M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangement

Formality of Subspace Arrangements

Max Wakefield

joint with Matthew S. Miller

Department of Mathematics US Naval Academy Annapolis, Maryland USA

Supported by NSF # 0600893, the NSF Japan program, and the Office of Naval Research

Sapporo, Japan

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

- Relative Atomic Complex
- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangement

- Subspace arrangements
- Relative atomic complex
- Edge colored hypergraphs
- Characteristic polynomials
- Formality
- Pascal arrangements

M. Wakefield

Subspace Arrangements

- Relative Atomic Complex
- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangemen

- Setting: V a complex vector space of dimension ℓ
- Characters:
 - a subspace arrangement $\mathcal{A} = \{X_1, \dots, X_k\}$ is a finite collection of linear subspaces in *V*
 - L(A) is the intersection lattice of A
 - $\chi(\mathcal{A}, t) = \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim(X)}$ is the characteristic polynomial of \mathcal{A}
 - $M(\mathcal{A}) = V \bigcup_{X \in \mathcal{A}} X$ is the complement of \mathcal{A}
 - the braid arrangement A_ℓ is the hyperplane arrangement defined by the linear forms x_i - x_j where 1 ≤ i < j ≤ ℓ and x_i is a basis for V*
 - a hypergraph $\mathcal{H} = ([k], E)$ is a set of k vertices denoted [k] and a set of subsets of [k] called edges E

M. Wakefield

Subspace Arrangements

- Relative Atomic Complex
- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangemen

- Setting: V a complex vector space of dimension ℓ
- Characters:
 - a subspace arrangement $A = \{X_1, \dots, X_k\}$ is a finite collection of linear subspaces in *V*
 - L(A) is the intersection lattice of A
 - $\chi(\mathcal{A}, t) = \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim(X)}$ is the characteristic polynomial of \mathcal{A}
 - $M(\mathcal{A}) = V \bigcup_{X \in \mathcal{A}} X$ is the complement of \mathcal{A}
 - the braid arrangement A_ℓ is the hyperplane arrangement defined by the linear forms x_i - x_j where 1 ≤ i < j ≤ ℓ and x_i is a basis for V*
 - a hypergraph $\mathcal{H} = ([k], E)$ is a set of k vertices denoted [k] and a set of subsets of [k] called edges E

M. Wakefield

Subspace Arrangements

- Relative Atomic Complex
- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangement

- Setting: V a complex vector space of dimension ℓ
- Characters:
 - a subspace arrangement $A = \{X_1, \dots, X_k\}$ is a finite collection of linear subspaces in *V*
 - $L(\mathcal{A})$ is the intersection lattice of \mathcal{A}
 - $\chi(\mathcal{A}, t) = \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim(X)}$ is the characteristic polynomial of \mathcal{A}
 - $M(\mathcal{A}) = V \bigcup_{X \in \mathcal{A}} X$ is the complement of \mathcal{A}
 - the braid arrangement A_ℓ is the hyperplane arrangement defined by the linear forms x_i - x_j where 1 ≤ i < j ≤ ℓ and x_i is a basis for V*
 - a hypergraph $\mathcal{H} = ([k], E)$ is a set of k vertices denoted [k] and a set of subsets of [k] called edges E

M. Wakefield

Subspace Arrangements

- Relative Atomic Complex
- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangement

- Setting: V a complex vector space of dimension ℓ
- Characters:
 - a subspace arrangement $A = \{X_1, \dots, X_k\}$ is a finite collection of linear subspaces in *V*
 - L(A) is the intersection lattice of A
 - $\chi(A, t) = \sum_{X \in L(A)} \mu(X) t^{\dim(X)}$ is the characteristic polynomial of A
 - $M(\mathcal{A}) = V \bigcup_{X \in \mathcal{A}} X$ is the complement of \mathcal{A}
 - the braid arrangement A_ℓ is the hyperplane arrangement defined by the linear forms x_i - x_j where 1 ≤ i < j ≤ ℓ and x_i is a basis for V*
 - a hypergraph $\mathcal{H} = ([k], E)$ is a set of k vertices denoted [k] and a set of subsets of [k] called edges E

M. Wakefield

Subspace Arrangements

- Relative Atomic Complex
- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangemen

- Setting: V a complex vector space of dimension ℓ
- Characters:
 - a subspace arrangement A = {X₁,..., X_k} is a finite collection of linear subspaces in V
 - L(A) is the intersection lattice of A
 - $\chi(\mathcal{A}, t) = \sum_{X \in L(\mathcal{A})} \mu(X) t^{\dim(X)}$ is the characteristic polynomial of \mathcal{A}
 - $M(\mathcal{A}) = V \bigcup_{X \in \mathcal{A}} X$ is the complement of \mathcal{A}
 - the braid arrangement A_ℓ is the hyperplane arrangement defined by the linear forms x_i − x_j where 1 ≤ i < j ≤ ℓ and x_i is a basis for V*
 - a hypergraph $\mathcal{H} = ([k], E)$ is a set of k vertices denoted [k] and a set of subsets of [k] called edges E

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

M. Wakefield

Subspace Arrangements

- Relative Atomic Complex
- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangemen

- Setting: V a complex vector space of dimension ℓ
- Characters:
 - a subspace arrangement A = {X₁,..., X_k} is a finite collection of linear subspaces in V
 - L(A) is the intersection lattice of A
 - $\chi(A, t) = \sum_{X \in L(A)} \mu(X) t^{\dim(X)}$ is the characteristic polynomial of A
 - $M(\mathcal{A}) = V \bigcup_{X \in \mathcal{A}} X$ is the complement of \mathcal{A}
 - the braid arrangement A_ℓ is the hyperplane arrangement defined by the linear forms x_i - x_j where 1 ≤ i < j ≤ ℓ and x_i is a basis for V*
 - a hypergraph H = ([k], E) is a set of k vertices denoted
 [k] and a set of subsets of [k] called edges E

M. Wakefield

Subspace Arrangements

- Relative Atomic Complex
- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangemer

- Setting: V a complex vector space of dimension ℓ
- Characters:
 - a subspace arrangement A = {X₁,..., X_k} is a finite collection of linear subspaces in V
 - L(A) is the intersection lattice of A
 - $\chi(A, t) = \sum_{X \in L(A)} \mu(X) t^{\dim(X)}$ is the characteristic polynomial of A
 - $M(\mathcal{A}) = V \bigcup_{X \in \mathcal{A}} X$ is the complement of \mathcal{A}
 - the braid arrangement A_ℓ is the hyperplane arrangement defined by the linear forms x_i - x_j where 1 ≤ i < j ≤ ℓ and x_i is a basis for V*
 - a hypergraph $\mathcal{H} = ([k], E)$ is a set of k vertices denoted [k] and a set of subsets of [k] called edges E

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangements

Yuzvinsky's relative atomic complex

- For $\mathcal{A} = \{X_1, \dots, X_n\}$ fix an order on the subspaces $X_1 < \dots < X_k$, associate the integer *s* with the subspace X_s and let $\sigma = \{i_1, \dots, i_s\} \subseteq [n]$
- let D_A be the d.g.a. generated by a_σ where $\deg(a_\sigma) = 2 \operatorname{codim}(\bigvee \sigma) - |\sigma|$
- the differential is

$$da_{\sigma} = \sum_{j: \bigvee \sigma \setminus i_j = \bigvee \sigma} (-1)^j a_{\sigma \setminus i_j}$$

the products are defined by a_σa_γ = (-1)^{ε(σ,γ)}a_{σ∪γ} if codim ∨ σ + codim ∨ γ = codim ∨(σ ∪ γ) and 0 otherwise

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colorec

Characteristic Polynomials

Formality

Pascal Arrangements

Yuzvinsky's relative atomic complex

- For $\mathcal{A} = \{X_1, \dots, X_n\}$ fix an order on the subspaces $X_1 < \dots < X_k$, associate the integer *s* with the subspace X_s and let $\sigma = \{i_1, \dots, i_s\} \subseteq [n]$
- let D_A be the d.g.a. generated by a_σ where

$$\mathsf{deg}(a_{\sigma}) = 2\mathsf{codim}(\bigvee \sigma) - |\sigma|$$

the differential is

$$da_{\sigma} = \sum_{j: \bigvee \sigma \setminus i_j = \bigvee \sigma} (-1)^j a_{\sigma \setminus i_j}$$

the products are defined by a_σ a_γ = (-1)^{ε(σ,γ)} a_{σ∪γ} if codim ∨ σ + codim ∨ γ = codim ∨(σ ∪ γ) and 0 otherwise

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

- Edge colorec
- Characteristic Polynomials
- Formality
- Pascal Arrangements

Yuzvinsky's relative atomic complex

- For $\mathcal{A} = \{X_1, \ldots, X_n\}$ fix an order on the subspaces $X_1 < \cdots < X_k$, associate the integer *s* with the subspace X_s and let $\sigma = \{i_1, \ldots, i_s\} \subseteq [n]$
- let D_A be the d.g.a. generated by a_σ where

$$\mathsf{deg}(a_{\sigma}) = \mathsf{2codim}(\bigvee \sigma) - |\sigma|$$

the differential is

$$da_{\sigma} = \sum_{j: \bigvee \sigma \setminus i_j = \bigvee \sigma} (-1)^j a_{\sigma \setminus i_j}$$

the products are defined by a_σ a_γ = (-1)^{ε(σ,γ)} a_{σ∪γ} if codim ∨ σ + codim ∨ γ = codim ∨(σ ∪ γ) and 0 otherwise

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Yuzvinsky's relative atomic complex

- For $\mathcal{A} = \{X_1, \ldots, X_n\}$ fix an order on the subspaces $X_1 < \cdots < X_k$, associate the integer *s* with the subspace X_s and let $\sigma = \{i_1, \ldots, i_s\} \subseteq [n]$
- let D_A be the d.g.a. generated by a_σ where

$$\deg(a_{\sigma}) = 2 \operatorname{codim}(\bigvee \sigma) - |\sigma|$$

the differential is

$$da_{\sigma} = \sum_{j: \bigvee \sigma \setminus i_j = \bigvee \sigma} (-1)^j a_{\sigma \setminus i_j}$$

the products are defined by a_σ a_γ = (-1)^{ε(σ,γ)} a_{σ∪γ} if codim ∨ σ + codim ∨ γ = codim ∨ (σ ∪ γ) and 0 otherwise

Subspace Arrangements M. Wakefield

Formality of

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Theorem (Feichtner-Yuzvinsky)

 D_A is quasi-isomorphic to the De Concini and Procesi wonderful model. Hence D_A is a rational model for the complement M(A).

