Social choice on complex objects: A geometric approach

Luigi Marengo and Simona Settepanella
Arrangements in Sapporo 1-13 August 2009

We assume that choices are made over a set of n elements or features $F=\left\{f_{1}, \ldots, f_{n}\right\}$ taking a value out of a finite set of $m+1$ possibilities, i.e. $f_{i} \in\{0,1,2, \ldots, m\}$.
Then the space of possibilities is given by $(m+1)^{n}$ possible configurations $X=\left\{x_{1}, \ldots, x_{(m+1)^{n}}\right\}$.

Let us choose in \mathbb{R}^{n} an hyperplane arrangement

$$
\mathcal{A}_{n, m}=\left\{H_{i, j}\right\}_{\substack{1 \leq i \leq n \\ 0 \leq j \leq m-1}}^{\substack{1 \\,}}
$$

where $H_{i, j}$ is the hyperplane of equation $y_{i}=j$; i.e. an hyperplane parallel to a coordinate hyperplane of an orthogonal Cartesian system in \mathbb{R}^{n}.
Then each configuration $x_{i}=i_{1} \cdots i_{n}$ corresponds to the chamber C_{i} which contains the open set

$$
\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n} \mid i_{j}-1<y_{j}<i_{j}, j=1, \ldots, n\right\}
$$

If P is a set of transitive preferences, a social decision rule \mathcal{R} is a function:

$$
\begin{aligned}
\left.\mathcal{R}: \begin{array}{c}
P^{n} \\
\left(\succeq_{1}, \ldots, \succeq_{k}\right)
\end{array}\right) \longrightarrow \succeq_{\mathcal{R}}\left(\succeq_{1}, \ldots, \succeq_{k}\right)
\end{aligned}
$$

which associates a societal rule $\succeq_{\mathcal{R}}\left(\succeq_{1}, \ldots, \succeq_{k}\right)$ to the preferences of k agents.
Let us assume that for any two configurations x_{i} and x_{j} it is always possible to say if $x_{i} \succeq_{\mathcal{R}}\left(\succeq_{1}, \ldots, \succeq_{n}\right) x_{j}, x_{j} \succeq_{\mathcal{R}}\left(\succeq_{1}, \ldots, \succeq_{n}\right) x_{i}$ or both.

In a very natural way if Δ is the diagonal of the cartesian product $X \times X$, then an element $\succeq_{\mathcal{R}} \in \bar{P}$ defines a subset

$$
Y_{1, \succeq_{\mathcal{R}}} \subset X \times X \backslash \Delta
$$

as follows: a couple $\left(x_{i}, x_{j}\right)$ is in $Y_{1, \succeq \mathcal{R}}$ if and only if $x_{i} \succ_{\mathcal{R}} x_{j}$; both $\left(x_{i}, x_{j}\right)$ and $\left(x_{j}, x_{i}\right)$ are in $Y_{1, \succeq \mathcal{R}}$ iff $x_{i} \succeq_{\mathcal{R}} x_{j}$ and $x_{j} \succeq_{\mathcal{R}} x_{i}$.

Moreover we can represent the sets X and $Y_{1, \succeq_{\mathcal{R}}}$ respectively as the set of vertices and edges of an oriented graph $\mathcal{Y}_{\succeq_{\mathcal{R}}}$.

Two vertices x_{i} and x_{j} in X are connected by an edge if and only if $\left(x_{i}, x_{j}\right) \in Y_{1, \succeq_{\mathcal{R}}}$ or $\left(x_{j}, x_{i}\right) \in Y_{1, \succeq_{\mathcal{R}}}$, while the orientation is from x_{i} to x_{j} in the first case and from x_{j} to x_{i} in the latter.

Then a rule $\succ_{\mathcal{R}}$ of the form:
($0,0,0$) preferred to all except $(1,1,0) \succ_{\mathcal{R}}(0,0,0),(0,0,1) \succ_{\mathcal{R}}(0,0,0)$;
$(0,1,0) \prec_{\mathcal{R}}(0,1,1),(0,1,0) \prec_{\mathcal{R}}(1,1,1),(0,1,0) \prec_{\mathcal{R}}(1,0,0)$,
$(0,1,0) \succ_{\mathcal{R}}(1,0,1),(0,1,0) \succ_{\mathcal{R}}(1,1,0),(0,1,0) \prec_{\mathcal{R}}(0,0,1) ;$
$(0,1,1) \succ_{\mathcal{R}}(1,1,1),(0,1,1) \succ_{\mathcal{R}}(1,0,0),(0,1,1) \succ_{\mathcal{R}}(1,0,1)$, $(0,1,1) \succ_{\mathcal{R}}(1,1,0),(0,1,1) \prec_{\mathcal{R}}(0,0,1)$;
$(1,1,1) \succ_{\mathcal{R}}(1,0,0),(1,1,1) \succ_{\mathcal{R}}(1,0,1),(1,1,1) \succ_{\mathcal{R}}(1,1,0),(1,1,1) \succ_{\mathcal{R}}(0,0$
$(1,0,0) \succ_{\mathcal{R}}(1,0,1),(1,0,0) \succ_{\mathcal{R}}(1,1,0),(1,0,0) \prec_{\mathcal{R}}(0,0,1)$;
$(1,0,1) \succ_{\mathcal{R}}(1,1,0),(1,0,1) \prec_{\mathcal{R}}(0,0,1)$;
$(1,1,0) \prec_{\mathcal{R}}(0,0,1)$.
is described by the following graph:

