Arrangements and Computations I: $Sym(V^*)$

(1, 2, 3) and (1, 2, 5)

Hal Schenck Mathematics Department University of Illinois

August 19, 2009

§Basics

Let
$$\mathcal{A} \subseteq V = \mathbb{C}^{\ell}$$

be a central arrangement with $|\mathcal{A}| = n$, and $S = Sym(V^*)$.

$$S = \bigoplus_{i \in \mathbb{Z}} S_i$$

is a \mathbb{Z} -graded ring:

$$s_i \in S_i \text{ and } s_j \in S_j \longrightarrow s_i \cdot s_j \in S_{i+j}$$

Similar definition for a graded *S*-module *M*. $S_0 = \mathbb{C}$, so M_i is a \mathbb{C} -vector space.

Definition 1 The Hilbert Function

$$HF(M,i) = \dim_{\mathbb{C}} M_i.$$

Definition 2 The Hilbert Series

$$HS(M,i) = \sum_{\mathbb{Z}} \dim_{\mathbb{C}} M_i t^i.$$

Notation: $M(i)_j = M_{i+j}$.

Exercise:
$$HS(\mathbb{C}[x_1,\ldots,x_\ell],t) = \frac{1}{(1-t)^\ell}$$
.

Example 3 $S = \mathbb{C}[x, y]$, $M = S/\langle x^2, xy \rangle$. Then

i	M_i	$M(-2)_i$
0	1	0
1	x,y	0
2	y^2	1
3	y^3	x,y
4	y^4	y^2

$$HS(M,i) = \frac{1 - 2t^2 + t^3}{(1 - t)^2}$$
$$HS(M(-2),i) = \frac{t^2(1 - 2t^2 + t^3)}{(1 - t)^2}$$

Makes sense: S(-i) has generator in degree *i*.

Compute from *free resolution*:

$$0 \longrightarrow S(-3) \xrightarrow{\begin{bmatrix} y \\ -x \end{bmatrix}} S(-2)^2 \xrightarrow{\begin{bmatrix} x^2 & xy \end{bmatrix}} S \longrightarrow S/I$$
$$e_1 \mapsto x^2$$
$$e_2 \mapsto xy$$

$$HS(M,i) = \frac{t^3 - 2t^2 + 1}{(1-t)^2}$$

Example 4 Twisted cubic $I \subseteq S = \mathbb{C}[x, y, z, w]$

$$0 \longrightarrow S(-3)^2 \xrightarrow{\begin{bmatrix} -z & w \\ y & -z \\ -x & y \end{bmatrix}} S(-2)^3 \xrightarrow{\begin{bmatrix} y^2 - xz & yz - xw & z^2 - yw \end{bmatrix}} S \longrightarrow S/I$$

Display as a *betti table*:

$$b_{ij} = \dim_{\mathbb{C}} \operatorname{Tor}_{i}^{S}(M, \mathbb{C})_{i+j}.$$

$$\frac{\text{total} | 1 \ 3 \ 2}{0 \ 1 \ - \ - \ 3 \ 2}$$

$$b_{21} = \dim_{\mathbb{C}} \operatorname{Tor}_{2}^{S}(S/I, \mathbb{C})_{3} = 2.$$

4

D(\mathcal{A}) and freeness

For each *i*, fix $V(l_i) = H_i \in \mathcal{A}$. Let $Q_{\mathcal{A}} = \prod_{i=1}^n l_i$

Definition 5 $D(\mathcal{A}) = \{\theta \in Der_C(S) | \theta(l_i) \in \langle l_i \rangle \}$ $\forall l_i \text{ with } V(l_i) \in \mathcal{A}. \ \mathcal{A} \text{ is free } \leftrightarrow D(\mathcal{A}) \text{ is free.}$

Exercise: if
$$\theta_E = \sum_{i=1}^{\ell} x_i \partial / \partial x_i$$
, then
 $D(\mathcal{A}) \simeq S \cdot \theta_E \oplus syz(Jac(Q_{\mathcal{A}})),$

where syz is the syzygy module and $Jac(Q_A)$ is the jacobian ideal of Q_A .

