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• Setting: V - a complex vector space of dimension `

• Characters:
• a subspace arrangement A = {X1, . . . , Xk} is a finite

collection of linear subspaces in V

• L(A) is the intersection lattice of A

• χ(A, t) =
∑

X∈L(A)

µ(X )tdim(X) is the characteristic

polynomial of A

• M(A) = V −
⋃

X∈A
X is the complement of A

• the braid arrangement A` is the hyperplane
arrangement defined by the linear forms xi − xj where
1 ≤ i < j ≤ ` and xi is a basis for V ∗

• a hypergraph H = ([k ], E) is a set of k vertices denoted
[k ] and a set of subsets of [k ] called edges E



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

• Setting: V - a complex vector space of dimension `

• Characters:
• a subspace arrangement A = {X1, . . . , Xk} is a finite

collection of linear subspaces in V

• L(A) is the intersection lattice of A

• χ(A, t) =
∑

X∈L(A)

µ(X )tdim(X) is the characteristic

polynomial of A

• M(A) = V −
⋃

X∈A
X is the complement of A

• the braid arrangement A` is the hyperplane
arrangement defined by the linear forms xi − xj where
1 ≤ i < j ≤ ` and xi is a basis for V ∗

• a hypergraph H = ([k ], E) is a set of k vertices denoted
[k ] and a set of subsets of [k ] called edges E



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

• Setting: V - a complex vector space of dimension `

• Characters:
• a subspace arrangement A = {X1, . . . , Xk} is a finite

collection of linear subspaces in V

• L(A) is the intersection lattice of A

• χ(A, t) =
∑

X∈L(A)

µ(X )tdim(X) is the characteristic

polynomial of A

• M(A) = V −
⋃

X∈A
X is the complement of A

• the braid arrangement A` is the hyperplane
arrangement defined by the linear forms xi − xj where
1 ≤ i < j ≤ ` and xi is a basis for V ∗

• a hypergraph H = ([k ], E) is a set of k vertices denoted
[k ] and a set of subsets of [k ] called edges E



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

• Setting: V - a complex vector space of dimension `

• Characters:
• a subspace arrangement A = {X1, . . . , Xk} is a finite

collection of linear subspaces in V

• L(A) is the intersection lattice of A

• χ(A, t) =
∑

X∈L(A)

µ(X )tdim(X) is the characteristic

polynomial of A

• M(A) = V −
⋃

X∈A
X is the complement of A

• the braid arrangement A` is the hyperplane
arrangement defined by the linear forms xi − xj where
1 ≤ i < j ≤ ` and xi is a basis for V ∗

• a hypergraph H = ([k ], E) is a set of k vertices denoted
[k ] and a set of subsets of [k ] called edges E



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

• Setting: V - a complex vector space of dimension `

• Characters:
• a subspace arrangement A = {X1, . . . , Xk} is a finite

collection of linear subspaces in V

• L(A) is the intersection lattice of A

• χ(A, t) =
∑

X∈L(A)

µ(X )tdim(X) is the characteristic

polynomial of A

• M(A) = V −
⋃

X∈A
X is the complement of A

• the braid arrangement A` is the hyperplane
arrangement defined by the linear forms xi − xj where
1 ≤ i < j ≤ ` and xi is a basis for V ∗

• a hypergraph H = ([k ], E) is a set of k vertices denoted
[k ] and a set of subsets of [k ] called edges E



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

• Setting: V - a complex vector space of dimension `

• Characters:
• a subspace arrangement A = {X1, . . . , Xk} is a finite

collection of linear subspaces in V

• L(A) is the intersection lattice of A

• χ(A, t) =
∑

X∈L(A)

µ(X )tdim(X) is the characteristic

polynomial of A

• M(A) = V −
⋃

X∈A
X is the complement of A

• the braid arrangement A` is the hyperplane
arrangement defined by the linear forms xi − xj where
1 ≤ i < j ≤ ` and xi is a basis for V ∗

• a hypergraph H = ([k ], E) is a set of k vertices denoted
[k ] and a set of subsets of [k ] called edges E



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

• Setting: V - a complex vector space of dimension `

• Characters:
• a subspace arrangement A = {X1, . . . , Xk} is a finite

collection of linear subspaces in V

• L(A) is the intersection lattice of A

• χ(A, t) =
∑

X∈L(A)

µ(X )tdim(X) is the characteristic

polynomial of A

• M(A) = V −
⋃

X∈A
X is the complement of A

• the braid arrangement A` is the hyperplane
arrangement defined by the linear forms xi − xj where
1 ≤ i < j ≤ ` and xi is a basis for V ∗

