Arrangements and Computations II: Koszul and Lie Algebras

$1625903019663025 \cdots$

Hal Schenck
Mathematics Department University of Illinois

August 19, 2009

Let G be a finitely-generated group, with normal subgroups,

$$
G=G_{1} \geq G_{2} \geq G_{3} \geq \cdots,
$$

defined inductively by $G_{k}=\left[G_{k-1}, G\right]$.

We obtain an associated Lie algebra

$$
g r(G) \otimes \mathbb{Q}:=\bigoplus_{k=1}^{\infty} G_{k} / G_{k+1} \otimes \mathbb{Q}
$$

with Lie bracket induced by the commutator map. Let $\phi_{k}=\phi_{k}(G)$ denote the rank of the k-th quotient.

Let $X_{\mathcal{A}}=\mathbb{C}^{\ell} \backslash \mathcal{A}$.

Mission: study the fundamental group $G=$ $\pi_{1}\left(X_{\mathcal{A}}\right)$ of the complement $X_{\mathcal{A}}$ of a complex hyperplane arrangement \mathcal{A}. Write

$$
\mathfrak{g}=\operatorname{gr}\left(\pi_{1}\left(X_{\mathcal{A}}\right)\right) \otimes \mathbb{Q}
$$

Lefschetz-type theorem of Hamm-Le implies taking generic two dimensional slice gives isomorphism on π_{1}, so to study $\pi_{1}\left(X_{\mathcal{A}}\right)$, may assume $\mathcal{A} \subseteq \mathbb{C}^{2}$ or that (coning) $\mathcal{A} \subseteq \mathbb{P}^{2}$.

WARNING1! Hirzebruch "The topology of the complement of a configuration of lines in the projective plane is very interesting, the investigation of the fundamental group of the complement very difficult."

Presentations for $\pi_{1}\left(X_{\mathcal{A}}\right)$ given by

- Randell
- Salvetti
- Arvola
- Cohen-Suciu

Braid-Monodromy presentation is simplest, see Suciu's survey

WARNING2! $\pi_{1}\left(X_{\mathcal{A}}\right)$ is not combinatorial (Rybnikov).

Recall that the cohomology ring of $X_{\mathcal{A}}$

$$
H^{*}\left(X_{\mathcal{A}}, \mathbb{C}\right)=A=E / I
$$

is the Orlik-Solomon algebra. E is an exterior algebra with a generator

$$
e_{i} \leftrightarrow H_{i} \in \mathcal{A}
$$

and I is generated by all elements of the form $\partial e_{i_{1} \ldots i_{r}}:=\sum_{q}(-1)^{q-1} e_{i_{1}} \cdots \widehat{e_{q}} \cdots e_{i_{r}}$, for which $\operatorname{codim}\left(H_{i_{1}} \cap \cdots \cap H_{i_{r}}\right)<r$.

Compute Orlik-Solomon algebra for the arrangement A_{3}, and compute the Hilbert Series. For A_{3}, the LCS ranks are

$$
\begin{array}{lllllll}
6 & 4 & 10 & 21 & 54 & \cdots
\end{array}
$$

General formula for A_{3} is $\phi_{k}=w_{k}(2)+w_{k}(3)$.

Consider the series

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-t^{k}\right)^{\phi_{k}}}
$$

For A_{3}, this is

$$
\frac{1}{(1-t)^{6}} \frac{1}{\left(1-t^{2}\right)^{4}} \frac{1}{\left(1-t^{3}\right)^{10}} \frac{1}{\left(1-t^{4}\right)^{21}} \frac{1}{\left(1-t^{5}\right)^{54}} \cdots
$$

Compute the first few terms of the expansion: $1+6 t+25 t^{2}+90 t^{3}+301 t^{4}+966 t^{5}+3025 t^{6}+\cdots$