Proposition 6 (K. Saito) A is free exactly when there exist ℓ elements

$$\theta_i = \sum_{j=1}^{\ell} f_{ij} \frac{\partial}{\partial x_j} \in D(\mathcal{A})$$

such that the determinant of the matrix $[f_{ij}]$ is a nonzero constant multiple of the defining polynomial Q_A . Compute $D(\mathcal{A})$ for arrangements in \mathbb{P}^2 :

Example 7 [A3 and Nonfano]

Example 8 [S3]

 $\pi(D_3, t) = (1+t)(1+3t)^2 = \pi(S_3, t).$

Theorem 9 (Terao) If $D(\mathcal{A}) \simeq \bigoplus_{i=1}^{\ell} S(-a_i)$, then $\pi(\mathcal{A}, t) = \prod (1 + a_i t) = \sum \dim_{\mathbb{C}} H^i(\mathbb{C}^{\ell} \setminus \mathcal{A}) t^i.$

Conjecture 10 (Terao) If char = 0, then freeness of D(A) depends only on L_A .

Example 11 [ZieglerAB] Compute D(A) for arrangement

where 6 triple points lie on/off a conic.

Definition 12 $D^p(\mathcal{A}) \subseteq \Lambda^p(Der_{\mathbb{C}}(S))$ consists of θ such that

 $\theta(l_i, f_2, \ldots, f_p) \in \langle l_i \rangle, \forall V(l_i) \in \mathcal{A}, f_i \in S.$

Theorem 13 (Solomon-Terao) $\chi(A,t) =$

$$(-1)^{\ell} \lim_{x\to 1} \sum_{p\geq 0} HS(D^p(\mathcal{A});x)(t(x-1)-1)^p.$$

Problem How does

pdim $D^p(\mathcal{A})$

depend on $L_{\mathcal{A}}$?

Theorem 14 (Yuzvinsky) If \hat{A} a closed subarrangement of A, then pdim $D(A) \ge pdim D(\hat{A})$.

Aside from this, virtually nothing is known!

G a (simple) graph on ℓ vertices and edges E. Put $\mathcal{A}_G = \{z_i - z_j = 0 \mid (i, j) \in \mathsf{E} \subseteq \mathbb{C}^{\ell}\}$

Stanley \mathcal{A}_G is supersolvable \leftrightarrow *G* is chordal.

Kung,- Induced k-cycle $\rightarrow \text{pdim } D(\mathcal{A}_G) \geq k-3$

Example 15 *G* has induced 6-cycle (compute)

Example 16 *G* has induced 4-cycle (compute)

Problem Graph theory formula for pdim $D(\mathcal{A}_G)$?

Proving freeness: three ways

1. Addition-Deletion Theorem **(Terao)** $(\mathcal{A}', \mathcal{A}, \mathcal{A}'')$ a triple: $\mathcal{A}' = \mathcal{A} \setminus H, \mathcal{A}'' = \mathcal{A}|_{H}$. Any two below imply third.

•
$$D(\mathcal{A}) \simeq \bigoplus_{i=1}^{n} S(-b_i)$$

- $D(\mathcal{A}') \simeq S(-b_n + 1) \oplus_{i=1}^{n-1} S(-b_i)$
- $D(\mathcal{A}'') \simeq \bigoplus_{i=1}^{n-1} S/L(-b_i)$
- 2. Supersolvable (Terao, via AD)

3. Multiarrangements (Yoshinaga) $\mathcal{A} \subseteq \mathbb{P}^2$ is free \leftrightarrow

- $\pi(A,t) = (1+t)(1+at)(1+bt)$ and
- $D(\mathcal{A}|_H, \mathbf{m}) \simeq S/L(-a) \oplus S/L(-b),$ holds $\forall H = V(L) \in \mathcal{A}$, with $\mathbf{m}(H_i) = \mu_A(H \cap H_i).$

§Multiarrangements

Definition 17 (A, m): assign a multiplicity m_i

to each hyperplane.

$$D(\mathcal{A},\mathbf{m}) = \{\theta \mid \theta(l_i) \in \langle l_i^{m_i} \rangle \}.$$

