Social choice on complex objects: A geometric approach

Luigi Marengo and Simona Settepanella

Arrangements in Sapporo 1-13 August 2009

We assume that choices are made over a set of n elements or features $F = \{f_1, \ldots, f_n\}$ taking a value out of a finite set of m + 1 possibilities, i.e. $f_i \in \{0, 1, 2, \ldots, m\}$. Then the space of possibilities is given by $(m+1)^n$ possible configurations $X = \{x_1, \ldots, x_{(m+1)^n}\}$.

Let us choose in \mathbb{R}^n an hyperplane arrangement

$$\mathcal{A}_{n,m} = \{H_{i,j}\}_{\substack{1 \le i \le n \\ 0 \le j \le m-1}},$$

where $H_{i,j}$ is the hyperplane of equation $y_i = j$; i.e. an hyperplane parallel to a coordinate hyperplane of an orthogonal Cartesian system in \mathbb{R}^n .

Then each configuration $x_i = i_1 \cdots i_n$ corresponds to the chamber C_i which contains the open set

$$\{(y_1,\ldots,y_n) \in \mathbb{R}^n \mid i_j - 1 < y_j < i_j, j = 1,\ldots,n\}.$$

If P is a set of transitive preferences, a social decision rule \mathcal{R} is a function:

$$\mathcal{R}: P^{n} \longrightarrow \overline{P}$$
$$(\succeq_{1}, \dots, \succeq_{k}) \longmapsto \succeq_{\mathcal{R}(\succeq_{1}, \dots, \succeq_{k})}$$

which associates a societal rule $\succeq_{\mathcal{R}(\succeq_1,...,\succeq_k)}$ to the preferences of k agents.

Let us assume that for any two configurations x_i and x_j it is always possible to say if $x_i \succeq_{\mathcal{R}(\succeq_1,...,\succeq_n)} x_j$, $x_j \succeq_{\mathcal{R}(\succeq_1,...,\succeq_n)} x_i$ or both. In a very natural way if Δ is the diagonal of the cartesian product $X \times X$, then an element $\succeq_{\mathcal{R}} \in \overline{P}$ defines a subset

$$Y_{1,\succeq_{\mathcal{R}}} \subset X \times X \setminus \Delta$$

as follows: a couple (x_i, x_j) is in $Y_{1, \succeq \mathcal{R}}$ if and only if $x_i \succ_{\mathcal{R}} x_j$; both (x_i, x_j) and (x_j, x_i) are in $Y_{1, \succeq \mathcal{R}}$ iff $x_i \succeq_{\mathcal{R}} x_j$ and $x_j \succeq_{\mathcal{R}} x_i$.

Moreover we can represent the sets X and $Y_{1,\succeq_{\mathcal{R}}}$ respectively as the set of vertices and edges of an oriented graph $\mathcal{Y}_{\succeq_{\mathcal{R}}}$.

Two vertices x_i and x_j in X are connected by an edge if and only if $(x_i, x_j) \in Y_{1, \succeq_{\mathcal{R}}}$ or $(x_j, x_i) \in Y_{1, \succeq_{\mathcal{R}}}$, while the orientation is from x_i to x_j in the first case and from x_j to x_i in the latter. Then a rule $\succ_{\mathcal{R}}$ of the form:

 $\begin{array}{l} (0,0,0) \text{ preferred to all except } (1,1,0) \succ_{\mathcal{R}} (0,0,0), (0,0,1) \succ_{\mathcal{R}} (0,0,0); \\ (0,1,0) \prec_{\mathcal{R}} (0,1,1), (0,1,0) \prec_{\mathcal{R}} (1,1,1), (0,1,0) \prec_{\mathcal{R}} (1,0,0), \\ (0,1,0) \succ_{\mathcal{R}} (1,0,1), (0,1,0) \succ_{\mathcal{R}} (1,1,0), (0,1,0) \prec_{\mathcal{R}} (0,0,1); \\ (0,1,1) \succ_{\mathcal{R}} (1,1,1), (0,1,1) \succ_{\mathcal{R}} (1,0,0), (0,1,1) \succ_{\mathcal{R}} (1,0,1), \\ (0,1,1) \succ_{\mathcal{R}} (1,1,0), (0,1,1) \prec_{\mathcal{R}} (0,0,1); \\ (1,1,1) \succ_{\mathcal{R}} (1,0,0), (1,1,1) \succ_{\mathcal{R}} (1,0,1), (1,1,1) \succ_{\mathcal{R}} (1,1,0), (1,1,1) \succ_{\mathcal{R}} (0,0,1); \\ (1,0,0) \succ_{\mathcal{R}} (1,0,1), (1,0,0) \succ_{\mathcal{R}} (1,1,0), (1,0,0) \prec_{\mathcal{R}} (0,0,1); \\ (1,0,1) \succ_{\mathcal{R}} (1,1,0), (1,0,1) \prec_{\mathcal{R}} (0,0,1); \\ (1,1,0) \prec_{\mathcal{R}} (0,0,1). \end{array}$

