On the geometry and topology of cohomology jumping loci

Alex Suciu

Northeastern University

MSJ Seasonal Institute on Arrangements of Hyperplanes Hokkaido University Sapporo, Japan August 9, 2009

Outline

Cohomology jumping loci

- Characteristic varieties
- Tangent cones
- Resonance varieties
- Tangent cone theorem

Bieri–Neumann–Strebel–Renz invariants

- Σ-invariants
- Exponential tangent cone upper bound
- Resonance upper bound

Applications

- Kähler and quasi-Kähler manifolds
- Toric complexes and right-angled Artin groups
- Three-dimensional manifolds
- Hyperplane arrangements

Characteristic varieties

- X connected CW-complex with finite k-skeleton ($k \ge 1$)
- $G = \pi_1(X, x_0)$: a finitely generated group
- \Bbbk field; Hom (G, \Bbbk^{\times}) character variety

Definition

The *characteristic varieties* of X (over \Bbbk):

$$\mathcal{V}_d^i(X, \Bbbk) = \{ \rho \in \mathsf{Hom}(G, \Bbbk^{\times}) \mid \dim_{\Bbbk} H_i(X, \Bbbk_{\rho}) \geq d \},$$

for $0 \le i \le k$ and d > 0.

- For each *i*, get stratification Hom $(G, \mathbb{k}^{\times}) \supseteq \mathcal{V}_{1}^{i} \supseteq \mathcal{V}_{2}^{i} \supseteq \cdots$
- If $\Bbbk \subseteq \mathbb{K}$ extension: $\mathcal{V}^{i}_{d}(X, \Bbbk) = \mathcal{V}^{i}_{d}(X, \mathbb{K}) \cap \mathsf{Hom}(G, \Bbbk^{\times})$
- For G of type F_k , set: $\mathcal{V}_d^i(G, \Bbbk) := \mathcal{V}_d^i(K(G, 1), \Bbbk)$
- Note: $\mathcal{V}_d(X, \mathbb{k}) := \mathcal{V}_d^1(X, \mathbb{k}) = \mathcal{V}_d^1(\pi_1(X), \mathbb{k})$

Let $X^{ab} \rightarrow X$ be the maximal abelian cover.

Definition

The Alexander varieties of X (over \Bbbk):

$$\mathcal{W}_{d}^{i}(X, \mathbb{k}) = V(E_{d-1}(H_{i}(X^{\mathrm{ab}}, \mathbb{k}))),$$

the subvariety of Spec $\Lambda = \text{Hom}(G, \mathbb{k}^{\times})$ defined by the ideal of codim d-1 minors of a presentation matrix for $H_i(X^{ab}, \mathbb{k})$, viewed as module over $\Lambda = \mathbb{k}H_1(X, \mathbb{Z})$.

Proposition (Papadima-S. 2008)

$$igcup_{i=0}^q \mathcal{V}^i_1(X, \Bbbk) = igcup_{i=0}^q \mathcal{W}^i_1(X, \Bbbk), \quad \forall \ 0 \leq q \leq k$$

 $\implies \mathcal{V}_1^1(X,\mathbb{C})\setminus\{1\}=\mathcal{W}_1^1(X,\mathbb{C})\setminus\{1\} \quad [\mathsf{E}. \text{ Hironaka 1997}]$

Tangent cones and exponential tangent cones

The homomorphism $\mathbb{C} \to \mathbb{C}^{\times}$, $z \mapsto e^z$ induces

```
\exp: Hom(G, \mathbb{C}) \to Hom(G, \mathbb{C}^{\times}), \quad \exp(0) = 1
```

Let W = V(I) be a Zariski closed subset in Hom (G, \mathbb{C}^{\times}) .

Definition

• The *tangent cone* at 1 to W:

```
TC_1(W) = V(in(I))
```

• The exponential tangent cone at 1 to W:

 $au_1(W) = \{z \in \operatorname{Hom}(G, \mathbb{C}) \mid \exp(tz) \in W, \ \forall t \in \mathbb{C}\}$

Both types of tangent cones

- are homogeneous subvarieties of Hom(G, ℂ)
- are non-empty iff $1 \in W$
- depend only on the analytic germ of W at 1
- commute with finite unions and arbitrary intersections

Moreover,

•
$$\tau_1(W) \subseteq TC_1(W)$$

- if all irred components of W are subtori
- \neq in general
- $\tau_1(W)$ is a finite union of rationally defined subspaces

Computing $\tau_1(W)$

Let *W* be a Zariski closed subset of $(\mathbb{C}^{\times})^n$.

