On the geometry and topology of cohomology jumping loci

Alex Suciu

Northeastern University
MSJ Seasonal Institute on Arrangements of Hyperplanes Hokkaido University

Sapporo, Japan
August 9, 2009
(1) Cohomology jumping loci

- Characteristic varieties
- Tangent cones
- Resonance varieties
- Tangent cone theorem
(2) Bieri-Neumann-Strebel-Renz invariants
- Σ-invariants
- Exponential tangent cone upper bound
- Resonance upper bound
(3) Applications
- Kähler and quasi-Kähler manifolds
- Toric complexes and right-angled Artin groups
- Three-dimensional manifolds
- Hyperplane arrangements

Characteristic varieties

- X connected CW-complex with finite k-skeleton $(k \geq 1)$
- $G=\pi_{1}\left(X, x_{0}\right)$: a finitely generated group
- \mathbb{k}_{k} field; $\operatorname{Hom}\left(G, \mathbb{k}^{\times}\right)$character variety

Definition

The characteristic varieties of X (over \mathbb{k}):

$$
\mathcal{V}_{d}^{i}(X, \mathbb{k})=\left\{\rho \in \operatorname{Hom}\left(G, \mathbb{k}^{\times}\right) \mid \operatorname{dim}_{\mathbb{k}} H_{i}\left(X, \mathbb{k}_{\rho}\right) \geq d\right\}
$$ for $0 \leq i \leq k$ and $d>0$.

- For each i, get stratification $\operatorname{Hom}\left(G, \mathbb{k}^{\times}\right) \supseteq \mathcal{V}_{1}^{i} \supseteq \mathcal{V}_{2}^{i} \supseteq \cdots$
- If $\mathbb{k} \subseteq \mathbb{K}$ extension: $\mathcal{V}_{d}^{i}(X, \mathbb{k})=\mathcal{V}_{d}^{i}(X, \mathbb{K}) \cap \operatorname{Hom}\left(G, \mathbb{K}^{\times}\right)$
- For G of type F_{k}, set: $\quad \mathcal{V}_{d}^{i}(G, \mathbb{k}):=\mathcal{V}_{d}^{i}(K(G, 1), \mathbb{k})$
- Note: $\mathcal{V}_{d}(X, \mathbb{k}):=\mathcal{V}_{d}^{1}(X, \mathbb{k})=\mathcal{V}_{d}^{1}\left(\pi_{1}(X), \mathbb{k}\right)$

Let $X^{\mathrm{ab}} \rightarrow X$ be the maximal abelian cover.

Definition

The Alexander varieties of X (over \mathbb{k}):

$$
\mathcal{W}_{d}^{i}(X, \mathbb{k})=V\left(E_{d-1}\left(H_{i}\left(X^{a b}, \mathbb{k}\right)\right)\right)
$$

the subvariety of $\operatorname{Spec} \Lambda=\operatorname{Hom}\left(G, \mathbb{k}^{\times}\right)$defined by the ideal of codim $d-1$ minors of a presentation matrix for $H_{i}\left(X^{\mathrm{ab}}, \mathbb{k}\right)$, viewed as module over $\Lambda=\mathbb{k} H_{1}(X, \mathbb{Z})$.

Proposition (Papadima-S. 2008)

$$
\bigcup_{i=0}^{q} \mathcal{V}_{1}^{i}(X, \mathbb{k})=\bigcup_{i=0}^{q} \mathcal{W}_{1}^{i}(X, \mathbb{k}), \quad \forall 0 \leq q \leq k
$$

$\Longrightarrow \quad \mathcal{V}_{1}^{1}(X, \mathbb{C}) \backslash\{1\}=\mathcal{W}_{1}^{1}(X, \mathbb{C}) \backslash\{1\} \quad[\mathrm{E}$. Hironaka 1997]

Tangent cones and exponential tangent cones

The homomorphism $\mathbb{C} \rightarrow \mathbb{C}^{\times}, z \mapsto e^{z}$ induces

$$
\exp : \operatorname{Hom}(G, \mathbb{C}) \rightarrow \operatorname{Hom}\left(G, \mathbb{C}^{\times}\right), \quad \exp (0)=1
$$

Let $W=V(I)$ be a Zariski closed subset in $\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)$.