Example 18 [Ziegler, again!] Consider the two multiarrangements in \mathbb{P}^1

$$\begin{aligned} \mathcal{A}_1 &= (1,0), (0,1), (1,1), (1,-1)) \ \ast \ \text{in } \mathbb{A}^2 \\ \mathcal{A}_2 &= (1,0), (0,1), (1,1), (1,a)) \ (a \neq -1) \\ \text{To compute } D(\mathcal{A}_1, (1,1,3,3)), \ \text{we must find} \\ \text{all } \theta &= f_1(x,y)\partial/\partial x + f_2\partial/\partial y \ \text{such that} \end{aligned}$$

$$\theta(x) \in \langle x \rangle, \ \theta(x+y) \in \langle x+y \rangle^3$$

 $\theta(y) \in \langle y \rangle, \ \theta(x-y) \in \langle x-y \rangle^3$

So compute kernel of

$$\begin{bmatrix} 1 & 0 & x & 0 & 0 & 0 \\ 0 & 1 & 0 & y & 0 & 0 \\ 1 & 1 & 0 & 0 & (x+y)^3 & 0 \\ 1 & -1 & 0 & 0 & 0 & (x-y)^3 \end{bmatrix}$$

Theorem 19 (Abe, Terao, Wakefield)

$$\Psi(\mathcal{A},\mathbf{m},t,q) = \sum_{p=0}^{\ell} HS(D^p(\mathcal{A},\mathbf{m},q))(t(q-1)-1)^p$$

 $\chi((\mathcal{A},\mathbf{m}),t) = (-1)^{\ell} \Psi(\mathcal{A},\mathbf{m},t,1).$

If $D^1(\mathcal{A},\mathbf{m})\simeq\oplus S(-d_i)$ then

$$\chi((\mathcal{A},\mathbf{m}),t) = \prod_{i=1}^{\ell} (1+d_i t).$$

Abe, Terao, Wakefield also prove an additiondeletion theorem for multiarrangements, using *Euler multiplicity* for the restriction.

Hilbert-Burch Thm \longrightarrow any $(\mathcal{A}, \mathbf{m}) \subseteq \mathbb{P}^1$ is free. **Problem** \exists other arrangements which are free for any \mathbf{m} ? No! **Abe, Terao, Yoshinaga**: any such is a product of 1 and 2-dim arrangements. **Problem** Characterize pdim $D(\mathcal{A}, \mathbf{m})$. **Problem** Supersolvability for multiarrangements?

$\S \textbf{Arrangements}$ of hypersurfaces

Saito's criterion still holds. Are there other freeness theorems? Addition-Deletion theorem (even for $\mathcal{C} \subseteq \mathbb{P}^2$)?

Example 20 For the arrangement $\mathcal{C} \subseteq \mathbb{P}^2$

Compute $D(\mathcal{C})$

For a good theory, must control singularities.

Definition 21 Plane curve singularity is quasihomogeneous $\leftrightarrow \exists$ holo \triangle vars so f(x,y) = $\sum c_{ij}x^iy^j$ is weighted homogeneous: $\exists \alpha, \beta \in \mathbb{Q}$ s.t. $\sum c_{ij}x^{i\cdot\alpha}y^{j\cdot\beta}$ is homogeneous. **Definition 22** The Milnor number at (0,0) is

$$\mu_{(0,0)}(C) = \dim_{\mathbb{C}} \mathbb{C}\{x,y\} / \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle.$$

The Tjurina number at (0,0) is

$$\tau_{(0,0)}(C) = \dim_{\mathbb{C}} \mathbb{C}\{x,y\} / \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, f \rangle.$$

for general p, just translate. For $V(Q) \subseteq \mathbb{P}^2$, note the degree of $Jac(Q) = \sum_{p \in sing(V(Q))} \tau_p$.

Example 23 Let C be as below:

If p an ordinary sing with k distinct branches, then $\mu_p(C) = (k-1)^2$, so the sum of the Milnor numbers is 20. Compute deg(J). What happens at the origin? **Theorem 24 (K. Saito)** If C = V(f) has an isolated sing. at the origin, then

 $f \in Jac(f) \leftrightarrow f$ is quasihomogeneous.

For a qhomogeneous line/conic arrangement, \exists addition/deletion theorem (-,Tohaneanu). Compute D(C) for

Can use AD to show this. Now change C to C'via: $y = 0 \longrightarrow x - 13y = 0$ and compute D(C').