Let us remark that cycles in the oriented graph $\mathcal{Y}_{\succeq_{\mathcal{R}}}$ correspond exactly to cycles á la Condorcet-Arrow.

Salvetti's Complex in social choice

The set of generators $\mathcal{S}_{0}\left(\mathcal{A}_{n, m}\right)$ of the 0-skeleton of the Salvetti's complex $\mathcal{S}\left(\mathcal{A}_{n, m}\right)$ is in one to one correspondence with the set of chambers in $\mathcal{A}_{n, m}$, i.e. with the set of configurations X.

While, given a rule $\succeq_{\mathcal{R}}$, any edge $\left(x_{i}, x_{j}\right) \in Y_{1, \succeq_{\mathcal{R}}}$ can be written as a formal sum of a minimal number of edges in the 1-skeleton $\mathcal{S}_{1}\left(\mathcal{A}_{n, m}\right)$. The number of elements is exactly the number of hyperplanes which separate the two configurations $x_{i}, x_{j} \in X$.

Then the above graph can be reduced as follows:

The voting process

Definition 1 Given a subset $I \subset\{1, \ldots, n\}$, a decision module \mathcal{A}_{I} is a non empty subset of the arrangement $\mathcal{A}_{n, m}$ of the form

$$
\mathcal{A}_{I}=\left\{H_{i, j}\right\}_{\substack{i \leq j \leq m-1}}^{i \in I}
$$

Definition 2 A modules scheme is a set of decision modules $A=\left\{\mathcal{A}_{I_{1}}, \ldots, \mathcal{A}_{I_{k}}\right\}$ such that $\cup_{j=1}^{k} I_{j}=\{1, \ldots, n\}$.

Let A be a scheme, we call agenda α over a modules scheme $A=$ $\left\{\mathcal{A}_{I_{1}}, \ldots, \mathcal{A}_{I_{k}}\right\}$ an ordered uple of indeces $\left(h_{0}, \ldots, h_{t}\right)$ in $\{1, \ldots, k\}$ such that the set $\left\{h_{0}, \ldots, h_{t}\right\}=\{1, \ldots, k\}$. Then an agenda α sets the order in which our society should vote.

A configuration z is a local optimum for A if and only if it exists a starting configuration $x \in X$ such that the voting process ends up in z.

Given a local optimum z, a modules scheme A and an agenda α, the basin of attraction of z is the set $\Psi(z, A, \alpha)$ of all $x \in X$ such that exists a voting process starting in x and ending in z.

The dipendence of the optimum from the modules scheme is very strong.

Indeed there are many examples in which two different configurations $z_{1}, z_{2} \in X$ are global optima for two different choice of modules schemes.

Indeed we have the following:

Theorem 1 Let \mathcal{R} be a societal decision rule over $X=\mathcal{S}_{0}\left(\mathcal{A}_{n, m}\right)$ and $z \in X$ be a given a configuration. Then z is a local optimum for a modules sheme A_{z} if and only if for any configuration x such that $x \succ_{\mathcal{R}} z$ then $d_{p}(x, z)>1$.

Definition 3 Two configurations $z, x \in X$ are prominently separate if there exists two hyperplanes $H_{i_{1}, j_{1}}, H_{i_{2}, j_{2}} \in \mathcal{A}_{n, m}$ with $i_{1} \neq i_{2}$ and $z\left|H_{i_{1}, j_{1}}\right| x, z\left|H_{i_{2}, j_{2}}\right| x$.

The prominent distance $d_{p}(z, x)$, will be the minimum number of hyperplanes which prominently separate z and x.

Matters which deserve farther studies:

1. Is it possible to generalize this description? Let us remark that many people started from social choice model obtaining general results in mathematics: for example H. Terao, G. Chichilnisky, S.Weinberger and others.
2. Are there sufficient conditions to characterize a global optimum? (problem in graph theory)
3. How does this model change when we apply it to customers instead of voters?
