

# Lines in Fermat hypersurface and $\mathcal{M}_{0,n}$

# Tomohide TERASOMA

The University of Tokyo http://gauss.ms.u-tokyo.ac.jp

Arrangements of Hyperplanes, in Hokkaido University, 13th Aug 2009

イロト イヨト イヨト ・ヨー うくで

| Variety of lines | Main theorem  | Kummer coverings | Precise statement | Proof | Singularities |  |  |
|------------------|---------------|------------------|-------------------|-------|---------------|--|--|
|                  |               |                  |                   |       |               |  |  |
| Contents         |               |                  |                   |       |               |  |  |
|                  |               |                  |                   |       |               |  |  |
| 1 Varie          | ety of lines  |                  |                   |       |               |  |  |
| 2 Mair           | n Thorem      |                  |                   |       |               |  |  |
| 2 Kurr           | mer covering  | S                |                   |       |               |  |  |
| 2 Prec           | ise statement |                  |                   |       |               |  |  |
| 2 Proc           | of            |                  |                   |       |               |  |  |



2 Singularities

Variety of lines in a hypersurface (Short review)

 $X\subset\mathbb{P}^{n+1}$ : a smooth hypersurface of degree d. Gr=Grass(n+1,1): the Grassmann variety of lines in  $\mathbb{P}^{n+1}$ 

#### Definition

The Fano variety of lines F(X) of X is defined by

 $\{l\in Gr\mid l\subset X\}.$ 

# Fact (Barth-Van de Ven)

 $\begin{array}{l} 2n-d-1>0,\ X\in \mathbb{P}^{n+1}: ext{ generic of degree } d.\ \Rightarrow ext{ the Fano variety } F(X) ext{ is smooth,}\ \dim(F(X))=2n-d-1. \end{array}$ 

Variety of lines in a hypersurface (Short review)

Out line of proof Consider the incidental variety for the universal family.  $V = C^{n+2}$ ,  $S^d_{n+2}$  = the space of degree d homogeneous polynomial of n + 2 variable.

$$egin{aligned} \mathcal{I} = \{(l,f) \in Gr imes \mathbb{P}(S^d_{n+2}) \mid f \mid_l = 0\} & \stackrel{\pi_1}{ o} & Gr \ & \pi_2 \downarrow & \mathbb{P}(S^d_{n+2}) \end{aligned}$$

⇒ ≂ia ~~~

**1**  $\pi_2$  is surjective, and

②  $\pi_1$  is a projective space bundle of reltaive dimension =  $\dim(S^d_{n+2}) - \dim(S^d_2)$ 

 $\begin{array}{c} \Rightarrow \mathcal{I} \text{ is smooth and} \\ (2n + \dim(S^d_{n+2}) - \dim(S^d_2)) \text{-dimensional} \\ \xrightarrow{\text{generic smoothness}} \\ \Rightarrow \\ \text{dimension of } F(X) = 2n - d - 1 \text{ and} \\ \text{smooth.} \end{array}$ 

Variety of lines Main theorem Kummer coverings Precise statement Proof Singularities  ${\sf Open\ part\ }F^0(X)$  of Fano variety

 $(X_0:\dots:X_{n+1})$ : projective coordinate of  $\mathbb{P}^{n+1}$ .  $H_0,\dots,H_{n+1}\subset\mathbb{P}^{n+1}$ : hyperplanes  $H_i=\{X_i=0\}$ 

## Definition

- $F^0(X) = \{l \in F(X) \mid l \cap H_i \ (i = 0, \dots, n+1) \text{ are distinct points}\}$
- **2**  $\mathcal{M}_{0,n+2}$ : The moduli space of projective line with distinct n+2-points  $\Rightarrow (n-1)$ -dimensional.

Then we have a map

$$\chi:F^0(X) o \mathcal{M}_{0,n+2}:l\mapsto \{l\cap H_i\}_{i=0,...,n+1}$$

 $d = n \Rightarrow \chi$  is generically finite of degree  $n^{n+1}$ .

Fermat hypersurface and the main Thorem

X : Fermat hypersurface in  $\mathbb{P}^{n+1} = \{(X_0 : \cdots : X_{n+1})\}$  defined by

$$X_0^d + \dots + X_{n+1}^d = 0.$$

 $\mu_d$ : The groups of *d*-th root of unities.  $G = (\mu_d)^{n+2}/\Delta$ ,  $\Delta = \{(\zeta, \dots, \zeta)\}$ . Then an element  $(\zeta_0, \dots, \zeta_{n+1}) \in G$  acts on X by

$$(X_0:\cdots:X_{n+1})\mapsto (\zeta_0X_0:\cdots:\zeta_{n+1}X_{n+1})$$

 $\Rightarrow$  G also acts on  $F^0(X)$ .