MAGIC TRICK 1: multiply this with

$$
\pi\left(A_{3},-t\right)=1-6 t+11 t^{2}-6 t^{3}
$$

Theorem 1 (Kohno's LCS formula) For the braid arrangement A_{n-1} (graphic arrangement for the complete graph K_{n})

$$
\prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=\prod_{i=1}^{n-1}(1-i t)
$$

Previous example: braid arrangement A_{3}, so Kohno's result explains the computation that

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-t^{k}\right)^{\phi_{k}}} \cdot\left(1-6 t+11 t^{2}-6 t^{3}\right)=1
$$

MAGIC TRICK 2: compute

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Tor}_{i}^{A_{3}}(\mathbb{C}, \mathbb{C})_{i}
$$

To do this, look at the top row of the betti diagram for the resolution of \mathbb{C} over A.

LCS formulas for arrangements

- Braid arrangements [Kohno]
- Fiber type arrangements [Falk-Randell]
- = supersolvable [Terao]
- Lower bound for ϕ_{k} [Falk]
- Koszul duality [Shelton-Yuzvinsky]
- Hypersolvable [Jambu-Papadima]
- Rational $K(\pi, 1)$ [Papadima-Yuzvinsky]
- MLS arrangements [Papadima-Suciu]
- Graphic arrangements [Lima-Filho, -]
- No such formula in general [Peeva]

Let $\mathbb{L}\left(H_{1}\left(X_{\mathcal{A}}, \mathbb{C}\right)\right)$ be the free Lie algebra on $H_{1}\left(X_{\mathcal{A}}, \mathbb{C}\right)$. Dual of cup product gives a map $H_{2}\left(X_{\mathcal{A}}, \mathbb{Q}\right) \xrightarrow{c} H_{1}\left(X_{\mathcal{A}}, \mathbb{Q}\right) \wedge H_{1}\left(X_{\mathcal{A}}, \mathbb{Q}\right) \longrightarrow \mathbb{L}\left(H_{1}\left(X_{\mathcal{A}}, \mathbb{Q}\right)\right)$,

Following Chen, define the holonomy Lie algebra

$$
\mathfrak{h}_{\mathcal{A}}=\mathbb{L}\left(H_{1}\left(X_{\mathcal{A}}, \mathbb{C}\right)\right) / I_{\mathcal{A}},
$$

where $I_{\mathcal{A}}$ is generated by $\operatorname{Im}(c)$.

Theorem 2 (Kohno) The image of c is gen-

 erated by$$
\left[x_{j}, \sum_{i=1}^{k} x_{i}\right]
$$

where x_{i} is a generator of $\mathbb{L}\left(H_{1}(X, \mathbb{C})\right)$ corresponding to H_{i}, and $\left\{H_{1}, \ldots, H_{k}\right\}$ is a maximal dependent set of codimension two, so corresponds to an element of $L_{2}(\mathcal{A})$.

Note similarity to the Orlik-Solomon algebra!

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-t^{k}\right)^{\phi_{k}}}=\sum_{i=0}^{\infty} \operatorname{Tor}_{i}^{A}(\mathbb{C}, \mathbb{C})_{i} t^{i}
$$

Theorem 3 (Kohno) $\phi_{k}(\mathfrak{g})=\phi_{k}\left(\mathfrak{h}_{\mathcal{A}}\right)$.
$X_{\mathcal{A}}$ is formal (Brieskorn). Use Sullivan's work and analysis of bigrading on Hirsch extensions.

- Kohno: $\prod_{k=1}^{\infty} \frac{1}{\left(1-t^{k}\right)^{\phi_{k}}}=H S\left(U\left(\mathfrak{h}_{\mathcal{A}}, t\right)\right)$ follows from previous theorem and PBW.
- Shelton-Yuzvinsky: $U\left(\mathfrak{h}_{\mathcal{A}}\right)=\bar{A}^{\text {! }}$ quadratic dual of quadratic OS-algebra.
- Priddy, Löfwall: quadratic dual is related to diagonal Yoneda Ext-algebra via

$$
\bar{A}^{!} \cong \bigoplus_{i} E x t \frac{i}{A}(\mathbb{C}, \mathbb{C})_{i} .
$$

- Peeva: Nonfano shows DNE standard graded algebra satisfying LCS formula.