§Orlik–Terao algebra

The Orlik–Terao algebra is (almost) a symmetric version of the Orlik-Solomon algebra. If $\operatorname{codim} \bigcap_{j=1}^{m} H_{i_j} < m$, then $\exists c_{i_j}$ with

$$\sum_{j=1}^{m} c_{i_j} \cdot l_{i_j} = 0 \text{ a dependency.}$$

 $I_{\mathcal{A}} = \langle \sum_{j=1}^{m} c_{i_j}(y_{i_1} \cdots \hat{y}_{i_j} \cdots y_{i_m}) \mid \text{ over all deps} \rangle$

Definition 25 The Orlik-Terao algebra is

$$C(\mathcal{A}) = \mathbb{C}[x_1, \ldots, x_n]/I_{\mathcal{A}}.$$

Example 26 $\mathcal{A} = V(x_1 \cdot x_2 \cdot x_3 \cdot (x_1 + x_2 + x_3)),$ the only dependency is

$$l_1 + l_2 + l_3 - l_4 = 0$$
, thus $C(\mathcal{A}) =$

 $\mathbb{C}[y_1, y_2, y_3, y_4] / \langle y_2 y_3 y_4 + y_1 y_3 y_4 + y_1 y_2 y_4 - y_1 y_2 y_3 \rangle.$

Artinian version of Orlik-Terao algebra is

$$AOT = C(\mathcal{A})/\langle x_1^2, \dots, x_n^2 \rangle.$$

Theorem 27 (Orlik-Terao)

 $HS(AOT) = \pi(\mathcal{A}, t)$

answering a question of Aomoto. For the previous example, Hilbert series of AOT is

$$1 + 4t + {4 \choose 2}t^2 + ({4 \choose 3} - 1)t^3$$

Theorem 28 (Terao)

$$HS(OT,t) = \pi \left(\mathcal{A}, \frac{t}{1-t} \right).$$

Can show that

$$0 \to I_{\mathcal{A}} \to \mathbb{C}[x_1, \dots, x_n] \xrightarrow{\phi} \mathbb{C}\left[\frac{1}{l_1}, \dots, \frac{1}{l_n}\right] \to 0,$$

so $V(I_{\mathcal{A}}) \subseteq \mathbb{P}^{n-1}$ is irreducible and rational. **Problem** What is the geometry of $V(I_{\mathcal{A}})$? **Definition 29** \mathcal{A} is 2-formal if all dependencies are generated by dependencies among three hyperplanes.

Theorem 30 (Falk-Randell) $K(\pi, 1)$ and qOS arrangements are 2-formal.

Theorem 31 (Yuzvinsky) Free arrangements are 2-formal.

WARNING! ZieglerA is 2-formal, ZieglerB is not. How to detect?

Formality involves the actual dependencies, which are captured by $C(\mathcal{A})$! Compute OT and AOT for Ziegler arrangements.

Theorem 32 (–, Tohaneanu)

 $\mathcal{A} \text{ is } 2\text{-formal } \leftrightarrow \operatorname{codim}(I_2) = n - \ell.$

What about other information? Is $V(I_A)$ smooth? Compute for $V(y_2y_3y_4+y_1y_3y_4+y_1y_2y_4-y_1y_2y_3)$.

Notice that the map $\phi(y_i) = \frac{1}{l_i}$ can be rewritten as

$$y_i \mapsto \alpha_i = l_1 \cdot l_2 \cdots \hat{l_i} \cdots l_n.$$

For simplicity, restrict to \mathbb{P}^2 . For the braid arrangement A_3 , we obtain a map to \mathbb{P}^5 , whose image is a rational surface, with Hilbert polynomial (compute!) Let X be the blowup of \mathbb{P}^2 at $sing(\mathcal{A})$, and

$$D_{\mathcal{A}} = (n-1)E_0 - \sum_{p_i \in L_2(\mathcal{A})} \mu(p_i)E_i$$

The intersection pairing on X is given by $E_0^2 = 1$, $E_{i\neq 0}^2 = -1$ and $E_i \cdot E_{j\neq i} = 0$ Since $K_X = -3E_0 + \sum E_i$, we have

$$D_{\mathcal{A}}^{2} = (n-1)^{2} - \sum_{\substack{p \in L_{2}(\mathcal{A}) \\ p \in L_{2}(\mathcal{A})}} \mu(p)^{2}$$
$$-D_{\mathcal{A}}K = 3(n-1) - \sum_{\substack{p \in L_{2}(\mathcal{A})}} \mu(p),$$

Proudfoot-Speyer (CM) and Riemann-Roch:

$$H^{0}(D_{\mathcal{A}}) = \frac{(n-1)^{2} - \sum \mu(p)^{2} + 3(n-1) - \sum \mu(p)}{\binom{n+1}{2} - \sum_{p \in L_{2}(\mathcal{A})} \binom{\mu(p) + 1}{2}}.$$

Double count edges between $L_1(\mathcal{A})$ and $L_2(\mathcal{A})$:

$$\binom{n}{2} = \sum_{p \in L_2(\mathcal{A})} \binom{\mu(p) + 1}{2},$$

hence $h^0(D_{\mathcal{A}}) = n$.