1

Since τ_1 commutes with intersections, may assume W = V(f), where

$$f = \sum_{u \in S} c_u t_1^{u_1} \cdots t_n^{u_n}$$

is a non-zero Laurent polynomial, with f(1) = 0, and support $S \subseteq \mathbb{Z}^n$. Let \mathcal{P} be the set of partitions $p = S_1 \coprod \cdots \coprod S_r$ of S, satisfying

$$\sum_{u\in S_i} c_u = 0, \quad \text{for } i = 1, \dots, r.$$

For each such partition *p*, set

$$L(p) := \{z \in \mathbb{C}^n \mid \langle u - v, z \rangle = 0, \ \forall u, v \in S_i, \ \forall 1 \leq i \leq r\}.$$

Clearly, L(p) is a rational linear subspace in \mathbb{C}^n . Then:

$$\tau_1(W) = \bigcup_{p \in \mathcal{P}} L(p).$$

Resonance varieties

Let $A = H^*(X, \mathbb{k})$. If char $\mathbb{k} = 2$, assume $H_1(X, \mathbb{Z})$ has no 2-torsion. Then: $a \in A^1 \Rightarrow a^2 = 0$. Get cochain complex ("Aomoto complex")

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

Definition

The *resonance varieties* of *X* (over \Bbbk):

$$\mathcal{R}^i_d(X, \Bbbk) = \{ a \in \mathcal{A}^1 \mid \dim_{\Bbbk} \mathcal{H}^i(\mathcal{A}, \cdot a) \geq d \}$$

Homogeneous subvarieties of $A^1 = H^1(X, \mathbb{k})$: $\mathcal{R}_1^i \supseteq \mathcal{R}_2^i \supseteq \cdots$

Theorem (Libgober 2002)

$$TC_1(\mathcal{V}^i_d(X,\mathbb{C}))\subseteq \mathcal{R}^i_d(X,\mathbb{C})$$

Equality does not hold in general (Matei-S. 2002)

Alex Suciu (Northeastern University)

Formality

Definition

- A group *G* is 1-*formal* if its Malcev Lie algebra, $\mathfrak{m}_G = \operatorname{Prim}(\widehat{\mathbb{Q}G})$, is quadratic.
- A space X is formal if its minimal model is quasi-isomorphic to (H*(X, Q), 0).
 - X formal $\implies \pi_1(X)$ is 1-formal.
 - X_1, X_2 formal $\implies X_1 \times X_2$ and $X_1 \vee X_2$ are formal
 - G_1 , G_2 1-formal \implies $G_1 \times G_2$ and $G_1 * G_2$ are 1-formal
 - M_1 , M_2 formal, closed *n*-manifolds $\implies M_1 \# M_2$ formal

Tangent cone theorem

Theorem (Dimca-Papadima-S., Duke 2009)

If G is 1-formal, then exp: $(\mathcal{R}^1_d(G,\mathbb{C}),0) \xrightarrow{\simeq} (\mathcal{V}^1_d(G,\mathbb{C}),1)$. Hence

$$au_1(\mathcal{V}^1_d(G,\mathbb{C})) = \mathit{TC}_1(\mathcal{V}^1_d(G,\mathbb{C})) = \mathcal{R}^1_d(G,\mathbb{C})$$

In particular, $\mathcal{R}^1_d(G, \mathbb{C})$ is a union of rationally defined subspaces in $H^1(G, \mathbb{C}) = \text{Hom}(G, \mathbb{C})$.

Example

Let $G = \langle x_1, x_2, x_3, x_4 \mid [x_1, x_2], [x_1, x_4][x_2^{-2}, x_3], [x_1^{-1}, x_3][x_2, x_4] \rangle$. Then $\mathcal{R}^1_1(G, \mathbb{C}) = \{ x \in \mathbb{C}^4 \mid x_1^2 - 2x_2^2 = 0 \}$

splits into subspaces over \mathbb{R} but not over \mathbb{Q} . Thus, *G* is *not* 1-formal.