Koszul algebras

Definition 4 Quadratic algebra: quotient of $T(V)$ by $I \subseteq V \otimes V$.

Quadratic algebra has a quadratic dual $T\left(V^{*}\right) / I^{\perp}$:

$$
\langle\alpha \otimes \beta \mid \alpha(a) \cdot \beta(b)=0\rangle=I^{\perp} \subseteq V^{*} \otimes V^{*}
$$

Definition 5 Quadratic algebra A is Koszul if

$$
\operatorname{Tor}_{i}^{A}(\mathbb{C}, \mathbb{C})_{j}=0, j \neq i
$$

A Koszul \leftrightarrow minimal free resolution of \mathbb{C} over A has matrices with only linear entries. This happens exactly when the betti diagram has nonzero entries only in the top row.

Example 6 For

$$
S=T(V) /\left\langle x_{i} \otimes x_{j}-x_{j} \otimes x_{i}\right\rangle
$$

Compute resolution and Hilbert Series of $\mathbb{C}=S /\left\langle x_{1}, \ldots, x_{m}\right\rangle$. Clear that

$$
I^{\perp}=\left\langle x_{i} \otimes x_{j}+x_{j} \otimes x_{i}\right\rangle, \text { so } E=S^{!}
$$

Compute resolution and Hilbert Series.

Theorem 7 If A is Koszul, so is $A^{!}$, and

$$
H S(A, t) \cdot H S\left(A^{!},-t\right)=1
$$

Example 8 Compute resolution of \mathbb{C} over OrlikSolomon algebra of A_{3} and Nonfano.

Example 9 Via upper semicontinuity, can show quadratic $G B \rightarrow$ Koszul. Pinched Veronese (Caviglia): Koszul but no QGB. (also Eisenbud, Reeves, Totaro)

Problem Formula for LCS ranks for classes of arrangements.
Problem Formula for $\operatorname{Tor}_{i}^{A}(\mathbb{C}, \mathbb{C})_{j}$ for $A=$ OSalgebra.

We have seen that the numbers above grow very fast. Is there a simpler set of numbers? Yes!

$$
\operatorname{Tor}_{i}^{E}(A, \mathbb{C})_{j}
$$

Problem Formula for $\operatorname{Tor}_{i}^{E}(A, \mathbb{C})_{j}$.

Example 10 Compute $\operatorname{Tor}_{i}^{E}(A, \mathbb{C})_{j}$ for A_{3}, D_{3}.

The spaces

$$
\operatorname{Tor}_{i}^{E}(A, \mathbb{C}) \text { and } \operatorname{Tor}_{i}^{A}(\mathbb{C}, \mathbb{C})
$$

are related via the change of rings spectral sequence

$$
\operatorname{Tor}_{i}^{A}\left(\operatorname{Tor}_{j}^{E}(A, \mathbb{C}), \mathbb{C}\right) \Longrightarrow \operatorname{Tor}_{i+j}^{E}(\mathbb{C}, \mathbb{C})
$$

Change of rings spectral sequence

Take (minimal) free resolutions for \mathbb{C} :
$P_{\bullet}: 0 \longleftarrow \mathbb{C} \longleftarrow A \longleftarrow A^{n}(-1) \longleftarrow A^{\binom{n+1}{2}}(-2) \oplus A^{a_{2}}(-2) \cdots$
$Q_{\bullet}: 0 \longleftarrow \mathbb{C} \longleftarrow E \longleftarrow E^{n}(-1) \longleftarrow E^{\binom{n+1}{2}}(-2) \longleftarrow \cdots$
An easy analysis shows that