• a hypergraph H = ([k ], E) is a set of k vertices denoted
[k ] and a set of subsets of [k ] called edges E



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

Yuzvinsky’s relative atomic complex

• For A = {X1, . . . , Xn} fix an order on the subspaces
X1 < · · · < Xk , associate the integer s with the
subspace Xs and let σ = {i1, . . . , is} ⊆ [n]

• let DA be the d.g.a. generated by aσ where

deg(aσ) = 2codim(
∨

σ)− |σ|

• the differential is

daσ =
∑

j:
W

σ\ij=
W

σ

(−1)jaσ\ij

• the products are defined by aσaγ = (−1)ε(σ,γ)aσ∪γ if
codim

∨
σ + codim

∨
γ = codim

∨
(σ ∪ γ) and 0

otherwise
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DA is a rational model

Theorem (Feichtner-Yuzvinsky)

DA is quasi-isomorphic to the De Concini and Procesi
wonderful model. Hence DA is a rational model for the
complement M(A).

Theorem (Feichtner-Yuzvinsky)

If the intersection lattice L(A) is geometric then M(A) is
formal.

Not all subspace arrangements are formal:
actually Denham-Suciu and Grbić-Theriault exhibited
coordinate subspace arrangements that admit non-trivial
Massey products. They constructed Massey products via
Moment angle complexes based on the work of I.V.
Baskakov.
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coordinate subspace arrangements that admit non-trivial
Massey products. They constructed Massey products via
Moment angle complexes based on the work of I.V.
Baskakov.



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

DA is a rational model

Theorem (Feichtner-Yuzvinsky)

DA is quasi-isomorphic to the De Concini and Procesi
wonderful model. Hence DA is a rational model for the
complement M(A).

Theorem (Feichtner-Yuzvinsky)

If the intersection lattice L(A) is geometric then M(A) is
formal.

Not all subspace arrangements are formal:
actually Denham-Suciu and Grbić-Theriault exhibited
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coordinate subspace arrangements that admit non-trivial
Massey products. They constructed Massey products via
Moment angle complexes based on the work of I.V.
Baskakov.



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

Edge Colored Hypergraph Arrangements

Let A = {X1, . . . , Xn} ⊆ L(A`) and recall that L(A`) is the
partition lattice.

For each subspace Xi define an equivalence relation ∼i on
[`] by r ∼i s if and only if Xi ⊆ {xr − xs = 0}.
Associate Xi with the partition given by the equivalence
classes of ∼i and denote this partition by πi = {Bi

1, . . . , Bi
pi
}.

The associated hypergraph is HA has vertex set [`] and
edges

E = {Bi
j |i ∈ {1, . . . , n}, j ∈ {1, . . . , pi} and |Bi

j | > 1}

let Λ = [n] be a set of colors. To distinguish between the
edges we define an edge coloring of HA by CA : E → Λ
where Bi

j 7→ i
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Examples

• Graphic hyperplane arrangements: if A ⊆ A` then
(HA, CA) is a graph where each edge is colored
differently. (many authors)

• Hypergraph arrangements or diagonal arrangements:
(HA, CA) is a hypergraph where CA gives each edge a
different color. (Brjörner, Lovász, Yao, Kozlov, Hultman,
Peeva, Reiner, Welker ...)

• Orbit arrangements: all partitions of a certain type. (Li,
Peeva, Sidman, Björner,...)

• k -equal arrangements: all partitions with exactly one
non-trivial block of size k or H has all edges of size k
(Björner, Yuzvinsky,...)

These arrangements have been studied from many
perspectives including combinatorics, algebra, topology, and
even computational complexity theory.
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Examples

Example

Let ` = 4 and (H, C) be the hypergraph defined by
E = {{1, 2}, {2, 3}, {3, 4}} where the colors set is
Λ = {R, B} and the color function is given by C({1, 2}) = R,
C({2, 3}) = B, and C({3, 4}) = R. The corresponding
arrangement A = {X1, X2} is the collection of the
codimension 2 space X1 = {v ∈ V |v1 = v2 and v3 = v4}
and the codimension 1 space X2 = {v ∈ V |v2 = v3}

1 2 3 4
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Examples

Example

Let H = ([4], {a, b, c}) where a = {1, 2, 3}, b = {3, 4}, and
c = {2, 4}, and let each edge have its own color.

a

b c

a
b c

Figure: On the left is the smallest hypergraph that is not
geometric with the corresponding intersection lattice on the right.
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Characteristic Polynomials

Theorem (Blass-Sagan)

If A ⊆ L(B`) then

χ(A, t) = #([−s, s]`\
⋃
A)

where t = 2s + 1.