Example

X = F(Σ_g, n): the configuration space of n labeled points of a Riemann surface of genus g (a smooth, quasi-projective variety).
π₁(X) = P_{g,n}: the pure braid group on n strings on Σ_g.
Using computation of H*(F(Σ_g, n), C) by Totaro (1996), get

$$\mathcal{R}_{1}^{1}(P_{1,n},\mathbb{C}) = \left\{ (x, y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \middle| \begin{array}{l} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 0, \\ x_{i}y_{j} - x_{j}y_{i} = 0, \text{ for } 1 \leq i < j < n \end{array} \right\}$$

For $n \ge 3$, this is an irreducible, non-linear variety (a rational normal scroll). Hence, $P_{1,n}$ is not 1-formal.

Bieri-Neumann-Strebel-Renz invariants

G finitely generated group $\rightsquigarrow C(G)$ Cayley graph. $\chi \colon G \to \mathbb{R}$ homomorphism $\rightsquigarrow C_{\chi}(G)$ induced subgraph on vertex set $G_{\chi} = \{g \in G \mid \chi(g) \ge 0\}.$

Definition

$$\Sigma^{1}(G) = \{\chi \in \mathsf{Hom}(G, \mathbb{R}) \setminus \{0\} \mid \mathcal{C}_{\chi}(G) \text{ is connected} \}$$

An open, conical subset of $Hom(G, \mathbb{R}) = H^1(G, \mathbb{R})$, independent of choice of generating set for *G*.

Definition

 $\Sigma^k(G,\mathbb{Z}) = \{\chi \in \mathsf{Hom}(G,\mathbb{R}) \setminus \{0\} \mid \mathsf{the monoid} \; G_\chi \; \mathsf{is of type} \; \mathsf{FP}_k \}$

Here, *G* is of type FP_k if there is a projective $\mathbb{Z}G$ -resolution $P_{\bullet} \to \mathbb{Z}$, with P_i finitely generated for all $i \leq k$.

- The BNSR invariants Σ^q(G, Z) form a descending chain of open subsets of Hom(G, R) \ {0}.
- $\Sigma^k(G,\mathbb{Z}) \neq \emptyset \implies G \text{ is of type } FP_k.$
- $\Sigma^1(G,\mathbb{Z}) = \Sigma^1(G).$
- The Σ-invariants control the finiteness properties of normal subgroups N ⊲ G with G/N is abelian:

$$N$$
 is of type $\mathsf{FP}_k \Longleftrightarrow \mathcal{S}(G, N) \subseteq \Sigma^k(G, \mathbb{Z})$

where $S(G, N) = \{\chi \in Hom(G, \mathbb{R}) \setminus \{0\} \mid \chi(N) = 0\}.$

• In particular:

$$\operatorname{ker}(\chi\colon \boldsymbol{G}\twoheadrightarrow\mathbb{Z}) \text{ is f.g.} \Longleftrightarrow \{\pm\chi\}\subseteq \Sigma^1(\boldsymbol{G})$$

Let *X* be a connected CW-complex with finite 1-skeleton, $G = \pi_1(X)$.

Definition

The *Novikov-Sikorav completion* of $\mathbb{Z}G$:

$$\widehat{\mathbb{Z}G}_{\chi} = \left\{ \lambda \in \mathbb{Z}^{G} \mid \{ oldsymbol{g} \in \operatorname{supp} \lambda \mid \chi(oldsymbol{g}) < oldsymbol{c} \} ext{ is finite, } orall oldsymbol{c} \in \mathbb{R}
ight\}$$

 $\widehat{\mathbb{Z}G}_{\chi}$ is a ring, contains $\mathbb{Z}G$ as a subring $\implies \widehat{\mathbb{Z}G}_{\chi}$ is a $\mathbb{Z}G$ -module.

Definition

 $\Sigma^q(X,\mathbb{Z}) = \{\chi \in \mathsf{Hom}(G,\mathbb{R}) \setminus \{0\} \mid H_i(X,\widehat{\mathbb{Z}G}_{-\chi}) = 0, \ \forall i \leq q\}$

Bieri: *G* of type $FP_k \implies \Sigma^q(G, \mathbb{Z}) = \Sigma^q(K(G, 1), \mathbb{Z}), \forall q \leq k$.