Theorem (Feichtner-Yuzvinsky)

If the intersection lattice L(A) is geometric then M(A) is formal.

Subspace Arrangements M. Wakefield

Formality of

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Theorem (Feichtner-Yuzvinsky)

 D_A is quasi-isomorphic to the De Concini and Procesi wonderful model. Hence D_A is a rational model for the complement M(A).

Theorem (Feichtner-Yuzvinsky)

If the intersection lattice L(A) is geometric then M(A) is formal.

Subspace Arrangements M. Wakefield

Formality of

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Theorem (Feichtner-Yuzvinsky)

 D_A is quasi-isomorphic to the De Concini and Procesi wonderful model. Hence D_A is a rational model for the complement M(A).

Theorem (Feichtner-Yuzvinsky)

If the intersection lattice L(A) is geometric then M(A) is formal.

Subspace Arrangements

Formality of

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangement

Theorem (Feichtner-Yuzvinsky)

 D_A is quasi-isomorphic to the De Concini and Procesi wonderful model. Hence D_A is a rational model for the complement M(A).

Theorem (Feichtner-Yuzvinsky)

If the intersection lattice L(A) is geometric then M(A) is formal.

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Edge Colored Hypergraph Arrangements

Let $\mathcal{A} = \{X_1, \dots, X_n\} \subseteq L(\mathcal{A}_\ell)$ and recall that $L(\mathcal{A}_\ell)$ is the partition lattice.

For each subspace X_i define an equivalence relation \sim_i on $[\ell]$ by $r \sim_i s$ if and only if $X_i \subseteq \{x_r - x_s = 0\}$. Associate X_i with the partition given by the equivalence classes of \sim_i and denote this partition by $\pi_i = \{B_1^i, \ldots, B_{p_i}^j\}$. The associated hypergraph is $\mathcal{H}_{\mathcal{A}}$ has vertex set $[\ell]$ and edges

 $E = \{B_j^i | i \in \{1, \dots, n\}, j \in \{1, \dots, p_i\} \text{ and } |B_j^i| > 1\}$

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Edge Colored Hypergraph Arrangements

Let $\mathcal{A} = \{X_1, \dots, X_n\} \subseteq L(\mathcal{A}_\ell)$ and recall that $L(\mathcal{A}_\ell)$ is the partition lattice.

For each subspace X_i define an equivalence relation \sim_i on $[\ell]$ by $r \sim_i s$ if and only if $X_i \subseteq \{x_r - x_s = 0\}$.

Associate X_i with the partition given by the equivalence classes of \sim_i and denote this partition by $\pi_i = \{B_1^i, \ldots, B_{p_i}^i\}$. The associated hypergraph is $\mathcal{H}_{\mathcal{A}}$ has vertex set $[\ell]$ and edges

 $E = \{B_j^i | i \in \{1, \dots, n\}, j \in \{1, \dots, p_i\} \text{ and } |B_j^i| > 1\}$

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Edge Colored Hypergraph Arrangements

Let $\mathcal{A} = \{X_1, \dots, X_n\} \subseteq L(\mathcal{A}_\ell)$ and recall that $L(\mathcal{A}_\ell)$ is the partition lattice.

For each subspace X_i define an equivalence relation \sim_i on $[\ell]$ by $r \sim_i s$ if and only if $X_i \subseteq \{x_r - x_s = 0\}$. Associate X_i with the partition given by the equivalence classes of \sim_i and denote this partition by $\pi_i = \{B_1^i, \ldots, B_{p_i}^j\}$. The associated hypergraph is $\mathcal{H}_{\mathcal{A}}$ has vertex set $[\ell]$ and edges

 $E = \{B_j^i | i \in \{1, \dots, n\}, j \in \{1, \dots, p_i\} \text{ and } |B_j^i| > 1\}$

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Edge Colored Hypergraph Arrangements

Let $\mathcal{A} = \{X_1, \dots, X_n\} \subseteq L(\mathcal{A}_\ell)$ and recall that $L(\mathcal{A}_\ell)$ is the partition lattice.

For each subspace X_i define an equivalence relation \sim_i on $[\ell]$ by $r \sim_i s$ if and only if $X_i \subseteq \{x_r - x_s = 0\}$. Associate X_i with the partition given by the equivalence classes of \sim_i and denote this partition by $\pi_i = \{B_1^i, \ldots, B_{p_i}^j\}$. The associated hypergraph is $\mathcal{H}_{\mathcal{A}}$ has vertex set $[\ell]$ and edges

 $E = \{B_j^i | i \in \{1, \dots, n\}, j \in \{1, \dots, p_i\} \text{ and } |B_j^i| > 1\}$

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Edge Colored Hypergraph Arrangements

Let $\mathcal{A} = \{X_1, \dots, X_n\} \subseteq L(\mathcal{A}_\ell)$ and recall that $L(\mathcal{A}_\ell)$ is the partition lattice.