Theorem (Zaslavsky)

Let A ⊆ B`. Then

χ(GA, t) = χ(A, t).



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

Characteristic Polynomials

Theorem (Blass-Sagan)

If A ⊆ L(B`) then

χ(A, t) = #([−s, s]`\
⋃
A)

where t = 2s + 1.

Theorem (Zaslavsky)

Let A ⊆ B`. Then

χ(GA, t) = χ(A, t).



Formality of
Subspace

Arrangements

M. Wakefield

Subspace
Arrangements

Relative
Atomic
Complex

Edge colored
hypergraphs

Characteristic
Polynomials

Formality

Pascal
Arrangements

χ(A, t) for edge colored hypergraph
arrangements

Definition
A proper vertex coloring of an edge colored hypergraph
(H, C) has for every color there exists a connected
component that has two different colors.

χ(HA, CA, t) = #(proper vertex colorings with t colors)

Theorem (Miller-W)

If A ⊆ L(A`) and (HA, CA) is the associated edge colored
hypergraph then

χ(A, t) = χ(HA, CA, t)
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Special color sets

Definition
For Γ, Γ′ ⊆ Λ, we say that Γ and Γ′ are multiplicative if

codim
⋂
γ∈Γ

Xγ + codim
⋂

γ′∈Γ′

Xγ′ = codim
⋂

γ∈Γ∪Γ′

Xγ .

For two sets of edges e and e′ we write e b e′ if e is a
refinement of e′.

For two color sets Γ and Γ′ we write Γ b Γ′ if
C−1(Γ) b C−1(Γ′).
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Massey Color System

Definition
Let (H, C) be an edge colored hypergraph with edge colors
Λ. Let λ1, λ2, λ3 ∈ Λ. We call (λ1, λ2, λ3) a Massey color
system if the pairs λ1, λ2 and {λ1, λ2}, λ3 are multiplicative
and there exists λ4, λ5 ∈ Λ such that

{λ1, λ2} c λ4 {λ2, λ4} 6c λ1 {λ1, λ4} 6c λ2

{λ2, λ3} c λ5 {λ3, λ5} 6c λ2 {λ2, λ5} 6c λ3.

We call λ4 and λ5 embedded colors for the triple λ1, λ2, λ3.
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Examples

Example

Let (H, C) be the edge colored hypergraph below, the edge
color sets are given by λ1 = green, λ2 = red, λ3 = yellow,
λ4 = blue, and λ5 = magenta.

Then λ1, λ2, λ3 forms a Massey color system with
embedded colors λ4 and λ5
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Massey Products

Theorem (Miller-W)

Let A be an edge colored hypergraphic arrangement and
(λ1, λ2, λ3) a Massey color system with embedded colors λ4
and λ5 . Let Γ := Λ\{λ1, . . . , λ5}. If the set

{Ψ ⊆ Γ | Ψ b {λ1, λ2, λ3, λ4} or Ψ b {λ1, λ2, λ3, λ5}}

is empty then M(A) admits a non-trivial Massey product.

Idea of Proof:
• View DA in terms of the edge colored hypergraph.
• Apply a functor engineered by Sinha-Walter to DA that

gives a differential graded Lie coalgebra E(DA) (which
actually has 2 differentials)

• Find a non-zero differential in the spectral sequence of
E(DA)

• Show that the cohomology class is non-zero.
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Pascal Arrangements

Definition
Let n be a positive integer and let ` = 2n − 1. For 1 ≤ k ≤ n
let Xk be the subspace defined by

Xk = {(v1, . . . , v`) ∈ V | vk = · · · = vk+n−1}.

Define the subspace arrangement Pn to be the collection
{X1, . . . , Xn} .

Properties:

• L(Pn) is the top n rows of Pascal’s triangle. Hence not
geometric.

• χ(Pn, t) = (n − 1)tn−1 − ntn + t2n−1
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Example

Let n = 4 then ` = 7 and there are 4 subspaces X1, X2, X3,
and X4. The Möbius values of the atoms are all -1, the
Möbius values of the codimension 4 level elements are 1,
and the Möbius values of the higher codimension levels
elements are all 0. Hence the characteristic polynomial is
χ(P4, t) = 3t3 − 4t4 + t7.
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Pascal Arrangements are formal even though
not geometric

Theorem (Miller-W)

M(Pn) is formal for all n.

Idea of Proof:

• Compute the cohomology explicitly with DP

• Exhibit quasi-isomorphism to cohomology
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