Definition 33 Let $3 \le k \in \mathbb{Z}$. A k-net in \mathbb{P}^2 is a pair (\mathcal{A}, Z) where \mathcal{A} is a finite set of distinct lines partitioned into k subsets $\mathcal{A} = \bigcup_{i=1}^{k} \mathcal{A}_i$ and Z is a finite set of points, such that:

• for every $i \neq j$ and every $L \in A_i$, $L' \in A_j$, $L \cap L' \in Z$.

• for every $p \in Z$ and every $i \in \{1, ..., k\}$, $\exists a$ unique $L \in A_i$ containing Z.

Falk, Libgober, Pereira, Yuzvinsky resonance (next talk!) via nets. Let $m = |A_i|$ (all equal). The existence of a (k, m) net

 $\rightarrow D_{\mathcal{A}} = A + B \text{ with } h^{0}(A) = 2$ $\rightarrow I_{\mathcal{A}} \supseteq 2 \times 2 \text{ minors } 2 \times \left(km - \binom{m+1}{2}\right) \text{ matrix}$ $\rightarrow \text{ Eagon-Northcott complex}$

 $\cdots \to S_2(S^2)^* \otimes \Lambda^4 G \to (S^2)^* \otimes \Lambda^3 G \to \Lambda^2 G \to \Lambda^2 S^2 \to S/I_2 \to 0.$ is subcomplex of resolution of $S/I_{\mathcal{A}}$, $G = S(-1)^{km - \binom{m+1}{2}}$ **Example 34** For the arrangement A_3

Z = triple points gives a (3,2) net, with A_i = lines thru p_{i+3} , i = 1, 2, 3.

$$A = 2E_0 - \sum_{\{p \mid \mu(p) = 2\}} E_p$$
$$B = 3E_0 - \sum_{p \in L_2(A)} E_p.$$

So $n - \binom{m+1}{2} = 6 - 3 = 3$ and I contains the 2×2 minors of a 2×3 matrix, whose resolution we saw at start of the talk! D_A almost gives a De-Concini-Procesi wonderful model: proper transforms of lines are contracted to points.

S **Compactifications**

Fulton-MacPherson F(X, n) combinatorics A_n . De Concini-Procesi wonderful model for subspace complements (X easy, comb. complex).

$$M(\mathcal{A}) \longrightarrow \mathbb{C}^{\ell} \times \prod_{D \in G} \mathbb{P}(\mathbb{C}^{\ell}/D).$$

Version for a lattice L: Feichtner-Kozlov.

Definition 35 Building set:
$$G \subseteq L \mid \forall x \in L$$
,
max $\{G_{\leq x}\} = \{x_1, \dots, x_m\}$ has $[\hat{0}, x] \simeq \prod_{j=1}^m [\hat{0}, x_j]$

A building set contains all irreducible $x \in L$.

Definition 36 $N \subseteq G$ is nested if for any set of incomparable $\{x_1, \ldots, x_p\} \subseteq N$ with $p \ge 2$, $x_1 \lor x_2 \lor \cdots \lor x_p$ exists in L, but is not in G.

Nested sets form a simplicial complex N(G), vertices = elements of G (vacuously nested).

(12), (123) is an edge because there are no incomparable subsets with \geq 2 elts.

Feichtner and Yuzvinsky G building set in atomic lattice L.

$$D(L,G) = [x_g | g \in G]/I,$$

where I is generated by

$$\prod_{\{g_1,\ldots,g_n\}\not\in N(G)\}} x_{g_i} \text{ and } \sum_{g_i\geq H\in L_1} x_{g_i}$$

Theorem 38 If \mathcal{A} is a hyperplane arrangement and G a building set containing $\hat{1}$, then

$$D(L,G) \simeq H^*(Y_{\mathcal{A},G}^{\mathbb{P}},\mathbb{Z}),$$

where $Y_{\mathcal{A},G}^{\mathbb{P}}$ is the wonderful model arising from the building set G.