Definition

- The tangent cone at 1 to W :

$$
T C_{1}(W)=V(\operatorname{in}(I))
$$

- The exponential tangent cone at 1 to W :

$$
\tau_{1}(W)=\{z \in \operatorname{Hom}(G, \mathbb{C}) \mid \exp (t z) \in W, \forall t \in \mathbb{C}\}
$$

Both types of tangent cones

- are homogeneous subvarieties of $\operatorname{Hom}(G, \mathbb{C})$
- are non-empty iff $1 \in W$
- depend only on the analytic germ of W at 1
- commute with finite unions and arbitrary intersections

Moreover,

- $\tau_{1}(W) \subseteq T C_{1}(W)$
- = if all irred components of W are subtori
- \neq in general
- $\tau_{1}(W)$ is a finite union of rationally defined subspaces

Computing $\tau_{1}(W)$

Let W be a Zariski closed subset of $\left(\mathbb{C}^{\times}\right)^{n}$.
Since τ_{1} commutes with intersections, may assume $W=V(f)$, where

$$
f=\sum_{u \in S} c_{u} t_{1}^{u_{1}} \cdots t_{n}^{u_{n}}
$$

is a non-zero Laurent polynomial, with $f(1)=0$, and support $S \subseteq \mathbb{Z}^{n}$.
Let \mathcal{P} be the set of partitions $p=S_{1} \amalg \cdots \amalg S_{r}$ of S, satisfying

$$
\sum_{u \in S_{i}} c_{u}=0, \quad \text { for } i=1, \ldots, r
$$

For each such partition p, set

$$
L(p):=\left\{z \in \mathbb{C}^{n} \mid\langle u-v, z\rangle=0, \forall u, v \in S_{i}, \forall 1 \leq i \leq r\right\} .
$$

Clearly, $L(p)$ is a rational linear subspace in \mathbb{C}^{n}. Then:

$$
\tau_{1}(W)=\bigcup_{p \in \mathcal{P}} L(p)
$$

Resonance varieties

Let $A=H^{*}(X, \mathbb{k})$. If char $\mathbb{k}=2$, assume $H_{1}(X, \mathbb{Z})$ has no 2-torsion. Then: $a \in A^{1} \Rightarrow a^{2}=0$. Get cochain complex ("Aomoto complex")

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \longrightarrow \cdots
$$

Definition

The resonance varieties of X (over \mathbb{k}):

$$
\mathcal{R}_{d}^{i}(X, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{i}(A, \cdot a) \geq d\right\}
$$

Homogeneous subvarieties of $A^{1}=H^{1}(X, \mathbb{k}): \mathcal{R}_{1}^{i} \supseteq \mathcal{R}_{2}^{i} \supseteq \cdots$
Theorem (Libgober 2002)

$$
T C_{1}\left(\mathcal{V}_{d}^{i}(X, \mathbb{C})\right) \subseteq \mathcal{R}_{d}^{i}(X, \mathbb{C})
$$

Equality does not hold in general (Matei-S. 2002)

Formality

Definition

(1) A group G is 1 -formal if its Malcev Lie algebra, $\mathfrak{m}_{G}=\operatorname{Prim}(\widehat{\mathbb{Q} G})$, is quadratic.
(2) A space X is formal if its minimal model is quasi-isomorphic to $\left(H^{*}(X, \mathbb{Q}), 0\right)$.

- X formal $\Longrightarrow \pi_{1}(X)$ is 1-formal.
- X_{1}, X_{2} formal $\Longrightarrow X_{1} \times X_{2}$ and $X_{1} \vee X_{2}$ are formal
- G_{1}, G_{2} 1-formal $\Longrightarrow G_{1} \times G_{2}$ and $G_{1} * G_{2}$ are 1-formal
- M_{1}, M_{2} formal, closed n-manifolds $\Longrightarrow M_{1} \# M_{2}$ formal

Tangent cone theorem

Theorem (Dimca-Papadima-S., Duke 2009)

If G is 1 -formal, then $\exp :\left(\mathcal{R}_{d}^{1}(G, \mathbb{C}), 0\right) \xrightarrow{\simeq}\left(\mathcal{V}_{d}^{1}(G, \mathbb{C}), 1\right)$. Hence

$$
\tau_{1}\left(\mathcal{V}_{d}^{1}(G, \mathbb{C})\right)=T C_{1}\left(\mathcal{V}_{d}^{1}(G, \mathbb{C})\right)=\mathcal{R}_{d}^{1}(G, \mathbb{C})
$$

In particular, $\mathcal{R}_{d}^{1}(G, \mathbb{C})$ is a union of rationally defined subspaces in $H^{1}(G, \mathbb{C})=\operatorname{Hom}(G, \mathbb{C})$.

Example

Let $G=\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid\left[x_{1}, x_{2}\right],\left[x_{1}, x_{4}\right]\left[x_{2}^{-2}, x_{3}\right],\left[x_{1}^{-1}, x_{3}\right]\left[x_{2}, x_{4}\right]\right\rangle$. Then

$$
\mathcal{R}_{1}^{1}(G, \mathbb{C})=\left\{x \in \mathbb{C}^{4} \mid x_{1}^{2}-2 x_{2}^{2}=0\right\}
$$

splits into subspaces over \mathbb{R} but not over \mathbb{Q}. Thus, G is not 1 -formal.