$$
a_{2}=\operatorname{dim}_{\mathbb{C}} \operatorname{Tor}_{1}^{E}(A, \mathbb{C})_{2}
$$

the number of minimal quadratic generators of the Orlik-Solomon ideal. Pictorially, we have

which gives a double complex
$P_{0} \otimes\left(A \otimes Q_{2}\right) \stackrel{\delta}{\leftrightarrows} P_{1} \otimes\left(A \otimes Q_{2}\right) \quad P_{2} \otimes\left(A \otimes Q_{2}\right)$
$P_{0} \otimes\left(A \otimes Q_{1}\right) \quad P_{1} \otimes\left(A \otimes Q_{1}\right) \stackrel{\delta}{\leftrightarrows} P_{2} \otimes\left(A \otimes Q_{1}\right)$
$P_{0} \otimes\left(A \otimes Q_{0}\right) \quad P_{1} \otimes\left(A \otimes Q_{0}\right) \quad P_{2} \otimes\left(A \otimes Q_{0}\right)$
$A \otimes_{E} Q_{i}$ are free A-modules, so the rows are exact, except in leftmost column. This means that $\frac{1}{h o r} E^{i, j}=0$ unless $i=0$, thus

$$
{\underset{h o r}{2}}_{h_{h}} E^{i, j}={ }_{h o r}^{\infty} E^{i, j}= \begin{cases}\operatorname{Tor}_{j}^{E}(\mathbb{C}, \mathbb{C}) & i=0 \\ 0 & i \neq 0 .\end{cases}
$$

Compute: $\operatorname{Tor}_{j}^{E}(\mathbb{C}, \mathbb{C}) \neq 0$ only in degree j. Conclude that

$$
\operatorname{dim}_{\mathbb{C}} g r\left(H_{j}(T o t)\right)_{k}= \begin{cases}\binom{n+k-1}{k} & k=j \\ 0 & k \neq j\end{cases}
$$

On the other hand,

$$
\begin{aligned}
{ }_{v e r t} E^{i, j} & =H_{j}\left(P_{i} \otimes_{A}\left(A \otimes_{E} Q_{\bullet}\right)\right) \\
& \left.=P_{i} \otimes_{A} H_{j}\left(A \otimes_{E} Q \bullet\right)\right) \\
& =P_{i} \otimes_{A} \operatorname{Tor} r_{j}^{E}(A, \mathbb{C})
\end{aligned}
$$

Thus,

Writing T for Tor, the ${ }_{v e r t}^{2} E$ page is: $T_{2}^{E}(A, \mathbb{C}) T_{1}^{A}\left(T_{2}^{E}(A, \mathbb{C}), \mathbb{C}\right) T_{2}^{A}\left(T_{2}^{E}(A, \mathbb{C}), \mathbb{C}\right) T_{3}^{A}\left(T_{2}^{E}(A, \mathbb{C}), \mathbb{C}\right)$

Can we compute this?

For ϕ_{k}, only need $\operatorname{Tor}_{i}^{A}(\mathbb{C}, \mathbb{C})_{i}$. Differentials are graded. Consider a simple case

Example 11 Consider the sequence

$$
0 \rightarrow K\left(d_{2}\right) \rightarrow \operatorname{Tor}_{2}^{A}(\mathbb{C}, \mathbb{C}) \xrightarrow{d_{2}} \operatorname{Tor}_{1}^{E}(A, \mathbb{C}) \rightarrow C\left(d_{2}\right) \rightarrow 0
$$