Importance is that $\overline{M_{0,n}} \simeq Y_{A_{n-2},G}^{\mathbb{P}}$, giving beautiful description of $H^*(\overline{M_{0,n}},\mathbb{Z})$ (also Knudson, Keel) Compute $H^*(\overline{M_{0,5}},\mathbb{Z})$. T. Abe, H. Terao, M. Wakefield, *The Euler multiplicity and additiondeletion theorems for multiarrangements*, J. Lond. Math. Soc. **77** (2008), 335–348.

T. Abe, H. Terao, M. Wakefield, *The characteristic polynomial of a multiarrangement*, Adv. in Math, **215** (2007), 825–838.

T. Abe, H. Terao, M. Yoshinaga, *Totally free arrangements of hyperplanes*, Proc. Amer. Math. Soc. **137** (2009),1405–1410.

C. De Concini, C. Procesi, *Wonderful models of subspace arrangements.* Selecta Math. **1** (1995), no. 3, 459–494.

M. Falk and R. Randell, *On the homotopy theory of arrangements II*, Adv. Stud. Pure. Math. **27** (2000), 93-125.

M. Falk, S. Yuzvinsky, *Multinets, resonance varieties, and pencils of plane curves*, Compos. Math. **143** (2007), 1069–1088 2339840

E. Feichtner, *De Concini-Procesi wonderful arrangement models: a discrete geometer's point of view.* Combinatorial and computational geometry, 333–360, Math. Sci. Res. Inst. Publ. , 52, Cambridge Univ. Press, Cambridge, 2005.

E. Feichtner, D. Kozlov, *Incidence combinatorics of resolutions*, Selecta Math. **10** (2004), no. 1, 37–60.

E. Feichtner, S. Yuzvinsky, *Chow rings of toric varieties defined by atomic lattices.* Invent. Math. 155 (2004), no. 3, 515–536.

26

W. Fulton, R. MacPherson, *A compactification of configuration spaces.* Ann. of Math. **139** (1994), 183–225.

P. Orlik, H. Terao, *Arrangements of Hyperplanes*, Grundlehren Math. Wiss., Bd. 300, Springer-Verlag, Berlin-Heidelberg-New York, 1992.

P. Orlik, H. Terao, *Commutative algebras for arrangements*, Nagoya Math. J., **134** (1994), 65-73.

N. Proudfoot, D. Speyer, *A broken circuit ring*, Beiträge Algebra Geom., **47** (2006), 161-166.

K. Saito, *Theory of logarithmic differential forms and logarithmic vector fields*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **27** (1980), 265–291.

K. Saito, *Quasihomogene isolierte Singularitäten von Hyperflächen*, Inventiones Mathematicae **14** (1971), 123-142.

H. Schenck, *Geometry and syzygies of rational surfaces and line arrangements*, preprint, 2009.

H. Schenck, S. Tohaneanu, *Freeness of Conic-Line arrangements* in \mathbb{P}^2 , Commentarii Mathematici Helvetici, **84** (2009), 235-258.

H. Schenck, S. Tohaneanu, *The Orlik-Terao algebra and 2-formality*, Math. Res. Lett. **16** (2009), 171-182.

H. Terao, *Generalized exponents of a free arrangement of hyperplanes and Shepard-Todd-Brieskorn formula*, Inventiones Mathematicae **63** (1981), 159–179.

H. Terao, *Arrangements of hyperplanes and their freeness I*, J.Fac.Science Univ.Tokyo **27** (1980), 293–312.

H. Terao, Algebras generated by reciprocals of linear forms, J. Algebra, **250** (2002), 549–558.

M. Wakefield, S. Yuzvinsky, *Derivations of an effective divisor on the complex projective line*, Trans. Amer. Math. Soc. **359** (2007), 4389–4403.

G. Ziegler, *Multiarrangements of hyperplanes and their freeness*, Contemporary Mathematics **90**, 345-359. AMS, Providence, 1989.

M. Yoshinaga, *Characterization of a free arrangement and conjecture of Edelman and Reiner*, Invent. Math. **157** (2004), no. 2, 449–454.

M. Yoshinaga, *On the freeness of* 3-*arrangements*, Bull. London Math. Soc. **37** (2005), no. 1, 126–134.

S. Yuzvinsky, *First two obstructions to the freeness of arrangements*, Transactions of the A.M.S., **335** (1993), 231-244.