For each subspace X_i define an equivalence relation \sim_i on $[\ell]$ by $r \sim_i s$ if and only if $X_i \subseteq \{x_r - x_s = 0\}$. Associate X_i with the partition given by the equivalence classes of \sim_i and denote this partition by $\pi_i = \{B_1^i, \ldots, B_{p_i}^j\}$. The associated hypergraph is $\mathcal{H}_{\mathcal{A}}$ has vertex set $[\ell]$ and edges

 $E = \{B_j^i | i \in \{1, \dots, n\}, j \in \{1, \dots, p_i\} \text{ and } |B_j^i| > 1\}$

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangement

Edge Colored Hypergraph Arrangements

Let $\mathcal{A} = \{X_1, \dots, X_n\} \subseteq L(\mathcal{A}_\ell)$ and recall that $L(\mathcal{A}_\ell)$ is the partition lattice.

For each subspace X_i define an equivalence relation \sim_i on $[\ell]$ by $r \sim_i s$ if and only if $X_i \subseteq \{x_r - x_s = 0\}$. Associate X_i with the partition given by the equivalence classes of \sim_i and denote this partition by $\pi_i = \{B_1^i, \ldots, B_{p_i}^j\}$. The associated hypergraph is $\mathcal{H}_{\mathcal{A}}$ has vertex set $[\ell]$ and edges

 $E = \{B_j^i | i \in \{1, \dots, n\}, j \in \{1, \dots, p_i\} \text{ and } |B_j^i| > 1\}$

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

- Characteristic Polynomials
- Formality
- Pascal Arrangements

- Graphic hyperplane arrangements: if A ⊆ A_ℓ then (H_A, C_A) is a graph where each edge is colored differently. (many authors)
- Hypergraph arrangements or diagonal arrangements: (*H_A*, *C_A*) is a hypergraph where *C_A* gives each edge a different color. (Brjörner, Lovász, Yao, Kozlov, Hultman, Peeva, Reiner, Welker ...)
- Orbit arrangements: all partitions of a certain type. (Li, Peeva, Sidman, Björner,...)
- k-equal arrangements: all partitions with exactly one non-trivial block of size k or H has all edges of size k (Björner, Yuzvinsky,...)

These arrangements have been studied from many perspectives including combinatorics, algebra, topology, and even computational complexity theory.

・ロト ・雪 ト ・ ヨ ト ・

э

・ロン ・ 「 ・ ・ ミン・ ・ 日 ・ ・ 日 ・

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangements

- Graphic hyperplane arrangements: if A ⊆ A_ℓ then (H_A, C_A) is a graph where each edge is colored differently. (many authors)
- Hypergraph arrangements or diagonal arrangements: (*H_A*, *C_A*) is a hypergraph where *C_A* gives each edge a different color. (Brjörner, Lovász, Yao, Kozlov, Hultman, Peeva, Reiner, Welker ...)
- Orbit arrangements: all partitions of a certain type. (Li, Peeva, Sidman, Björner,...)
- k-equal arrangements: all partitions with exactly one non-trivial block of size k or H has all edges of size k (Björner, Yuzvinsky,...)

These arrangements have been studied from many perspectives including combinatorics, algebra, topology, and even computational complexity theory.

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangements

- Graphic hyperplane arrangements: if A ⊆ A_ℓ then (H_A, C_A) is a graph where each edge is colored differently. (many authors)
- Hypergraph arrangements or diagonal arrangements: (*H_A*, *C_A*) is a hypergraph where *C_A* gives each edge a different color. (Brjörner, Lovász, Yao, Kozlov, Hultman, Peeva, Reiner, Welker ...)
- Orbit arrangements: all partitions of a certain type. (Li, Peeva, Sidman, Björner,...)
- k-equal arrangements: all partitions with exactly one non-trivial block of size k or H has all edges of size k (Björner, Yuzvinsky,...)

These arrangements have been studied from many perspectives including combinatorics, algebra, topology, and even computational complexity theory.

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangements

- Graphic hyperplane arrangements: if A ⊆ A_ℓ then (H_A, C_A) is a graph where each edge is colored differently. (many authors)
- Hypergraph arrangements or diagonal arrangements: (*H_A*, *C_A*) is a hypergraph where *C_A* gives each edge a different color. (Brjörner, Lovász, Yao, Kozlov, Hultman, Peeva, Reiner, Welker ...)
- Orbit arrangements: all partitions of a certain type. (Li, Peeva, Sidman, Björner,...)
- k-equal arrangements: all partitions with exactly one non-trivial block of size k or H has all edges of size k (Björner, Yuzvinsky,...)

These arrangements have been studied from many perspectives including combinatorics, algebra, topology, and even computational complexity theory.

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

- Edge colored hypergraphs
- Characteristic Polynomials
- Formality
- Pascal Arrangements

- Graphic hyperplane arrangements: if A ⊆ A_ℓ then (H_A, C_A) is a graph where each edge is colored differently. (many authors)
- Hypergraph arrangements or diagonal arrangements: (*H_A*, *C_A*) is a hypergraph where *C_A* gives each edge a different color. (Brjörner, Lovász, Yao, Kozlov, Hultman, Peeva, Reiner, Welker ...)
- Orbit arrangements: all partitions of a certain type. (Li, Peeva, Sidman, Björner,...)
- k-equal arrangements: all partitions with exactly one non-trivial block of size k or H has all edges of size k (Björner, Yuzvinsky,...)