$C\left(d_{2}\right)={ }^{\infty} E^{0,1}$, and $g r\left(H_{1}(T o t)\right)_{k}$ nonzero only for $k=1$, so $C\left(d_{2}\right)$ must vanish (it is generated in degree ≥ 2).
$K\left(d_{2}\right)={ }^{\infty} E^{2,0}$, nonzero only in degree 2.
Both $\operatorname{Tor}_{1}^{A}\left(\operatorname{Tor}_{1}^{E}(A, \mathbb{C}), \mathbb{C}\right)$ and $\operatorname{Tor}_{1}^{E}(A, \mathbb{C})$ are generated in degree ≥ 3, so

$$
K\left(d_{2}\right) \simeq g r\left(H_{2}(T o t)\right)_{2},
$$

which has dimension $\binom{n+1}{2}$. Thus

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Tor}_{2}^{A}(\mathbb{C}, \mathbb{C})_{2}=\binom{n+1}{2}+a_{2}
$$

where $a_{2}=\operatorname{dim} \operatorname{Tor}_{1}^{E}(A, \mathbb{C})_{2}$. Compute!
G a simple graph on ℓ vertices, with edges E . Define $\mathcal{A}_{G}=\left\{z_{i}-z_{j}=0 \mid(i, j) \in \mathrm{E} \subseteq \mathbb{C}^{\ell}\right\}$, and let $\kappa_{s}=$ clique \sharp 's of G.

Theorem 12 (Lima-Filho, -)

$$
U_{G}(t)=\prod_{j=1}^{\ell-1}(1-j t)^{\sum_{s=j}^{\ell-1}(-1)^{s-j}\binom{s}{j} \kappa_{s}}
$$

Example $13 G^{\prime}=$ Egypt pyramid, $G^{\prime \prime}=K_{4}$.

$$
\begin{aligned}
& U_{G^{\prime}}(t)=((1-t)(1-2 t))^{4} /(1-t)^{4}=(1-2 t)^{4}, \\
& U_{G^{\prime \prime}}(t)=(1-t)(1-2 t)(1-3 t) .
\end{aligned}
$$

Gluing along a Δ, we have

$$
\begin{aligned}
U_{G}(t) & =\frac{(1-2 t)^{4} \cdot(1-t)(1-2 t)(1-3 t)}{(1-t)(1-2 t)} \\
& =(1-2 t)^{4}(1-3 t) \text { (compute!) }
\end{aligned}
$$

For each element $a=\sum a_{i} e_{i} \in A_{1}$, we can consider the Aomoto complex (A, a).

The $i^{\text {th }}$ term is A_{i}, and differential is $\wedge a$:

$$
(A, a): \quad 0 \longrightarrow A_{0} \xrightarrow{a} A_{1} \xrightarrow{a} A_{2} \xrightarrow{a} \cdots \xrightarrow{a} A_{\ell} \longrightarrow 0 .
$$

Yuzvinsky: for generic $a,(A, a)$ is exact. The resonance varieties of \mathcal{A} are the loci of points $a=\sum_{i=1}^{n} a_{i} e_{i} \leftrightarrow\left(a_{1}: \cdots: a_{n}\right)$ in $\mathbb{P}\left(A_{1}\right) \cong \mathbb{P}^{n-1}$ for which (A, a) fails to be exact.

Definition 14 For each $k \geq 1$,

$$
R^{k}(\mathcal{A})=\left\{a \in \mathbb{P}^{n-1} \mid H^{k}(A, a) \neq 0\right\}
$$

Falk: necessary conditions for $R^{1}(\mathcal{A})$, conjectured $R^{1}(\mathcal{A})$ is a union of linear components. Proved by Cohen-Suciu \& LibgoberYuzvinsky, and for $R^{\geq 2}(\mathcal{A})$ by Cohen-Orlik.

