : Coxeter arrangement, $k \geq 0$ $\bullet(\mathcal{A}, 2 k+1)$ is free with

$$
\exp =\left(e_{1}+m h, \ldots, e_{\ell}+m h\right) .
$$

$\bullet(\mathcal{A}, 2 k)$ is free with

$$
\exp =(m h, m h, \ldots, m h)
$$

This completes the proof!

There are several generalizations.

3.7 Coxeter multiarrangements

Thm. (Abe, -, accepted to f. Alg. July 30)
\mathcal{A} : Coxeter arrangement, $\mathbf{m}: \mathcal{A} \rightarrow \mathbb{Z}_{>0}$ satisfies $\exists k$ s.t. $\mathbf{m}(\mathcal{A}) \subset\{k, k+1\}$, then

$$
D(\mathcal{A}, \mathbf{m}+2) \cong D(\mathcal{A}, \mathbf{m})[-h]
$$

Rem.

- Isomorphic even for non-free cases !
- Abe generalized further.

3.7 Coxeter multiarrangements

Thm. (Abe, - , accepted to of Alg., July 30)
\mathcal{A} : Coxeter arrangement, $\mathbf{m}: \mathcal{A} \rightarrow \mathbb{Z}_{>0}$ satisfies $\exists k$ s.t. $\mathbf{m}(\mathcal{A}) \subset\{k, k+1\}$, then

$$
D(\mathcal{A}, \mathbf{m}+2) \cong D(\mathcal{A}, \mathbf{m})[-h] .
$$

(brief sketch of proof)
$\mathbb{C}[V]^{W}=\mathbb{C}\left[P_{1}, \ldots, P_{\ell}\right], P_{i}$: basic invariant Assume: $\operatorname{deg} P_{1} \leq \cdots \leq \operatorname{deg} P_{\ell}$ $D:=\frac{\partial}{\partial P_{\ell}}$ is called the primitive derivation. $\mathbf{m}: \mathcal{A} \longrightarrow\{0,1\}$

3.7 Coxeter multiarrangements

Rem. $D=\frac{\partial}{\partial P_{\ell}}$ is canonical, since $\operatorname{deg} P_{i}<\operatorname{deg} P_{\ell}$.

3.7 Coxeter multiarrangements

Rem. $D=\frac{\partial}{\partial P_{\ell}}$ is canonical, since $\operatorname{deg} P_{i}<\operatorname{deg} P_{\ell}$.
Claim. $D(\mathcal{A}, \mathbf{m}+2 r) \cong D(\mathcal{A}, \mathbf{m})[-r h]$

3.7 Coxeter multiarrangements

Rem. $D=\frac{\partial}{\partial P_{\ell}}$ is canonical, since $\operatorname{deg} P_{i}<\operatorname{deg} P_{\ell}$.
Claim. $D(\mathcal{A}, \mathbf{m}+2 r) \cong D(\mathcal{A}, \mathbf{m})[-r h]$
Construct isom. as follows:

3.7 Coxeter multiarrangements

Rem. $D=\frac{\partial}{\partial P_{\ell}}$ is canonical, since $\operatorname{deg} P_{i}<\operatorname{deg} P_{\ell}$.
Claim. $D(\mathcal{A}, \mathbf{m}+2 r) \cong D(\mathcal{A}, \mathbf{m})[-r h]$
Construct isom. as follows:

$$
\begin{aligned}
D(\mathcal{A}, \mathbf{m}) & \longrightarrow D(\mathcal{A}, \mathbf{m}+2 r) \\
\delta & \longmapsto \nabla_{\delta}\left(\nabla_{D}\right)^{-r} \theta_{E} \quad \text { (q.e.d.) }
\end{aligned}
$$

3.7 Coxeter multiarrangements

Rem. $D=\frac{\partial}{\partial P_{\ell}}$ is canonical, since $\operatorname{deg} P_{i}<\operatorname{deg} P_{\ell}$.
Claim. $D(\mathcal{A}, \mathbf{m}+2 r) \cong D(\mathcal{A}, \mathbf{m})[-r h]$
Construct isom. as follows:

$$
\begin{aligned}
D(\mathcal{A}, \mathbf{m}) & \longrightarrow D(\mathcal{A}, \mathbf{m}+2 r) \\
\delta & \longmapsto \nabla_{\delta}\left(\nabla_{D}\right)^{-r} \theta_{E} \quad \text { (q.e.d.) }
\end{aligned}
$$

Rem.

3.7 Coxeter multiarrangements

Rem. $D=\frac{\partial}{\partial P_{\ell}}$ is canonical, since $\operatorname{deg} P_{i}<\operatorname{deg} P_{\ell}$.
Claim. $D(\mathcal{A}, \mathbf{m}+2 r) \cong D(\mathcal{A}, \mathbf{m})[-r h]$
Construct isom. as follows:

$$
\begin{aligned}
D(\mathcal{A}, \mathbf{m}) & \longrightarrow D(\mathcal{A}, \mathbf{m}+2 r) \\
\delta & \longmapsto \nabla_{\delta}\left(\underline{\left.\nabla_{D}\right)^{-r} \theta_{E}} \quad\right. \text { (q.e.d.) }
\end{aligned}
$$

Rem.
This generate everything. "Primitivity"

3.7 Coxeter multiarrangements

Rem. $D=\frac{\partial}{\partial P_{\ell}}$ is canonical, since $\operatorname{deg} P_{i}<\operatorname{deg} P_{\ell}$.
Claim. $D(\mathcal{A}, \mathbf{m}+2 r) \cong D(\mathcal{A}, \mathbf{m})[-r h]$
Construct ism. as follows:

$$
\begin{aligned}
D(\mathcal{A}, \mathbf{m}) & \longrightarrow D(\mathcal{A}, \mathbf{m}+2 r) \\
\delta & \longmapsto \nabla_{\delta}\left(\underline{\left.\nabla_{D}\right)^{-r} \theta_{E}} \quad\right. \text { (q.e.d.) }
\end{aligned}
$$

Rem.

- $\operatorname{deg} P_{\ell}=h$ explains h-shifting $\left(\mathbf{m} \in\{0,1\}^{\mathcal{A}}\right)$ $D(\mathcal{A}, \mathbf{m}+2) \cong D(\mathcal{A}, \mathbf{m})[-h]$

3.7 Coxeter multiarrangements

Remarks and Questions:

- $D(\mathcal{A}, \mathbf{m}+2) \cong D(\mathcal{A}, \mathbf{m})[-h]$ for $\mathbf{m} \in\{0,1\}^{\mathcal{A}}$ even they are not free.
- Athanasiadis proved even nonsplitting cases, $\chi\left(\mathcal{A}^{[a-1, b+1]}, t\right)=\chi\left(\mathcal{A}^{[a, b]}, t-h\right)$ holds.
- Will the primitive derivation $D=\frac{\partial}{\partial P_{\ell}}$ play further role? (e.g., in "RH", "functional equation" etc.)