These arrangements have been studied from many perspectives including combinatorics, algebra, topology, and even computational complexity theory.

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemer

Example

Let $\ell = 4$ and $(\mathcal{H}, \mathcal{C})$ be the hypergraph defined by $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$ where the colors set is $\Lambda = \{R, B\}$ and the color function is given by $\mathcal{C}(\{1, 2\}) = R$, $\mathcal{C}(\{2, 3\}) = B$, and $\mathcal{C}(\{3, 4\}) = R$. The corresponding arrangement $\mathcal{A} = \{X_1, X_2\}$ is the collection of the codimension 2 space $X_1 = \{v \in V | v_1 = v_2 \text{ and } v_3 = v_4\}$ and the codimension 1 space $X_2 = \{v \in V | v_2 = v_3\}$

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemer

Example

Let $\ell = 4$ and $(\mathcal{H}, \mathcal{C})$ be the hypergraph defined by $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$ where the colors set is $\Lambda = \{R, B\}$ and the color function is given by $\mathcal{C}(\{1, 2\}) = R$, $\mathcal{C}(\{2, 3\}) = B$, and $\mathcal{C}(\{3, 4\}) = R$. The corresponding arrangement $\mathcal{A} = \{X_1, X_2\}$ is the collection of the codimension 2 space $X_1 = \{v \in V | v_1 = v_2 \text{ and } v_3 = v_4\}$ and the codimension 1 space $X_2 = \{v \in V | v_2 = v_3\}$

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Example

Let $\ell = 4$ and $(\mathcal{H}, \mathcal{C})$ be the hypergraph defined by $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$ where the colors set is $\Lambda = \{R, B\}$ and the color function is given by $\mathcal{C}(\{1, 2\}) = R$, $\mathcal{C}(\{2, 3\}) = B$, and $\mathcal{C}(\{3, 4\}) = R$. The corresponding arrangement $\mathcal{A} = \{X_1, X_2\}$ is the collection of the codimension 2 space $X_1 = \{v \in V | v_1 = v_2 \text{ and } v_3 = v_4\}$ and the codimension 1 space $X_2 = \{v \in V | v_2 = v_3\}$

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangement

Example

Let $\mathcal{H} = ([4], \{a, b, c\})$ where $a = \{1, 2, 3\}$, $b = \{3, 4\}$, and $c = \{2, 4\}$, and let each edge have its own color.

Figure: On the left is the smallest hypergraph that is not geometric with the corresponding intersection lattice on the right.

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangement

Characteristic Polynomials

・ロット (雪) (日) (日) (日)

Sac

Theorem (Blass-Sagan)

If $\mathcal{A} \subseteq L(\mathcal{B}_{\ell})$ then

$$\chi(\mathcal{A},t) = \#([-s,s]^{\ell} \setminus \bigcup \mathcal{A})$$

where t = 2s + 1.

Theorem (Zaslavsky)

Let $\mathcal{A} \subseteq B_{\ell}$. Then

 $\chi(G_{\mathcal{A}},t)=\chi(\mathcal{A},t).$

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangemen

Characteristic Polynomials

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Blass-Sagan)

If $\mathcal{A} \subseteq L(\mathcal{B}_{\ell})$ then

$$\chi(\mathcal{A}, t) = \#([-s, s]^{\ell} \setminus \bigcup \mathcal{A})$$

where t = 2s + 1.

Theorem (Zaslavsky)

Let $\mathcal{A} \subseteq B_{\ell}$. Then

 $\chi(G_{\mathcal{A}},t)=\chi(\mathcal{A},t).$

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

$\chi(\mathcal{A}, t)$ for edge colored hypergraph arrangements

Definition

A proper vertex coloring of an edge colored hypergraph (\mathcal{H}, C) has for every color there exists a connected component that has two different colors.

 $\chi(\mathcal{H}_{\mathcal{A}}, \mathcal{C}_{\mathcal{A}}, t) = \#$ (proper vertex colorings with *t* colors)

Theorem (Miller-W)

If $A \subseteq L(A_{\ell})$ and (\mathcal{H}_A, C_A) is the associated edge colored hypergraph then

$$\chi(\mathcal{A},t) = \chi(\mathcal{H}_{\mathcal{A}}, \mathcal{C}_{\mathcal{A}}, t)$$

・ロト ・雪 ト ・ ヨ ト ・

-

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

$\chi(\mathcal{A}, t)$ for edge colored hypergraph arrangements

Definition

A proper vertex coloring of an edge colored hypergraph (\mathcal{H}, C) has for every color there exists a connected component that has two different colors.