Conjecture 15 (Suciu) If $\phi_{4}=\operatorname{Tor}_{3}^{E}(A, \mathbb{C})_{4}$, then

$$
\prod_{k \geq 1}\left(1-t^{k}\right)^{\phi_{k}}=\prod_{L_{i} \in R^{1}(\mathcal{A})}\left(1-\left(\operatorname{dim}\left(L_{i}\right) t\right)\right.
$$

K. Aomoto, Un théorème du type de Matsushima-Murakami concernant l'intégrale des fonctions multiformes, J. Math. Pures Appl. 52 (1973), 1-11.
W. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31 (1992), 757-765.
E. Brieskorn, Sur les groupes de tresses, Séminaire Bourbaki, 1971/72, LNM 317, Springer-Verlag, (1973), 21-44.
K.T. Chen, Iterated integrals of differential forms and loop space cohomology, Ann. of Math. 97 (1973), 217-246.
D. Cohen, P. Orlik, Arrangements and local systems, Math. Res. Lett. 7 (2000), 299-316.
D. Cohen, A. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv. 72 (1997), 285-315.
D. Cohen, A. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Phil. Soc. 127 (1999), 33-53.
G. Denham, A. Suciu, On the homotopy Lie algebra of an arrangement, Michigan Math. J. 54 (2006), 319-340.
D. Eisenbud, A. Reeves, B. Totaro, Initial ideals, Veronese subrings, and rates of algebras, Adv. Math. 109 (1994), 168-187.
M. Falk, The minimal model of the complement of an arrangement of hyperplanes, Trans. Amer. Math. Soc. 309 (1988), 543-556.
M. Falk, The cohomology and fundamental group of a hyperplane complement, Contemporary Math., vol. 90, Amer. Math. Soc, Providence, RI, 1989, pp. 55-72.
M. Falk, Arrangements and cohomology, Ann. Combin. 1 (1997), 135-157.
M. Falk, R. Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), 77-88.
H. Hamm, D. T. Lê, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. 6 (1973), 317-366.
M. Jambu, S. Papadima, A generalization of fiber-type arrangements and a new deformation method, Topology 37 (1998), 11351164.
T. Kohno, On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces, Nagoya Math J. 92 (1983), 21-37.
T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), 57-75.
A. Libgober, S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), 337-361.
P. Lima-Filho, H. Schenck, The holonomy Lie algebra of subarrangements of A_{n}, IMRN, (2009), 1421-1432.
J. Morgan, The algebraic topology on smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137-204.
P. Orlik, L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189.
P. Orlik, H. Terao, Arrangements of hyperplanes, Grundlehren Math. Wiss., Bd. 300, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
S. Papadima, A. Suciu, When does the associated graded Lie algebra of an arrangement group decompose?, Commentarii Mathematici Helvetici, 81 (2006), 859-875.
S. Papadima, A. Suciu, Higher homotopy groups of complements of complex hyperplane arrangements Adv. Math. 165 (2002), 71-100.
S. Papadima, S. Yuzvinsky, On rational $K[\pi, 1]$ spaces and Koszul algebras, J. Pure Applied Algebra 144 (1999), 157-167.
I. Peeva, Hyperplane arrangements and linear strands in resolutions, Trans. Amer. Math. Soc. 355 (2003), 609-618.
R. Randell, The fundamental group of the complement of a union of complex hyperplanes, Invent. Math. 69 (1982), 103-108.
M. Salvetti, Topology of the complement of real hyperplanes in C^{n}, Invent. Math. 88 (1987), 603-618.
H. Schenck, A. Suciu, Lower central series and free resolutions of hyperplane arrangements, Trans. Amer. Math. Soc. 354 (2002), 3409-3433.
B. Shelton, S. Yuzvinsky, Koszul algebras from graphs and hyperplane arrangements, J. London Math. Soc. 56 (1997), 477-490.
R.P. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972), 197-217.
A. Suciu, Fundamental groups of line arrangements: Enumerative aspects, in: Advances in algebraic geometry motivated by physics, Contemporary Math., vol. 276, Amer. Math. Soc, Providence, RI, 2001, pp. 43-79.
D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-331.
H. Terao, Modular elements of lattices and topological fibration, Adv. Math. 62 (1986), 135-154.
S. Yuzvinsky, Cohomology of Brieskorn-Orlik-Solomon algebras, Comm. Algebra 23 (1995), 5339-5354.