is described by the following graph:

Let us remark that cycles in the oriented graph $\mathcal{Y}_{\succeq_{\mathcal{R}}}$ correspond exactly to cycles *á la* Condorcet-Arrow.

Salvetti's Complex in social choice

The set of generators $S_0(A_{n,m})$ of the 0-skeleton of the Salvetti's complex $S(A_{n,m})$ is in one to one correspondence with the set of chambers in $A_{n,m}$, i.e. with the set of configurations X.

While, given a rule $\succeq_{\mathcal{R}}$, any edge $(x_i, x_j) \in Y_{1, \succeq_{\mathcal{R}}}$ can be written as a formal sum of a minimal number of edges in the 1-skeleton $S_1(\mathcal{A}_{n,m})$. The number of elements is exactly the number of hyperplanes which separate the two configurations $x_i, x_j \in X$.

Then the above graph can be reduced as follows:

The voting process

Definition 1 Given a subset $I \subset \{1, ..., n\}$, a decision module A_I is a non empty subset of the arrangement $A_{n,m}$ of the form

$$\mathcal{A}_I = \{H_{i,j}\}_{\substack{i \in I \\ 0 \le j \le m-1}}.$$

Definition 2 A modules scheme is a set of decision modules $A = \{A_{I_1}, \dots, A_{I_k}\}$ such that $\cup_{j=1}^k I_j = \{1, \dots, n\}.$

Let A be a scheme, we call agenda α over a modules scheme $A = \{A_{I_1}, \ldots, A_{I_k}\}$ an ordered uple of indeces (h_0, \ldots, h_t) in $\{1, \ldots, k\}$ such that the set $\{h_0, \ldots, h_t\} = \{1, \ldots, k\}$. Then an agenda α sets the order in which our society should vote.

A configuration z is a local optimum for A if and only if it exists a starting configuration $x \in X$ such that the voting process ends up in z.

Given a local optimum z, a modules scheme A and an agenda α , the basin of attraction of z is the set $\Psi(z, A, \alpha)$ of all $x \in X$ such that exists a voting process starting in x and ending in z.

The dipendence of the optimum from the modules scheme is very strong.

Indeed there are many examples in which two different configurations $z_1, z_2 \in X$ are global optima for two different choice of modules schemes.

Indeed we have the following:

Theorem 1 Let \mathcal{R} be a societal decision rule over $X = S_0(\mathcal{A}_{n,m})$ and $z \in X$ be a given a configuration. Then z is a local optimum for a modules sheme A_z if and only if for any configuration xsuch that $x \succ_{\mathcal{R}} z$ then $d_p(x, z) > 1$. **Definition 3** Two configurations $z, x \in X$ are prominently separate if there exists two hyperplanes $H_{i_1,j_1}, H_{i_2,j_2} \in A_{n,m}$ with $i_1 \neq i_2$ and $z \mid H_{i_1,j_1} \mid x, z \mid H_{i_2,j_2} \mid x$.

The prominent distance $d_p(z, x)$, will be the minimum number of hyperplanes which prominently separate z and x.

Matters which deserve farther studies:

- Is it possible to generalize this description? Let us remark that many people started from social choice model obtaining general results in mathematics: for example H. Terao, G. Chichilnisky, S.Weinberger and others.
- 2. Are there sufficient conditions to characterize a global optimum? (problem in graph theory)
- 3. How does this model change when we apply it to customers instead of voters?