 $\chi(\mathcal{H}_{\mathcal{A}}, \mathcal{C}_{\mathcal{A}}, t) = \#$ (proper vertex colorings with *t* colors)

Theorem (Miller-W)

If $A \subseteq L(A_\ell)$ and (\mathcal{H}_A, C_A) is the associated edge colored hypergraph then

$$\chi(\mathcal{A},t)=\chi(\mathcal{H}_{\mathcal{A}},\mathcal{C}_{\mathcal{A}},t)$$

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

$\chi(\mathcal{A}, t)$ for edge colored hypergraph arrangements

Definition

A proper vertex coloring of an edge colored hypergraph (\mathcal{H}, C) has for every color there exists a connected component that has two different colors.

 $\chi(\mathcal{H}_{\mathcal{A}}, \mathcal{C}_{\mathcal{A}}, t) = \#$ (proper vertex colorings with *t* colors)

Theorem (Miller-W)

If $A \subseteq L(A_\ell)$ and (\mathcal{H}_A, C_A) is the associated edge colored hypergraph then

$$\chi(\mathcal{A}, t) = \chi(\mathcal{H}_{\mathcal{A}}, \mathcal{C}_{\mathcal{A}}, t)$$

・ロト・「聞ト・「聞ト・「聞ト・」 目・

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colorect hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Definition

For $\Gamma, \Gamma' \subseteq \Lambda$, we say that Γ and Γ' are *multiplicative* if

$$\operatorname{codim} \bigcap_{\gamma \in \Gamma} X_{\gamma} + \operatorname{codim} \bigcap_{\gamma' \in \Gamma'} X_{\gamma'} = \operatorname{codim} \bigcap_{\gamma \in \Gamma \cup \Gamma'} X_{\gamma}.$$

For two sets of edges e and e' we write $e \Subset e'$ if e is a refinement of e'.

For two color sets Γ and Γ' we write $\Gamma \subseteq \Gamma'$ if $C^{-1}(\Gamma) \subseteq C^{-1}(\Gamma')$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Definition

For $\Gamma, \Gamma' \subseteq \Lambda,$ we say that Γ and Γ' are *multiplicative* if

$$\operatorname{codim} \bigcap_{\gamma \in \Gamma} X_{\gamma} + \operatorname{codim} \bigcap_{\gamma' \in \Gamma'} X_{\gamma'} = \operatorname{codim} \bigcap_{\gamma \in \Gamma \cup \Gamma'} X_{\gamma}.$$

For two sets of edges e and e' we write $e \subseteq e'$ if e is a refinement of e'.

For two color sets Γ and Γ' we write $\Gamma \Subset \Gamma'$ if $C^{-1}(\Gamma) \Subset C^{-1}(\Gamma')$.

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Definition

For $\Gamma,\Gamma'\subseteq\Lambda,$ we say that Γ and Γ' are *multiplicative* if

$$\operatorname{codim} \bigcap_{\gamma \in \Gamma} X_{\gamma} + \operatorname{codim} \bigcap_{\gamma' \in \Gamma'} X_{\gamma'} = \operatorname{codim} \bigcap_{\gamma \in \Gamma \cup \Gamma'} X_{\gamma}.$$

For two sets of edges e and e' we write $e \Subset e'$ if e is a refinement of e'.

For two color sets Γ and Γ' we write $\Gamma \Subset \Gamma'$ if $C^{-1}(\Gamma) \Subset C^{-1}(\Gamma')$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Massey Color System

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Definition

Let (\mathcal{H}, C) be an edge colored hypergraph with edge colors Λ . Let $\lambda_1, \lambda_2, \lambda_3 \in \Lambda$. We call $(\lambda_1, \lambda_2, \lambda_3)$ a Massey color system if the pairs λ_1, λ_2 and $\{\lambda_1, \lambda_2\}, \lambda_3$ are multiplicative and there exists $\lambda_4, \lambda_5 \in \Lambda$ such that

 $\{\lambda_1, \lambda_2\} \supseteq \lambda_4 \qquad \{\lambda_2, \lambda_4\} \not\supseteq \lambda_1 \qquad \{\lambda_1, \lambda_4\} \not\supseteq \lambda_2$ $\{\lambda_2, \lambda_3\} \supseteq \lambda_5 \qquad \{\lambda_3, \lambda_5\} \not\supseteq \lambda_2 \qquad \{\lambda_2, \lambda_5\} \not\supseteq \lambda_3.$

We call λ_4 and λ_5 *embedded colors* for the triple $\lambda_1, \lambda_2, \lambda_3$.

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Definition

Let (\mathcal{H}, C) be an edge colored hypergraph with edge colors Λ . Let $\lambda_1, \lambda_2, \lambda_3 \in \Lambda$. We call $(\lambda_1, \lambda_2, \lambda_3)$ a Massey color system if the pairs λ_1, λ_2 and $\{\lambda_1, \lambda_2\}, \lambda_3$ are multiplicative and there exists $\lambda_4, \lambda_5 \in \Lambda$ such that

$\{\lambda_1,\lambda_2\} \supseteq \lambda_4$	$\{\lambda_2,\lambda_4\} i \lambda_1$	$\{\lambda_1,\lambda_4\} i \lambda_2$
$\{\lambda_2,\lambda_3\} \supseteq \lambda_5$	$\{\lambda_3,\lambda_5\} i \lambda_2$	$\{\lambda_2,\lambda_5\} \not\supseteq \lambda_3.$

We call λ_4 and λ_5 *embedded colors* for the triple $\lambda_1, \lambda_2, \lambda_3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Example