Example

- $X=F\left(\Sigma_{g}, n\right)$: the configuration space of n labeled points of a Riemann surface of genus g (a smooth, quasi-projective variety).
- $\pi_{1}(X)=P_{g, n}$: the pure braid group on n strings on Σ_{g}.

Using computation of $H^{*}\left(F\left(\Sigma_{g}, n\right), \mathbb{C}\right)$ by Totaro (1996), get

$$
\mathcal{R}_{1}^{1}\left(P_{1, n}, \mathbb{C}\right)=\left\{(x, y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \left\lvert\, \begin{array}{l}
\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}=0, \\
x_{i} y_{j}-x_{j} y_{i}=0, \text { for } 1 \leq i<j<n
\end{array}\right.\right\}
$$

For $n \geq 3$, this is an irreducible, non-linear variety (a rational normal scroll). Hence, $P_{1, n}$ is not 1 -formal.

Bieri-Neumann-Strebel-Renz invariants

G finitely generated group $\rightsquigarrow \mathcal{C}(G)$ Cayley graph. $\chi: G \rightarrow \mathbb{R}$ homomorphism $\rightsquigarrow \mathcal{C}_{\chi}(G)$ induced subgraph on vertex set $G_{\chi}=\{g \in G \mid \chi(g) \geq 0\}$.

Definition
 $\Sigma^{1}(G)=\left\{\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\} \mid \mathcal{C}_{\chi}(G)\right.$ is connected $\}$

An open, conical subset of $\operatorname{Hom}(G, \mathbb{R})=H^{1}(G, \mathbb{R})$, independent of choice of generating set for G.

Definition
 $\Sigma^{k}(G, \mathbb{Z})=\left\{\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\} \mid\right.$ the monoid G_{χ} is of type $\left.\mathrm{FP}_{k}\right\}$

Here, G is of type FP_{k} if there is a projective $\mathbb{Z} G$-resolution $P_{\bullet} \rightarrow \mathbb{Z}$, with P_{i} finitely generated for all $i \leq k$.

- The BNSR invariants $\Sigma^{q}(G, \mathbb{Z})$ form a descending chain of open subsets of $\operatorname{Hom}(G, \mathbb{R}) \backslash\{0\}$.
- $\Sigma^{k}(G, \mathbb{Z}) \neq \emptyset \Longrightarrow G$ is of type FP_{k}.
- $\Sigma^{1}(G, \mathbb{Z})=\Sigma^{1}(G)$.
- The Σ-invariants control the finiteness properties of normal subgroups $N \triangleleft G$ with G / N is abelian:

$$
N \text { is of type } \mathrm{FP}_{k} \Longleftrightarrow S(G, N) \subseteq \Sigma^{k}(G, \mathbb{Z})
$$

where $S(G, N)=\{\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\} \mid \chi(N)=0\}$.

- In particular:

$$
\operatorname{ker}(\chi: G \rightarrow \mathbb{Z}) \text { is f.g. } \Longleftrightarrow\{ \pm \chi\} \subseteq \Sigma^{1}(G)
$$

Let X be a connected CW-complex with finite 1 -skeleton, $G=\pi_{1}(X)$.

Definition

The Novikov-Sikorav completion of $\mathbb{Z} G$:

$$
\widehat{\mathbb{Z}}_{\chi}=\left\{\lambda \in \mathbb{Z}^{G} \mid\{g \in \operatorname{supp} \lambda \mid \chi(g)<c\} \text { is finite, } \forall c \in \mathbb{R}\right\}
$$

$\widehat{\mathbb{Z} G_{\chi}}$ is a ring, contains $\mathbb{Z} G$ as a subring $\Longrightarrow \widehat{\mathbb{Z} G}$ is a $\mathbb{Z} G$-module.

Definition

$\Sigma^{q}(X, \mathbb{Z})=\left\{\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\} \mid H_{i}\left(X, \widehat{\mathbb{Z}}_{-\chi}\right)=0, \forall i \leq q\right\}$
Bieri: G of type $\mathrm{FP}_{k} \Longrightarrow \Sigma^{q}(G, \mathbb{Z})=\Sigma^{q}(K(G, 1), \mathbb{Z}), \forall q \leq k$.

Exponential tangent cone upper bound

Theorem (Papadima-S. 2008)
If X has finite k-skeleton, then, for every $q \leq k$,

$$
\begin{equation*}
\Sigma^{q}(X, \mathbb{Z}) \subseteq\left(\tau_{1}^{\mathbb{R}}\left(\bigcup_{i \leq q} \mathcal{\nu}_{1}^{i}(X, \mathbb{C})\right)\right)^{c} \tag{*}
\end{equation*}
$$

Thus: Each Σ-invariant is contained in the complement of a union of rationally defined subspaces. Bound is sharp:

Example

Let G be a finitely generated nilpotent group. Then

$$
\Sigma^{q}(G, \mathbb{Z})=\operatorname{Hom}(G, \mathbb{R}) \backslash\{0\}, \quad V_{1}^{q}(G, \mathbb{C})=\{1\}, \quad \forall q
$$

and so (*) holds as an equality.

Resonance upper bound

Corollary

Suppose exp: $\left(\mathcal{R}_{1}^{i}(X, \mathbb{C}), 0\right) \xrightarrow{\simeq}\left(\mathcal{V}_{1}^{i}(X, \mathbb{C}), 1\right)$, for $i \leq q$. Then:

$$
\Sigma^{q}(X, \mathbb{Z}) \subseteq\left(\bigcup_{i \leq q} \mathcal{R}_{1}^{i}(X, \mathbb{R})\right)^{\complement}
$$

Corollary

Suppose G is a 1 -formal group. Then $\Sigma^{1}(G) \subseteq \mathcal{R}_{1}^{1}(G, \mathbb{R})^{\text {b }}$. In particular, if $\mathcal{R}_{1}^{1}(G, \mathbb{R})=H^{1}(G, \mathbb{R})$, then $\Sigma^{1}(G)=\emptyset$.

Example

The above inclusion may be strict: Let $G=\left\langle a, b \mid a b a^{-1}=b^{2}\right\rangle$. Then G is 1 -formal, $\Sigma^{1}(G)=(-\infty, 0)$, yet $\mathcal{R}_{1}^{1}(G, \mathbb{R})=\{0\}$.

Kähler and quasi-Kähler manifolds

- A compact, connected, complex manifold M is Kähler if there is a Hermitian metric h such that $\omega=\mathfrak{I m}(h)$ is a closed 2-form.
- A manifold X is called quasi-Kähler if $X=\bar{X} \backslash D$, where \bar{X} is Kähler and D is a divisor with normal crossings.

Formality properties:

- M Kähler $\Rightarrow M$ is formal
(Deligne, Griffiths, Morgan, Sullivan 1975)
- $X=\mathbb{C P}^{n} \backslash\{$ hyperplane arrangement $\} \Rightarrow X$ is formal
(Brieskorn 1973)
- X quasi-projective, $W_{1}\left(H^{1}(X, \mathbb{C})\right)=0 \Rightarrow \pi_{1}(X)$ is 1-formal
(Morgan 1978)
- $X=\mathbb{C P}^{n} \backslash\{$ hypersurface $\} \Rightarrow \pi_{1}(X)$ is 1-formal
(Kohno 1983)

Theorem (Arapura 1997)

Let $X=\bar{X} \backslash D$ be a quasi-Kähler manifold. Then:
(1) Each component of $\mathcal{V}_{1}^{1}(X)$ is either an isolated unitary character, or of the form $\rho \cdot f^{*}\left(H^{1}\left(C, \mathbb{C}^{\times}\right)\right)$, for some torsion character ρ and some admissible map $f: X \rightarrow C$.
(2) If either $X=\bar{X}$ or $b_{1}(\bar{X})=0$, then each component of $\mathcal{V}_{d}^{i}(X)$ is of the form $\rho \cdot f^{*}\left(H^{1}\left(T, \mathbb{C}^{\times}\right)\right)$, for some unitary character ρ and some holomorphic map $f: X \rightarrow T$ to a complex torus.

Here, $f: X \rightarrow C$ is admissible (or, a pencil) if f is a holomorphic, surjective map to a connected, smooth complex curve C, and there is a holomorphic, surjective extension $\bar{f}: \bar{X} \rightarrow \bar{C}$ with connected fibers.

Corollary

All components of $\mathcal{V}_{d}^{i}(X, \mathbb{C})$ passing through 1 are subtori of $\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)$, provided $i=d=1$, or X is Kähler, or $W_{1}\left(H^{1}(X, \mathbb{C})\right)=0$.

Let X be a quasi-Kähler manifold, $G=\pi_{1}(X)$.

Theorem (Dimca-Papadima-S., Duke 2009)

Let $\left\{\mathcal{V}^{\alpha}\right\}_{\alpha}$ be the irred components of $\mathcal{V}_{1}^{1}(G)$ containing 1 . Set $\mathcal{T}^{\alpha}=T C_{1}\left(\mathcal{V}^{\alpha}\right)$. Then:
(1) Each \mathcal{T}^{α} is a p-isotropic subspace of $H^{1}(G, \mathbb{C})$, of $\operatorname{dim} \geq 2 p+2$, for some $p=p(\alpha) \in\{0,1\}$.
(2) If $\alpha \neq \beta$, then $\mathcal{T}^{\alpha} \cap \mathcal{T}^{\beta}=\{0\}$.

Assume further that G is 1 -formal. Let $\left\{\mathcal{R}^{\alpha}\right\}_{\alpha}$ be the irred components of $\mathcal{R}_{1}^{1}(G)$. Then:
(3) $\left\{\mathcal{T}^{\alpha}\right\}_{\alpha}=\left\{\mathcal{R}^{\alpha}\right\}_{\alpha}$.
(4) $\mathcal{R}_{d}^{1}(G)=\{0\} \cup \bigcup_{\alpha: \operatorname{dim} \mathcal{R}^{\alpha}>d+p(\alpha)} \mathcal{R}^{\alpha}$.

Let X be a quasi-Kähler manifold, $G=\pi_{1}(X)$.

Theorem (Papadima-S. 2008)

(1) $\Sigma^{1}(G) \subseteq T C_{1}^{\mathbb{R}}\left(\mathcal{V}_{1}^{1}(G, \mathbb{C})\right)^{\mathrm{C}}$.
(2) If X is Kähler, or $W_{1}\left(H^{1}(X, \mathbb{C})\right)=0$, then $\mathcal{R}_{1}^{1}(G, \mathbb{R})$ is a finite union of rationally defined linear subspaces, and $\Sigma^{1}(G) \subseteq \mathcal{R}_{1}^{1}(G, \mathbb{R})^{\text {b }}$.

Example

Assumption from (2) is necessary. E.g., let X be the complex Heisenberg manifold: bundle $\mathbb{C}^{\times} \rightarrow X \rightarrow\left(\mathbb{C}^{\times}\right)^{2}$ with $e=1$. Then:
(1) X is a smooth quasi-projective variety;
(2) $G=\pi_{1}(X)$ is nilpotent (and not 1-formal);
(0) $\Sigma^{1}(G)=\mathbb{R}^{2} \backslash\{0\}$ and $\mathcal{R}_{1}^{1}(G, \mathbb{R})=\mathbb{R}^{2}$.

Thus, $\Sigma^{1}(G) \nsubseteq \mathcal{R}_{1}^{1}(G, \mathbb{R})^{c}$.

For Kähler manifolds, we can say precisely when the resonance upper bound for Σ^{1} is attained.

Theorem (Papadima-S. 2008)

Let M be a compact Kähler manifold with $b_{1}(M)>0$, and $G=\pi_{1}(M)$. The following are equivalent:
(1) $\Sigma^{1}(G)=\mathcal{R}_{1}^{1}(G, \mathbb{R})^{C}$.
(2) If $f: M \rightarrow C$ is an elliptic pencil, then f has no multiple fibers.

Proof uses results of Arapura, DPS, and Delzant.

Toric complexes and right-angled Artin groups

Definition

Let L be simplicial complex on n vertices. The associated toric complex, T_{L}, is the subcomplex of the n-torus obtained by deleting the cells corresponding to the missing simplices of L.

- Special case of "generalized moment angle complex".
- $\pi_{1}\left(T_{L}\right)$ is the right-angled Artin group associated to graph $\Gamma=L^{(1)}$:

$$
\left.G_{\Gamma}=\langle v \in V(\Gamma)| v w=w v \text { if }\{v, w\} \in E(\Gamma)\right\rangle .
$$

- $K\left(G_{\Gamma}, 1\right)=T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ.
- $H^{*}\left(T_{L}, \mathbb{k}\right)$ is the exterior Stanley-Reisner ring of L, with generators the duals v^{*}, and relations the monomials corresponding to the missing simplices of L.
- T_{L} is formal, and so G_{Γ} is 1 -formal.

Example

- $\Gamma=\bar{K}_{n} \Rightarrow G_{\Gamma}=F_{n}$
- $\Gamma=\Gamma^{\prime} \amalg^{\prime \prime} \Rightarrow G_{\Gamma}=G_{\Gamma^{\prime}} * G_{\Gamma^{\prime \prime}}$
- $\Gamma=K_{n} \Rightarrow G_{\Gamma}=\mathbb{Z}^{n}$
- $\Gamma=\Gamma^{\prime} * \Gamma^{\prime \prime} \Rightarrow G_{\Gamma}=G_{\Gamma^{\prime}} \times G_{\Gamma^{\prime \prime}}$

Using a result of Aramova, Avramov, Herzog (2000), we get:
Theorem (Papadima-S., Adv. Math. 2009)

$$
\mathcal{R}_{d}^{i}\left(T_{L}, \mathbb{k}\right)=\bigcup_{\sum_{\sigma \in L_{V} \mid W} \operatorname{dim}_{\mathbb{K}} \tilde{H}_{i-1-\mathcal{V}|\sigma|}\left(\mathbb{k}_{L_{W}}(\sigma), \mathbb{k}\right) \geq d} \mathbb{k}^{\mathrm{W}},
$$

where L_{W} is the subcomplex induced by L on W , and $\mathrm{k}_{\kappa}(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

Similar formula holds for $\nu_{d}^{i}\left(T_{L}, \mathbb{k}\right)$, with \mathbb{k}^{W} replaced by $\left(\mathbb{k}^{\times}\right)^{\mathrm{W}}$. In particular: $\exp :\left(\mathcal{R}_{d}^{i}\left(T_{L}, \mathbb{C}\right), 0\right) \xrightarrow{\simeq}\left(\mathcal{V}_{d}^{i}\left(T_{L}, \mathbb{C}\right), 1\right)$.

Non-propagation of resonance

Remark

Given a graded algebra A, we say resonance "propagates" if

$$
\mathcal{R}_{1}^{i}(A) \subseteq \mathcal{R}_{1}^{k}(A), \forall i \leq k, \quad \text { provided } A^{j} \neq 0, \text { for } i \leq j \leq k
$$

If A is the Orlik-Solomon algebra, then resonance propagates. But this is not the case for the exterior Stanley-Reisner ring.

Example

Let $\Gamma=\Gamma_{1} \amalg \Gamma_{2}$, where $\Gamma_{j}=K_{n_{j}}$ and $n_{j} \geq 2$, e.g.:

Then:

$$
\mathcal{R}_{1}^{i}\left(G_{\Gamma}, \mathbb{k}\right)= \begin{cases}\mathbb{k}^{n_{1}+n_{2}}, & \text { if } i=1, \\ \mathbb{k}^{n_{1}} \times\{0\} \cup\{0\} \times \mathbb{k}^{n_{2}}, & \text { if } 1<i \leq \min \left(n_{1}, n_{2}\right)\end{cases}
$$

Using (1) resonance upper bound, and (2) computation of $\Sigma^{k}\left(G_{\Gamma}, \mathbb{Z}\right)$ by Meier, Meinert, VanWyk (1998), we get:

Corollary (Papadima-S. 2008)

$$
\begin{aligned}
\Sigma^{k}\left(T_{L}, \mathbb{Z}\right) & \subseteq\left(\bigcup_{i \leq k} \mathcal{R}_{1}^{i}\left(T_{L}, \mathbb{R}\right)\right)^{\complement} \\
\Sigma^{k}\left(G_{\Gamma}, \mathbb{Z}\right) & =\left(\bigcup_{i \leq k} \mathcal{R}_{1}^{i}\left(T_{\Delta_{\Gamma}}, \mathbb{R}\right)\right)^{\complement}
\end{aligned}
$$

Theorem (Dimca-Papadima-S. Duke 2009)

The following are equivalent:
(1) G_{Γ} is a quasi-Kähler group
(2) $\Gamma=K_{n_{1}, \ldots, n_{r}}:=\bar{K}_{n_{1}} * \cdots * \bar{K}_{n_{r}}$
(3) $G_{\Gamma}=F_{n_{1}} \times \cdots \times F_{n_{r}}$
(1) G_{Γ} is a Kähler group
(2) $\Gamma=K_{2 r}$
(3) $G_{\Gamma}=\mathbb{Z}^{2 r}$

Bestvina-Brady groups: $N_{\Gamma}=\operatorname{ker}\left(\nu: G_{\Gamma} \rightarrow \mathbb{Z}\right)$, where $\nu(v)=1$

Theorem (Dimca-Papadima-S., JAG 2008)

The following are equivalent:
(1) N_{Γ} is a quasi-Kähler group
(2) Γ is either a tree, or $\Gamma=K_{n_{1}, \ldots, n_{r}}$, with some $n_{i}=1$, or all $n_{i} \geq 2$ and $r \geq 3$.
(1) N_{Γ} is a Kähler group
(2) $\Gamma=K_{2 r+1}$
(3) $N_{\Gamma}=\mathbb{Z}^{2 r}$

Example

$\Gamma=K_{2,2,2} \rightsquigarrow G_{\Gamma}=F_{2} \times F_{2} \times F_{2}$
$N_{\Gamma}=$ the Stallings group $=$ group of the X_{3} arrangement
N_{Γ} is finitely presented, but $H_{3}\left(N_{\Gamma}, \mathbb{Z}\right)$ has infinite rank, so N_{Γ} not FP_{3}.

3-manifolds

Question (Goldman-Donaldson 1989, Reznikov 1993)

Which 3-manifold groups are Kähler groups?
Reznikov (2002) and Hernández-Lamoneda (2001) gave partial solutions.

Theorem (Dimca-S., JEMS 2009)

Let G be the fundamental group of a closed 3-manifold. Then G is a Kähler group $\Longleftrightarrow G$ is a finite subgroup of $\mathrm{O}(4)$, acting freely on S^{3}.

Idea of proof: compare the resonance varieties of (orientable) 3 -manifolds to those of Kähler manifolds.

Proposition

Let M be a closed, orientable 3-manifold. Then:
(1) $H^{1}(M, \mathbb{C})$ is not 1 -isotropic.
(2) If $b_{1}(M)$ is even, then $\mathcal{R}_{1}(M, \mathbb{C})=H^{1}(M, \mathbb{C})$.

On the other hand, it follows from [DPS 2009] that:

Proposition

Let M be a compact Kähler manifold with $b_{1}(M) \neq 0$. If $\mathcal{R}_{1}(M, \mathbb{C})=H^{1}(M, \mathbb{C})$, then $H^{1}(M, \mathbb{C})$ is 1 -isotropic.

But $G=\pi_{1}(M)$, with M Kähler $\Rightarrow b_{1}(G)$ even.
Thus, if G is both a 3-mfd group and a Kähler group $\Rightarrow b_{1}(G)=0$. Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan's property (T), as well as Perelman $(2003) \Rightarrow G$ finite subgroup of $O(4)$.

Question

Which 3-manifold groups are quasi-Kähler groups?

Theorem (Dimca-Papadima-S. 2008)

Let G be the fundamental group of a closed, orientable 3-manifold. Assume G is 1 -formal. Then the following are equivalent:
(1) $\mathfrak{m}(G) \cong \mathfrak{m}\left(\pi_{1}(X)\right)$, for some quasi-Kähler manifold X.
(2) $\mathfrak{m}(G) \cong \mathfrak{m}\left(\pi_{1}(M)\right)$, where M is either $S^{3}, \#^{n} S^{1} \times S^{2}$, or $S^{1} \times \Sigma_{g}$.

Hyperplane arrangements

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{C}^{ℓ}, with complement $X=\mathbb{C}^{\ell} \backslash \bigcup_{H \in \mathcal{A}} H$, and group $G=\pi_{1}(X)$.

- Resonance varieties $\mathcal{R}_{d}^{1}(X, \mathbb{C})$ are very much understood.
- Propagation of resonance: $\mathcal{R}_{1}^{i}(X, \mathbb{C}) \subseteq \mathcal{R}_{1}^{j}(X, \mathbb{C}), \forall i<j \leq \ell$.
- Tangent cone formula:

$$
\exp :\left(\mathcal{R}_{d}^{i}(X, \mathbb{C}), 0\right) \xrightarrow{\simeq}\left(\mathcal{V}_{d}^{i}(X, \mathbb{C}), 1\right), \forall i, d>0
$$

In particular, $\operatorname{TC}_{1}\left(\mathcal{V}_{d}^{i}(X, \mathbb{C})\right)=\mathcal{R}_{d}^{i}(X, \mathbb{C})$.

- Components of $\mathcal{V}_{d}^{1}(X, \mathbb{C})$ passing through 1 are combinatorially determined.
- $\mathcal{V}_{1}^{1}(X, \mathbb{C})$ may contain translated subtori, e.g., if \mathcal{A} is the deleted B_{3} arrangement.

Using (1) res upper bound and (2) propagation of resonance, we get:

Theorem

$$
\Sigma^{q}(X, \mathbb{Z}) \subseteq \mathcal{R}_{1}^{q}(X, \mathbb{R})^{c}
$$

Problem

Let $G=G(\mathcal{A})$ be an arrangement group.
(1) Compute the BNS invariant $\Sigma^{1}(G)$.
(2) Does the equality $\Sigma^{1}(G)=-\Sigma^{1}(G)$ hold?
(3) Even stronger, does the equality $\Sigma^{1}(G)=\mathcal{R}_{1}(G, \mathbb{R})^{c}$ hold?
(9) If it doesn't, is the BNS invariant combinatorially determined?

Remark

For a complexified real arrangement, $\Sigma^{1}(G)=-\Sigma^{1}(G)$, which is consistent with the symmetry property of $\mathcal{R}_{1}(G, \mathbb{R})^{C}$.

Boundary manifold

Let $\mathcal{A}=\left\{\ell_{0}, \ldots, \ell_{n}\right\}$ be an arrangement of lines in $\mathbb{C P}^{2}$. The boundary manifold of \mathcal{A} is the closed, orientable 3-manifold $M=M(\mathcal{A})$ obtained by taking the boundary of a regular neighborhood of $\bigcup_{i=0}^{n} \ell_{i}$ in $\mathbb{C P}^{2}$.

Theorem (Cohen-S., GTM 08, Dimca-Papadima-S., IMRN 08)

Let $\mathcal{A}=\left\{\ell_{0}, \ldots, \ell_{n}\right\}$ be an arrangement of lines in $\mathbb{C P}^{2}$, and let M be the corresponding boundary manifold. The following are equivalent:
(1) The manifold M is formal.
(2) The group $G=\pi_{1}(M)$ is 1 -formal.
(3) $T C_{1}\left(V_{1}(G, \mathbb{C})\right)=\mathcal{R}_{1}(G, \mathbb{C})$.
(3) The group G is quasi-projective.
(6) \mathcal{A} is either a pencil (and so $M=\sharp^{n} S^{1} \times S^{2}$), or \mathcal{A} is a near-pencil (and so $M=S^{1} \times \Sigma_{n-1}$).

Milnor fibration

- $f \in \mathbb{C}\left[z_{0}, \ldots, z_{d}\right]$ weighted homogeneous polynomial of degree n, with positive integer weights $\left(w_{0}, \ldots, w_{d}\right)$.
- $V(f)$ the zero-set of $f: \mathbb{C}^{d+1} \rightarrow \mathbb{C}$.
- $X=\mathbb{C}^{d+1} \backslash V(f)$ its complement.
- Milnor fibration: $f: X \rightarrow \mathbb{C}^{*}$.
- Milnor fiber: $F=f^{-1}(1)$. It is a smooth affine variety, with the homotopy type of a d-dimensional, finite CW-complex. When $(V(f), 0)$ is reduced, F is connected.
- Geometric monodromy: $h: F \rightarrow F$, $\left(z_{0}, \ldots, z_{d}\right) \mapsto\left(\xi^{w_{0}} z_{0}, \ldots, \xi^{w_{d}} z_{d}\right)$, where $\xi=\exp (2 \pi i / n)$.
- If f is homogeneous, F is a regular, n-fold cyclic cover of $U=\mathbb{C P}^{d} \backslash V(f)$.
- Hence, we may compute $b_{1}(F)$ from $\mathcal{V}_{d}^{1}(U, \mathbb{C})$.

Question (Papadima-S., BMSR 2009)

Is the Milnor fiber of a reduced polynomial always 1 -formal?

Example (Zuber 2009)

Let \mathcal{A} be the monomial arrangement in \mathbb{C}^{3}, defined by the polynomial

$$
f\left(z_{0}, z_{1}, z_{2}\right)=\left(z_{0}^{3}-z_{1}^{3}\right)\left(z_{0}^{3}-z_{2}^{3}\right)\left(z_{1}^{3}-z_{2}^{3}\right)
$$

Then $T C_{1}\left(\mathcal{V}_{1}(F, \mathbb{C})\right) \neq \mathcal{R}_{1}(F, \mathbb{C})$. Hence, by the Tangent Cone Theorem, F is not 1 -formal.

Example (Fernández de Bobadilla 2009)

Let
$f\left(z_{0}, \ldots, z_{10}\right)=z_{0} z_{2} z_{3} z_{5} z_{6}+z_{0} z_{2} z_{4} z_{7}+z_{1} z_{2} z_{4} z_{8}+z_{1} z_{3} z_{5} z_{9}+z_{1} z_{3} z_{4} z_{10}$

- f is weighted homogeneous of degree 5 , with weights $(1,1,1,1,1,1,1,2,2,2,2)$.
- The Milnor fiber F is homotopy equivalent to the complement of the coordinate subspace arrangement $\mathcal{A}=\left\{H_{1}, \ldots, H_{5}\right\}$ in \mathbb{C}^{6}, with $H_{i}=\left\{x_{i}=x_{i+1}=0\right\}$.
- F is 2-connected.
- As shown in [Denham-S., PAMQ 2007], there are classes $\alpha, \beta, \gamma \in H^{3}(F, \mathbb{Z})=\mathbb{Z}^{5}$ such that the triple Massey product $\langle\alpha, \beta, \gamma\rangle \in H^{8}(F, \mathbb{Z})=\mathbb{Z}$ is non-zero.
- Hence, F is not formal.