#### Theorem

If d = n, then G acts on  $F^0(X)$  freely, and  $F^0(X)/G \simeq \mathcal{M}_{0,n+2}$ . If d < n, the map  $F^0(X) \rightarrow \mathcal{M}_{0,n+2}$  is a quotient of self-fiber product of the "universal" abelian covering of exponent d ramified at n + 2 points.



K: a filed with  $\operatorname{char}(K) = 0$  and  $\mu_d \subset K$ . (May not be algebraically closed) C: a curve over K,  $D = \sum_i a_i(p_i)$  a divisor on C, such that D is principal.  $p_{\infty} \in C(K) - \operatorname{Supp}(D)$ .

### Definition (trivialized *d*-Kummer covering)

**1** 
$$f$$
 : a rational function on  $C$  such that

$$\bullet \ (f) = D, \text{ and}$$

**2** 
$$f(p_{\infty}) = 1.$$

The *d*-Kummer covering of *C* with the branch index *D* tivialized at  $p_{\infty}$  is a covering of *C* defined by  $y^d = f$ .

Also defined for a curve over a scheme.

Proof Singu

#### Rigidified moduli space and the universal curve

## Definition

• Define the rigidified moduli space  $\widetilde{\mathcal{M}_{0,n+2}}$  by

$$\{(\lambda_0,\ldots,\lambda_{n+1})\in (\mathbb{P}^1)^{n+2}\mid \lambda_i
eq\lambda_j ext{ for } i
eq j\}.$$

2 Define the universal curve

$$\widetilde{\mathcal{U}} = \mathbb{P}^1 imes \widetilde{\mathcal{M}_{0,n+2}} ext{ } o imes \widetilde{\mathcal{M}_{0,n+2}} \ (x,\lambda_0,\dots,\lambda_{n+1}) ext{ } \mapsto ext{ } (\lambda_0,\dots,\lambda_{n+1})$$

 $\exists$  natural compatible actions of PGL(2) on  $\mathcal{U}$  and  $\mathcal{M}_{0,n+2}$ . The quotient

$$\widetilde{\mathcal{U}}/PGL(2) 
ightarrow \widetilde{\mathcal{M}_{0,n+2}}/PGL(2) \simeq \mathcal{M}_{0,n+2}$$

is the universal curve over  $\mathcal{M}_{0,n+2}$ .

(1) We fix  $\infty \in \mathbb{P}^1$ . The universal section  $\widetilde{\mathcal{M}_{0,n+2}} \to \widetilde{\mathcal{U}}$  is also denoted by  $\lambda_i$ .  $Kum_{0,i} \to \widetilde{\mathcal{U}}$ : the *d*-th Kummer covering of  $\widetilde{\mathcal{U}}$  for branching  $(\lambda_i) - (\lambda_0)$  trivialized by  $\infty$ .  $Kum := Kum_{0,1} \times_{\widetilde{\mathcal{U}}} \cdots \times_{\widetilde{\mathcal{U}}} Kum_{0,n+1}$   $(Kum_{0,i} \text{ is defined by } y_i^d = \frac{x - \lambda_i}{x - \lambda_0}$ , where x is a coordinate with  $x(\infty) = \infty$ . We set  $\lambda_i = x(\lambda_i)$ .)

(2) Let  $p \neq i, 0$ , We set  $\Delta_2 := \{(\lambda_0, \lambda_i) \in (\mathbb{P}^1)^2 \mid \lambda_0 \neq \lambda_i\}$  $\pi_{0,i,p} : \mathbb{P}^1 \times \Delta_2 \to \Delta_2 : (\lambda_p, \lambda_0, \lambda_i) \mapsto (\lambda_0, \lambda_i).$  $\lambda_0, \lambda_i :$  two sections of  $\pi_{0,i,p}$ .  $\widetilde{\Delta}_{0,i}^p : d$ -th Kummer covering of  $\mathbb{P}^1 \times \Delta_2$  for  $(\lambda_i) - (\lambda_0)$ trivialized at  $\infty$ .  $\Delta_{0,i}^p :$  the pull-back of  $\widetilde{\Delta}_{0,i}^p$  to  $\widetilde{\mathcal{M}} = \widetilde{\mathcal{M}_{0,n+2}}$  (with the natural  $\mu_d$  action.)

# Kummer coverings (continued)

(3) 
$$\prod_{\widetilde{\mathcal{M}}, p \neq 0, i} \Delta_{0, i}^{p} \to \widetilde{\mathcal{M}} : \mu_{d}^{n}$$
-covering  
 $\widehat{\mathcal{M}}_{0, i} \to \widetilde{\mathcal{M}} :$  the covering corresonding to  $\operatorname{Ker}(\mu_{d}^{n} \to \mu_{d})$ .  
( $\widehat{\mathcal{M}}_{0, i}$  is defined by  $\delta_{i}^{d} = \prod_{p \neq 0, i} \frac{\lambda_{i} - \lambda_{p}}{\lambda_{0} - \lambda_{p}}$  using coordinate as  
before.)  
 $\widehat{\mathcal{M}} := \widehat{\mathcal{M}}_{0,1} \times_{\widetilde{\mathcal{M}}} \cdots \times_{\widetilde{\mathcal{M}}} \widehat{\mathcal{M}}_{0, n+1} : G$ -covering of  $\widetilde{\mathcal{M}}$ .  
(4)  $\widetilde{\mathcal{F}} = \underbrace{\operatorname{Kum} \times_{\widetilde{\mathcal{M}}} \cdots \times_{\widetilde{\mathcal{M}}} \operatorname{Kum}}_{k-\text{times}} \times_{\widetilde{\mathcal{M}}} \widehat{\mathcal{M}}_{k-\text{times}}$   
This is  $G^{k} \times G$ -covering of  $\underbrace{\widetilde{\mathcal{U}} \times_{\widetilde{\mathcal{M}}} \cdots \times_{\widetilde{\mathcal{M}}} \widetilde{\mathcal{U}}}_{k-\text{times}} \times_{\widetilde{\mathcal{M}}} \widehat{\mathcal{M}}_{k-\text{times}}$   
 $\mathcal{F} :$  the covering corresponding to  
 $\operatorname{Ker}(G^{k} \times G \overset{\sum_{i=1}^{k} g_{i} - g_{k+1}}{\rightarrow} G)$ 

Variety of lines Main theorem Kummer coverings Precise statement Proof Singularities Statement of the main theorem We set k = n - d

Then 
$$\dim(\mathcal{F}) = k + n + 2 = 2n - d + 2$$
.

#### Theorem

- On *F* extending that on *PGL*(2) on *F* extending that on *P*<sup>1</sup>. This action commutes with the action of 𝔅<sub>k</sub>.
- **2** The quotine  $\mathcal{F}/(PGL(2) \times \mathfrak{S}_k)$  is naturally isomorphic to  $F^0(X)$  over  $\mathcal{M}_{0,n+2}/PGL(2) \simeq \mathcal{M}_{0,n+2}$ . As a consequence,  $F^0(X)$  is smooth.
- 3 In particular, if d = n, the map  $F^0(X) \to \mathcal{M}_{0,n+2}$  is an etale covering with the group G.

#### Corollary

The period of  $F^0(X)$  can be written as Selberg integrals.

In the case d = n = 3 is studied by Roulleau, M.Yoshida.



[Proof] Let  $l \in F^0(X)$ . We fix an affile coordinate t of l. Then the map  $\mathbb{P}^1 \to X$  can be written as  $t \mapsto (X_0(t) : \cdots : X_{n+1}(t))$ , where

 $X_0 = \alpha_0 t + \beta_0, \cdots, X_{n+1} = \alpha_{n+1} t + \beta_{n+1}.$ 

We consider the quotient by the GL(2)-left action on the frame matrix

$$egin{pmatrix} lpha_0 & \cdots & lpha_{n+1} \ eta_0 & \cdots & eta_{n+1} \end{pmatrix}$$

The equality

$$X_0^d + \dots + X_{n+1}^d = (\alpha_0 t + \beta_0)^d + \dots + (\alpha_{n+1} t + \beta_{n+1})^d = 0$$



 $\Rightarrow$  the following equality for  $lpha_i, eta_i$ 

$$\begin{cases} \alpha_0^d + \dots + \alpha_{n+1}^d = 0\\ \alpha_0^{d-1}\beta_0 + \dots + \alpha_{n+1}^{d-1}\beta_{n+1} = 0\\ \dots\\ \beta_0^d + \dots + \beta_{n+1}^d = 0 \end{cases}$$

The intersection of l with  $X_i=0$  is equal to  $t=\lambda_i=-rac{eta_i}{lpha_i}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Consider the fiber of the map  $F^0(X) \to \mathcal{M}_{0,n+2}$  at  $(\lambda_0, \dots, \lambda_{n+1})$ . The fiber  $F^0(X)_{\lambda}$  is defined by

$$F^0(X)_\lambda \left\{egin{array}{c} lpha_0^d+\cdots+lpha_{n+1}^d=0\ \lambda_0lpha_0^d+\cdots+\lambda_{n+1}lpha_{n+1}^d=0\ \ldots\ \lambda_0^dlpha_0^d+\cdots+\lambda_{n+1}^dlpha_{n+1}^d=0 \end{array}
ight.$$

as a subvariety of  $(\alpha_0 : \cdots : \alpha_{n+1}) \in \mathbb{P}^{n+1}$ . This is  $\underbrace{(d, \ldots, d)}_{(d+1)-\text{times}}$ -complete intersecton of  $\mathbb{P}^{n+1}$ .

Proof of the main theorem (4) Complete intersection as a product of curves

Still fix  $(\lambda_0, \dots, \lambda_{n+1})$ .  $C_{\lambda}$ : a *G*-covering of  $\mathbb{P}^1$  defined by

$$y_i^d = rac{x-\lambda_i}{x-\lambda_0} \quad (i=1,\ldots,n+1)$$

$$F^0(X)_{\lambda} \simeq \prod_{p=1}^k \mathcal{C}_{\lambda}^{(p)} / (N \ltimes \mathfrak{S}_k)$$
 (1)

over  $\overline{\mathbb{C}(\lambda_0, \dots, \lambda_{n+1})}$ , where k = n - d, and  $\mathcal{C}_{\lambda}^{(p)}$   $(p = 1, \dots, k)$  are copies of the curve  $\mathcal{C}_{\lambda}$ , and  $N = \operatorname{Ker}(G^k \xrightarrow{\Sigma} G)$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



$$rac{lpha_i}{lpha_0} = \prod_{p=1}^k y_i^{(p)} \left( -rac{\prod_{j
eq 0} (\lambda_j - \lambda_0)}{\prod_{j
eq i} (\lambda_j - \lambda_i)} 
ight)^{1/d}$$

where coordinates of  $C_{\lambda}^{(p)}$  are written as  $x^{(p)}, y_i^{(p)}$ . Change coordinate of  $t \mapsto t' = \frac{at+b}{ct+d}$ . Then

$$\lambda_i\mapsto\lambda_i'=rac{a\lambda_i+b}{c\lambda_i+d},\quad x^{(p)}\mapsto x^{(p)'}=rac{ax^{(p)}+b}{cx^{(p)}+d}$$

Since d = n - k, this action can be extended to  $\mathcal{F}$  by

$$rac{lpha_i}{lpha_0}\mapsto rac{lpha_i'}{lpha_0'}rac{c\lambda_i+d}{c\lambda_0+d}$$
 QED

| Variety of lines | Main theorem | Kummer coverings | Precise statement | Proof | Singularities |  |  |
|------------------|--------------|------------------|-------------------|-------|---------------|--|--|
|                  |              |                  |                   |       |               |  |  |
| Singularities    |              |                  |                   |       |               |  |  |
|                  |              |                  |                   |       |               |  |  |

X: n-dimensional Fermat hypersurface of degree d. Assume that  $d = n \ge 4$ .

 $F^*(X) := \{l \in F(X) \mid l \cap H_i = \text{ finite set for all } i\} \supset F^0(X)$ 

### Definition

Let I be a partition  $n+2 = i_1 + \cdots + i_k$  of n+2. The rank r(I) of I.

 $r({
m I}) = egin{cases} 2k & ext{at least two multiple component} \ 2(k-1) & ext{only one multiple component} \ 2(k-2) & ext{no multiple component} \end{cases}$ 

*r*(*l*) := the rank of the partition defined by { $l \cap H_i$ }. *F<sub>r</sub>* := { $l \in F^* \mid r(l) \leq r$ }

| Variety of lines | Main theorem | Kummer coverings | Precise statement | Proof | Singularities |  |  |
|------------------|--------------|------------------|-------------------|-------|---------------|--|--|
|                  |              |                  |                   |       |               |  |  |
| Singularities    |              |                  |                   |       |               |  |  |
|                  |              |                  |                   |       |               |  |  |

# Then we have inclusions

$$F_1 \subset F_2 \subset \cdots \subset F_{2n} = F^*.$$

# Theorem

The singular set of  $F^*(X)$  is equal to  $F_n$ . It is non-empty set if  $n \ge 4$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