Let (\mathcal{H}, C) be the edge colored hypergraph below, the edge color sets are given by $\lambda_1 = \text{green}, \lambda_2 = \text{red}, \lambda_3 = \text{yellow}, \lambda_4 = \text{blue}, \text{ and } \lambda_5 = \text{magenta.}$

Then λ_1 , λ_2 , λ_3 forms a Massey color system with embedded colors λ_4 and λ_5

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Example

Let (\mathcal{H}, C) be the edge colored hypergraph below, the edge color sets are given by $\lambda_1 = \text{green}, \lambda_2 = \text{red}, \lambda_3 = \text{yellow}, \lambda_4 = \text{blue}, \text{ and } \lambda_5 = \text{magenta}.$

Examples

Then λ_1 , λ_2 , λ_3 forms a Massey color system with embedded colors λ_4 and λ_5

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Theorem (Miller-W)

Let \mathcal{A} be an edge colored hypergraphic arrangement and $(\lambda_1, \lambda_2, \lambda_3)$ a Massey color system with embedded colors λ_4 and λ_5 . Let $\Gamma := \Lambda \setminus \{\lambda_1, \dots, \lambda_5\}$. If the set

 $\{\Psi\subseteq \mathsf{\Gamma}\mid \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_4\} \text{ or } \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_5\}\}$

is empty then M(A) admits a non-trivial Massey product.

Idea of Proof:

- View D_A in terms of the edge colored hypergraph.
- Apply a functor engineered by Sinha-Walter to D_A that gives a differential graded Lie coalgebra E(D_A) (which actually has 2 differentials)
- Find a non-zero differential in the spectral sequence of $E(D_A)$
- Show that the cohomology class is non-zero.

Massey Products

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangement

Theorem (Miller-W)

Let \mathcal{A} be an edge colored hypergraphic arrangement and $(\lambda_1, \lambda_2, \lambda_3)$ a Massey color system with embedded colors λ_4 and λ_5 . Let $\Gamma := \Lambda \setminus \{\lambda_1, \dots, \lambda_5\}$. If the set

 $\{\Psi\subseteq \mathsf{\Gamma}\mid \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_4\} \text{ or } \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_5\}\}$

is empty then M(A) admits a non-trivial Massey product.

- View D_A in terms of the edge colored hypergraph.
- Apply a functor engineered by Sinha-Walter to D_A that gives a differential graded Lie coalgebra E(D_A) (which actually has 2 differentials)
- Find a non-zero differential in the spectral sequence of $E(D_{\mathcal{A}})$
- Show that the cohomology class is non-zero.

Sac

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangement

Theorem (Miller-W)

Let \mathcal{A} be an edge colored hypergraphic arrangement and $(\lambda_1, \lambda_2, \lambda_3)$ a Massey color system with embedded colors λ_4 and λ_5 . Let $\Gamma := \Lambda \setminus \{\lambda_1, \dots, \lambda_5\}$. If the set

 $\{\Psi\subseteq \mathsf{\Gamma}\mid \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_4\} \text{ or } \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_5\}\}$

is empty then M(A) admits a non-trivial Massey product.

- View D_A in terms of the edge colored hypergraph.
- Apply a functor engineered by Sinha-Walter to D_A that gives a differential graded Lie coalgebra E(D_A) (which actually has 2 differentials)
- Find a non-zero differential in the spectral sequence of $E(D_{\mathcal{A}})$
- Show that the cohomology class is non-zero.

Sac

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangement

Theorem (Miller-W)

Let \mathcal{A} be an edge colored hypergraphic arrangement and $(\lambda_1, \lambda_2, \lambda_3)$ a Massey color system with embedded colors λ_4 and λ_5 . Let $\Gamma := \Lambda \setminus \{\lambda_1, \dots, \lambda_5\}$. If the set

 $\{\Psi\subseteq \mathsf{\Gamma}\mid \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_4\} \text{ or } \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_5\}\}$

is empty then M(A) admits a non-trivial Massey product.

- View D_A in terms of the edge colored hypergraph.
- Apply a functor engineered by Sinha-Walter to D_A that gives a differential graded Lie coalgebra E(D_A) (which actually has 2 differentials)
- Find a non-zero differential in the spectral sequence of E(D_A)
- Show that the cohomology class is non-zero.

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangement

Theorem (Miller-W)

Let \mathcal{A} be an edge colored hypergraphic arrangement and $(\lambda_1, \lambda_2, \lambda_3)$ a Massey color system with embedded colors λ_4 and λ_5 . Let $\Gamma := \Lambda \setminus \{\lambda_1, \dots, \lambda_5\}$. If the set

 $\{\Psi\subseteq \mathsf{\Gamma}\mid \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_4\} \text{ or } \Psi\Subset\{\lambda_1,\lambda_2,\lambda_3,\lambda_5\}\}$

is empty then M(A) admits a non-trivial Massey product.

- View D_A in terms of the edge colored hypergraph.
- Apply a functor engineered by Sinha-Walter to D_A that gives a differential graded Lie coalgebra E(D_A) (which actually has 2 differentials)
- Find a non-zero differential in the spectral sequence of E(D_A)
- Show that the cohomology class is non-zero.