Exponential tangent cone upper bound

Theorem (Papadima-S. 2008)

If X has finite k-skeleton, then, for every $q \le k$,

$$\mathbb{E}^{q}(X,\mathbb{Z}) \subseteq \left(au_{1}^{\mathbb{R}}\left(\bigcup_{i\leq q}\mathcal{V}_{1}^{i}(X,\mathbb{C})\right)
ight)^{\mathbb{C}}.$$
 (*)

Thus: Each Σ -invariant is contained in the complement of a union of rationally defined subspaces. Bound is sharp:

Example

Let G be a finitely generated nilpotent group. Then

$$\Sigma^q(G,\mathbb{Z}) = \operatorname{Hom}(G,\mathbb{R})\setminus\{0\}, \quad V^q_1(G,\mathbb{C}) = \{1\}, \quad orall q$$

and so (*) holds as an equality.

Resonance upper bound

Corollary

Suppose exp:
$$(\mathcal{R}_1^i(X,\mathbb{C}),0) \xrightarrow{\simeq} (\mathcal{V}_1^i(X,\mathbb{C}),1)$$
, for $i \leq q$. Then:

$$\Sigma^q(X,\mathbb{Z})\subseteq \Big(\bigcup_{i\leq q}\mathcal{R}^i_1(X,\mathbb{R})\Big)^{\complement}.$$

Corollary

Suppose G is a 1-formal group. Then $\Sigma^1(G) \subseteq \mathcal{R}^1_1(G, \mathbb{R})^{c}$. In particular, if $\mathcal{R}^1_1(G, \mathbb{R}) = H^1(G, \mathbb{R})$, then $\Sigma^1(G) = \emptyset$.

Example

The above inclusion may be strict: Let $G = \langle a, b \mid aba^{-1} = b^2 \rangle$. Then *G* is 1-formal, $\Sigma^1(G) = (-\infty, 0)$, yet $\mathcal{R}^1_1(G, \mathbb{R}) = \{0\}$.

Kähler and quasi-Kähler manifolds

- A compact, connected, complex manifold *M* is *Kähler* if there is a Hermitian metric *h* such that ω = ℑm(h) is a closed 2-form.
- A manifold X is called *quasi-Kähler* if $X = \overline{X} \setminus D$, where \overline{X} is Kähler and D is a divisor with normal crossings.

Formality properties:

• M Kähler \Rightarrow M is formal

(Deligne, Griffiths, Morgan, Sullivan 1975)

- $X = \mathbb{CP}^n \setminus \{\text{hyperplane arrangement}\} \Rightarrow X \text{ is formal}$ (Brieskorn 1973)
- X quasi-projective, $W_1(H^1(X,\mathbb{C})) = 0 \Rightarrow \pi_1(X)$ is 1-formal

(Morgan 1978)

•
$$X = \mathbb{CP}^n \setminus \{ \text{hypersurface} \} \Rightarrow \pi_1(X) \text{ is 1-formal}$$

(Kohno 1983)

Theorem (Arapura 1997)

Let $X = \overline{X} \setminus D$ be a quasi-Kähler manifold. Then:

- Each component of $\mathcal{V}_1^1(X)$ is either an isolated unitary character, or of the form $\rho \cdot f^*(H^1(C, \mathbb{C}^{\times}))$, for some torsion character ρ and some admissible map $f \colon X \to C$.
- If either X = X̄ or b₁(X̄) = 0, then each component of Vⁱ_d(X) is of the form ρ ⋅ f^{*}(H¹(T, C[×])), for some unitary character ρ and some holomorphic map f: X → T to a complex torus.

Here, $f: X \to C$ is *admissible* (or, a *pencil*) if *f* is a holomorphic, surjective map to a connected, smooth complex curve *C*, and there is a holomorphic, surjective extension $\overline{f}: \overline{X} \to \overline{C}$ with connected fibers.

Corollary

All components of $\mathcal{V}_{d}^{i}(X, \mathbb{C})$ passing through 1 are subtori of $\text{Hom}(G, \mathbb{C}^{\times})$, provided i = d = 1, or X is Kähler, or $W_{1}(H^{1}(X, \mathbb{C})) = 0$.

Let X be a quasi-Kähler manifold, $G = \pi_1(X)$.

Theorem (Dimca-Papadima-S., Duke 2009)

Let $\{\mathcal{V}^{\alpha}\}_{\alpha}$ be the irred components of $\mathcal{V}_{1}^{1}(G)$ containing 1. Set $\mathcal{T}^{\alpha} = TC_{1}(\mathcal{V}^{\alpha})$. Then:

• Each T^{α} is a p-isotropic subspace of $H^1(G, \mathbb{C})$, of dim $\geq 2p + 2$, for some $p = p(\alpha) \in \{0, 1\}$.

2 If
$$\alpha \neq \beta$$
, then $\mathcal{T}^{\alpha} \cap \mathcal{T}^{\beta} = \{\mathbf{0}\}.$

Assume further that G is 1-formal. Let $\{\mathcal{R}^{\alpha}\}_{\alpha}$ be the irred components of $\mathcal{R}^{1}_{1}(G)$. Then:

$$(\mathfrak{T}^{\alpha})_{\alpha} = \{\mathcal{R}^{\alpha}\}_{\alpha}.$$

Let X be a quasi-Kähler manifold, $G = \pi_1(X)$.

Theorem (Papadima-S. 2008)

 $\ \ \, {\bf \mathfrak{D}}^{1}(G)\subseteq \mathit{TC}^{\mathbb{R}}_{1}(\mathcal{V}^{1}_{1}(G,\mathbb{C}))^{\complement}.$

ℓ If X is Kähler, or $W_1(H^1(X, \mathbb{C})) = 0$, then $\mathcal{R}^1_1(G, \mathbb{R})$ is a finite union of rationally defined linear subspaces, and $\Sigma^1(G) \subseteq \mathcal{R}^1_1(G, \mathbb{R})^{c}$.

Example

Assumption from (2) is necessary. E.g., let *X* be the complex Heisenberg manifold: bundle $\mathbb{C}^{\times} \to X \to (\mathbb{C}^{\times})^2$ with e = 1. Then:

- X is a smooth quasi-projective variety;
- 3 $G = \pi_1(X)$ is nilpotent (and not 1-formal);

Thus, $\Sigma^1(G) \not\subseteq \mathcal{R}^1_1(G, \mathbb{R})^{c}$.

For Kähler manifolds, we can say precisely when the resonance upper bound for Σ^1 is attained.

```
Theorem (Papadima–S. 2008)
```

Let *M* be a compact Kähler manifold with $b_1(M) > 0$, and $G = \pi_1(M)$. The following are equivalent:

- $\Sigma^1(G) = \mathcal{R}^1_1(G,\mathbb{R})^{c}$.
- **2** If $f: M \to C$ is an elliptic pencil, then f has no multiple fibers.

Proof uses results of Arapura, DPS, and Delzant.

lications fond complexes

Toric complexes and right-angled Artin groups

Definition

Let *L* be simplicial complex on *n* vertices. The associated *toric complex*, T_L , is the subcomplex of the *n*-torus obtained by deleting the cells corresponding to the missing simplices of *L*.

- Special case of "generalized moment angle complex".
- $\pi_1(T_L)$ is the *right-angled Artin group* associated to graph $\Gamma = L^{(1)}$:

$$G_{\Gamma} = \langle v \in V(\Gamma) \mid vw = wv \text{ if } \{v, w\} \in E(\Gamma) \rangle.$$

- $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the *flag complex* of Γ .
- *H*^{*}(*T_L*, k) is the *exterior Stanley-Reisner ring* of *L*, with generators the duals *v*^{*}, and relations the monomials corresponding to the missing simplices of *L*.
- T_L is formal, and so G_{Γ} is 1-formal.

Example

•
$$\Gamma = \overline{K}_n \Rightarrow G_{\Gamma} = F_n$$

• $\Gamma = K_n \Rightarrow G_{\Gamma} = \mathbb{Z}^n$
• $\Gamma = \Gamma' \coprod \Gamma'' \Rightarrow G_{\Gamma} = G_{\Gamma'} * G_{\Gamma''}$
• $\Gamma = \Gamma' * \Gamma'' \Rightarrow G_{\Gamma} = G_{\Gamma'} \times G_{\Gamma''}$

Using a result of Aramova, Avramov, Herzog (2000), we get:

Theorem (Papadima–S., Adv. Math. 2009)

$$\mathsf{R}^{i}_{d}(\mathit{T}_{L},\Bbbk) = \bigcup_{\substack{\mathsf{W} \subset \mathsf{V} \\ \sum_{\sigma \in \mathit{L}_{\mathsf{V} \setminus \mathsf{W}}} \mathsf{dim}_{\Bbbk} \widetilde{\mathit{H}}_{i-1-|\sigma|}(\mathsf{Ik}_{\mathit{L}_{\mathsf{W}}}(\sigma),\Bbbk) \geq d} \Bbbk^{\mathsf{W}}$$

where L_W is the subcomplex induced by L on W, and $lk_K(\sigma)$ is the link of a simplex σ in a subcomplex $K \subset L$.

Similar formula holds for $\mathcal{V}_d^i(\mathcal{T}_L, \mathbb{k})$, with \mathbb{k}^W replaced by $(\mathbb{k}^{\times})^W$. In particular: exp: $(\mathcal{R}^i_{\mathcal{A}}(\mathcal{T}_L, \mathbb{C}), \mathbf{0}) \xrightarrow{\simeq} (\mathcal{V}^i_{\mathcal{A}}(\mathcal{T}_L, \mathbb{C}), \mathbf{1}).$

Non-propagation of resonance

Remark

Given a graded algebra A, we say resonance "propagates" if

$$\mathcal{R}_1^i(\mathcal{A}) \subseteq \mathcal{R}_1^k(\mathcal{A}), \ \forall i \leq k, \quad ext{provided } \mathcal{A}^j \neq 0, ext{ for } i \leq j \leq k$$

If *A* is the Orlik-Solomon algebra, then resonance propagates. But this is not the case for the exterior Stanley-Reisner ring.

Example

Let
$$\Gamma = \Gamma_1 \coprod \Gamma_2$$
, where $\Gamma_j = K_{n_j}$ and $n_j \ge 2$, e.g.:

Then:

$$\mathcal{R}_1^i(G_{\Gamma}, \mathbb{k}) = \begin{cases} \mathbb{k}^{n_1+n_2}, & \text{if } i = 1, \\ \mathbb{k}^{n_1} \times \{0\} \cup \{0\} \times \mathbb{k}^{n_2}, & \text{if } 1 < i \le \min(n_1, n_2). \end{cases}$$

Using (1) resonance upper bound, and (2) computation of $\Sigma^k(G_{\Gamma}, \mathbb{Z})$ by Meier, Meinert, VanWyk (1998), we get:

Corollary (Papadima-S. 2008)

$$\Sigma^{k}(T_{L},\mathbb{Z})\subseteqig(igcup_{i\leq k}\mathcal{R}_{1}^{i}(T_{L},\mathbb{R})ig)^{\complement}\ \Sigma^{k}(G_{\Gamma},\mathbb{Z})=ig(igcup_{i\leq k}\mathcal{R}_{1}^{i}(T_{\Delta_{\Gamma}},\mathbb{R})ig)^{\complement}$$

Theorem (Dimca–Papadima–S. Duke 2009)

The following are equivalent:

•
$$G_{\Gamma}$$
 is a quasi-Kähler group
• $\Gamma = K_{n_1,...,n_r} := \overline{K}_{n_1} * \cdots * \overline{K}_{n_r}$
• $G_{\Gamma} = F_{n_1} \times \cdots \times F_{n_r}$

1 G_{Γ} is a Kähler group

$$\bigcirc \Gamma = K_{2r}$$

$$\bigcirc \quad G_{\Gamma} = \mathbb{Z}^{2r}$$

Bestvina–Brady groups: $N_{\Gamma} = \ker(\nu : G_{\Gamma} \twoheadrightarrow \mathbb{Z})$, where $\nu(\nu) = 1$

Theorem (Dimca–Papadima–S., JAG 2008)

The following are equivalent:

 N_Γ is a quasi-Kähler group
 Γ is either a tree, or Γ = K_{n1},...,n_r, with some n_i = 1, or all n_i ≥ 2 and r ≥ 3.
 N_Γ is a Kähler group

$$\bigcirc \Gamma = K_{2r+1}$$

Example

$$\Gamma = K_{2,2,2} \rightsquigarrow G_{\Gamma} = F_2 \times F_2 \times F_2$$

 N_{Γ} = the Stallings group = group of the X_3 arrangement

 N_{Γ} is finitely presented, but $H_3(N_{\Gamma}, \mathbb{Z})$ has infinite rank, so N_{Γ} not FP₃.

3-manifolds

Question (Goldman–Donaldson 1989, Reznikov 1993)

Which 3-manifold groups are Kähler groups?

Reznikov (2002) and Hernández-Lamoneda (2001) gave partial solutions.

Theorem (Dimca-S., JEMS 2009)

Let G be the fundamental group of a closed 3-manifold. Then G is a Kähler group \iff G is a finite subgroup of O(4), acting freely on S³.

Idea of proof: compare the resonance varieties of (orientable) 3-manifolds to those of Kähler manifolds.

Proposition

Let M be a closed, orientable 3-manifold. Then:

- $H^1(M, \mathbb{C})$ is not 1-isotropic.
- If $b_1(M)$ is even, then $\mathcal{R}_1(M, \mathbb{C}) = H^1(M, \mathbb{C})$.

On the other hand, it follows from [DPS 2009] that:

Proposition

Let M be a compact Kähler manifold with $b_1(M) \neq 0$. If $\mathcal{R}_1(M, \mathbb{C}) = H^1(M, \mathbb{C})$, then $H^1(M, \mathbb{C})$ is 1-isotropic.

But $G = \pi_1(M)$, with M Kähler $\Rightarrow b_1(G)$ even. Thus, if G is both a 3-mfd group and a Kähler group $\Rightarrow b_1(G) = 0$. Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan's property (T), as well as Perelman (2003) $\Rightarrow G$ finite subgroup of O(4).

Question

Which 3-manifold groups are quasi-Kähler groups?

Theorem (Dimca–Papadima–S. 2008)

Let G be the fundamental group of a closed, orientable 3-manifold. Assume G is 1-formal. Then the following are equivalent:

- $\mathfrak{O} \mathfrak{m}(G) \cong \mathfrak{m}(\pi_1(X))$, for some quasi-Kähler manifold X.
- 2 $\mathfrak{m}(G) \cong \mathfrak{m}(\pi_1(M))$, where M is either S^3 , $\#^n S^1 \times S^2$, or $S^1 \times \Sigma_g$.

Hyperplane arrangements

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{C}^{ℓ} , with complement $X = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H$, and group $G = \pi_1(X)$.

- Resonance varieties $\mathcal{R}^1_d(X, \mathbb{C})$ are very much understood.
- Propagation of resonance: $\mathcal{R}_1^i(X, \mathbb{C}) \subseteq \mathcal{R}_1^j(X, \mathbb{C}), \ \forall i < j \leq \ell.$
- Tangent cone formula:

$$\exp\colon (\mathcal{R}^i_{d}(X,\mathbb{C}),0) \xrightarrow{\simeq} (\mathcal{V}^i_{d}(X,\mathbb{C}),1), \; \forall i,d>0$$

In particular, $TC_1(\mathcal{V}_d^i(X,\mathbb{C})) = \mathcal{R}_d^i(X,\mathbb{C}).$

- Components of V¹_d(X, ℂ) passing through 1 are combinatorially determined.
- 𝒱¹₁(𝑋, ℂ) may contain translated subtori, e.g., if 𝑋 is the deleted B₃ arrangement.

Using (1) res upper bound and (2) propagation of resonance, we get:

Theorem

$$\Sigma^q(X,\mathbb{Z})\subseteq \mathcal{R}^q_1(X,\mathbb{R})^{\mathfrak{c}}$$

Problem

Let G = G(A) be an arrangement group.

- Compute the BNS invariant $\Sigma^1(G)$.
- 2 Does the equality $\Sigma^1(G) = -\Sigma^1(G)$ hold?
- Solution Stronger, does the equality $\Sigma^1(G) = \mathcal{R}_1(G, \mathbb{R})^{\complement}$ hold?
 - If it doesn't, is the BNS invariant combinatorially determined?

Remark

For a complexified real arrangement, $\Sigma^1(G) = -\Sigma^1(G)$, which is consistent with the symmetry property of $\mathcal{R}_1(G, \mathbb{R})^{\complement}$.

Boundary manifold

Let $\mathcal{A} = \{\ell_0, \dots, \ell_n\}$ be an arrangement of lines in \mathbb{CP}^2 . The *boundary manifold* of \mathcal{A} is the closed, orientable 3-manifold $M = M(\mathcal{A})$ obtained by taking the boundary of a regular neighborhood of $\bigcup_{i=0}^{n} \ell_i$ in \mathbb{CP}^2 .

Theorem (Cohen-S., GTM 08, Dimca-Papadima-S., IMRN 08)

Let $\mathcal{A} = \{\ell_0, \dots, \ell_n\}$ be an arrangement of lines in \mathbb{CP}^2 , and let M be the corresponding boundary manifold. The following are equivalent:

- The manifold M is formal.
- 2 The group $G = \pi_1(M)$ is 1-formal.
- $TC_1(V_1(G,\mathbb{C})) = \mathcal{R}_1(G,\mathbb{C}).$
- The group G is quasi-projective.
- \mathcal{A} is either a pencil (and so $M = \sharp^n S^1 \times S^2$), or \mathcal{A} is a near-pencil (and so $M = S^1 \times \Sigma_{n-1}$).

Milnor fibration

- *f* ∈ ℂ[*z*₀,...,*z_d*] weighted homogeneous polynomial of degree *n*, with positive integer weights (*w*₀,...,*w_d*).
- V(f) the zero-set of $f: \mathbb{C}^{d+1} \to \mathbb{C}$.
- $X = \mathbb{C}^{d+1} \setminus V(f)$ its complement.
- Milnor fibration: $f: X \to \mathbb{C}^*$.
- Milnor fiber: F = f⁻¹(1). It is a smooth affine variety, with the homotopy type of a *d*-dimensional, finite CW-complex. When (V(f), 0) is reduced, F is connected.
- Geometric monodromy: $h: F \to F$, $(z_0, \ldots, z_d) \mapsto (\xi^{w_0} z_0, \ldots, \xi^{w_d} z_d)$, where $\xi = \exp(2\pi i/n)$.
- If *f* is homogeneous, *F* is a regular, *n*-fold cyclic cover of $U = \mathbb{CP}^d \setminus V(f)$.
- Hence, we may compute $b_1(F)$ from $\mathcal{V}^1_d(U,\mathbb{C})$.

Question (Papadima-S., BMSR 2009)

Is the Milnor fiber of a reduced polynomial always 1-formal?

Example (Zuber 2009)

Let \mathcal{A} be the monomial arrangement in \mathbb{C}^3 , defined by the polynomial

$$f(z_0, z_1, z_2) = (z_0^3 - z_1^3)(z_0^3 - z_2^3)(z_1^3 - z_2^3)$$

Then $TC_1(\mathcal{V}_1(F,\mathbb{C})) \neq \mathcal{R}_1(F,\mathbb{C})$. Hence, by the Tangent Cone Theorem, *F* is not 1-formal.

Example (Fernández de Bobadilla 2009)

Let

 $f(z_0,\ldots,z_{10}) = z_0 z_2 z_3 z_5 z_6 + z_0 z_2 z_4 z_7 + z_1 z_2 z_4 z_8 + z_1 z_3 z_5 z_9 + z_1 z_3 z_4 z_{10}$

- *f* is weighted homogeneous of degree 5, with weights (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2).
- The Milnor fiber *F* is homotopy equivalent to the complement of the coordinate subspace arrangement *A* = {*H*₁,..., *H*₅} in ℂ⁶, with *H_i* = {*x_i* = *x_{i+1}* = 0}.
- F is 2-connected.
- As shown in [Denham–S., PAMQ 2007], there are classes $\alpha, \beta, \gamma \in H^3(F, \mathbb{Z}) = \mathbb{Z}^5$ such that the triple Massey product $\langle \alpha, \beta, \gamma \rangle \in H^8(F, \mathbb{Z}) = \mathbb{Z}$ is non-zero.
- Hence, F is not formal.