Pascal Arrangements

Subspace Arrangements

Formality of

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Definition

Let *n* be a positive integer and let $\ell = 2n - 1$. For $1 \le k \le n$ let X_k be the subspace defined by

$$X_k = \{(v_1, \ldots, v_\ell) \in V \mid v_k = \cdots = v_{k+n-1}\}.$$

Define the subspace arrangement \mathcal{P}_n to be the collection $\{X_1, \ldots, X_n\}$.

Properties:

- *L*(*P_n*) is the top *n* rows of Pascal's triangle. Hence not geometric.
- $\chi(\mathcal{P}_n, t) = (n-1)t^{n-1} nt^n + t^{2n-1}$

Pascal Arrangements

Subspace Arrangements M. Wakefield

Formality of

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Definition

Let *n* be a positive integer and let $\ell = 2n - 1$. For $1 \le k \le n$ let X_k be the subspace defined by

$$X_k = \{(v_1, \ldots, v_\ell) \in V \mid v_k = \cdots = v_{k+n-1}\}.$$

Define the subspace arrangement \mathcal{P}_n to be the collection $\{X_1, \ldots, X_n\}$.

Properties:

- *L*(*P_n*) is the top *n* rows of Pascal's triangle. Hence not geometric.
- $\chi(\mathcal{P}_n, t) = (n-1)t^{n-1} nt^n + t^{2n-1}$

Pascal Arrangements

Subspace Arrangements M. Wakefield

Formality of

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Definition

Let *n* be a positive integer and let $\ell = 2n - 1$. For $1 \le k \le n$ let X_k be the subspace defined by

$$X_k = \{(v_1, \ldots, v_\ell) \in V \mid v_k = \cdots = v_{k+n-1}\}.$$

Define the subspace arrangement \mathcal{P}_n to be the collection $\{X_1, \ldots, X_n\}$.

Properties:

- *L*(*P_n*) is the top *n* rows of Pascal's triangle. Hence not geometric.
- $\chi(\mathcal{P}_n, t) = (n-1)t^{n-1} nt^n + t^{2n-1}$

Formality of Subspace Arrangements

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Definition

Let *n* be a positive integer and let $\ell = 2n - 1$. For $1 \le k \le n$ let X_k be the subspace defined by

$$X_k = \{(v_1, \ldots, v_\ell) \in V \mid v_k = \cdots = v_{k+n-1}\}.$$

Define the subspace arrangement \mathcal{P}_n to be the collection $\{X_1, \ldots, X_n\}$.

Properties:

• *L*(*P_n*) is the top *n* rows of Pascal's triangle. Hence not geometric.

•
$$\chi(\mathcal{P}_n, t) = (n-1)t^{n-1} - nt^n + t^{2n-1}$$

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Example

I

Let n = 4 then $\ell = 7$ and there are 4 subspaces X_1, X_2, X_3 , and X_4 . The Möbius values of the atoms are all -1, the Möbius values of the codimension 4 level elements are 1, and the Möbius values of the higher codimension levels elements are all 0. Hence the characteristic polynomial is $\chi(\mathcal{P}_4, t) = 3t^3 - 4t^4 + t^7$.

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements Example

Let n = 4 then $\ell = 7$ and there are 4 subspaces X_1, X_2, X_3 , and X_4 . The Möbius values of the atoms are all -1, the Möbius values of the codimension 4 level elements are 1, and the Möbius values of the higher codimension levels elements are all 0. Hence the characteristic polynomial is $\chi(\mathcal{P}_4, t) = 3t^3 - 4t^4 + t^7$.

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Example

Let n = 4 then $\ell = 7$ and there are 4 subspaces X_1, X_2, X_3 , and X_4 . The Möbius values of the atoms are all -1, the Möbius values of the codimension 4 level elements are 1, and the Möbius values of the higher codimension levels elements are all 0. Hence the characteristic polynomial is $\chi(\mathcal{P}_4, t) = 3t^3 - 4t^4 + t^7$.

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Pascal Arrangements are formal even though not geometric

Theorem (Miller-W)

 $M(\mathcal{P}_n)$ is formal for all n.

Idea of Proof:

- Compute the cohomology explicitly with $D_{\mathcal{P}}$
- Exhibit quasi-isomorphism to cohomology

・ ロ ト ・ 雪 ト ・ 目 ト ・

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Pascal Arrangements are formal even though not geometric

Theorem (Miller-W)

 $M(\mathcal{P}_n)$ is formal for all n.

Idea of Proof:

- Compute the cohomology explicitly with $D_{\mathcal{P}}$
- Exhibit quasi-isomorphism to cohomology

・ロト ・雪 ト ・ ヨ ト ・

э.

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

Pascal Arrangements are formal even though not geometric

Theorem (Miller-W)

 $M(\mathcal{P}_n)$ is formal for all n.

Idea of Proof:

• Compute the cohomology explicitly with $D_{\mathcal{P}}$

· Exhibit quasi-isomorphism to cohomology

M. Wakefield

Subspace Arrangements

Relative Atomic Complex

Edge colored hypergraphs

Characteristic Polynomials

Formality

Pascal Arrangements

THANK YOU!!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで