Arrangements and Computations I: $\operatorname{Sym}\left(V^{*}\right)$

$(1,2,3)$ and $(1,2,5)$

Hal Schenck
Mathematics Department
University of Illinois

August 19, 2009

\S Basics

$$
\text { Let } \mathcal{A} \subseteq V=\mathbb{C}^{\ell}
$$

be a central arrangement with $|\mathcal{A}|=n$, and $S=\operatorname{Sym}\left(V^{*}\right)$.

$$
S=\bigoplus_{i \in \mathbb{Z}} S_{i}
$$

is a \mathbb{Z}-graded ring:

$$
s_{i} \in S_{i} \text { and } s_{j} \in S_{j} \longrightarrow s_{i} \cdot s_{j} \in S_{i+j}
$$

Similar definition for a graded S-module M. $S_{0}=\mathbb{C}$, so M_{i} is a \mathbb{C}-vector space.

Definition 1 The Hilbert Function

$$
H F(M, i)=\operatorname{dim}_{\mathbb{C}} M_{i} .
$$

Definition 2 The Hilbert Series

$$
H S(M, i)=\sum_{\mathbb{Z}} \operatorname{dim}_{\mathbb{C}} M_{i} t^{i}
$$

Notation: $M(i)_{j}=M_{i+j}$.

Exercise: $H S\left(\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right], t\right)=\frac{1}{(1-t)^{\ell}}$.
Example $3 S=\mathbb{C}[x, y], M=S /\left\langle x^{2}, x y\right\rangle$. Then

i	M_{i}	$M(-2)_{i}$
0	1	0
1	x, y	0
2	y^{2}	1
3	y^{3}	x, y
4	y^{4}	y^{2}

$$
\begin{gathered}
H S(M, i)=\frac{1-2 t^{2}+t^{3}}{(1-t)^{2}} \\
H S(M(-2), i)=\frac{t^{2}\left(1-2 t^{2}+t^{3}\right)}{(1-t)^{2}}
\end{gathered}
$$

Makes sense: $S(-i)$ has generator in degree i.

Compute from free resolution:

$$
\begin{gathered}
0 \longrightarrow S(-3) \xrightarrow{\left[\begin{array}{c}
y \\
-x
\end{array}\right]} \text { } S(-2)^{2} \xrightarrow{\left[\begin{array}{ll}
x^{2} & x y
\end{array}\right]} S \longrightarrow S / I \\
e_{1} \mapsto x^{2} \\
e_{2} \mapsto x y
\end{gathered}
$$

Example 4 Twisted cubic $I \subseteq S=\mathbb{C}[x, y, z, w]$
$0 \longrightarrow S(-3)^{2} \xrightarrow{\left[\begin{array}{cc}-z & w \\ y & -z \\ -x & y\end{array}\right]} S(-2)^{3} \xrightarrow{\left[\begin{array}{lll}y^{2}-x z & y z-x w & z^{2}-y w\end{array}\right]} S \longrightarrow S / I$
Display as a betti table:

$$
\begin{gathered}
b_{i j}=\operatorname{dim}_{\mathbb{C}} \operatorname{Tor}_{i}^{S}(M, \mathbb{C})_{i+j} . \\
\begin{array}{r}
\text { total } \\
\hline 0
\end{array} \left\lvert\, \begin{array}{lll}
1 & - & - \\
1 & - & 3
\end{array}\right. \\
\\
b_{21}=\operatorname{dim}_{\mathbb{C}} \operatorname{Tor}_{2}^{S}(S / I, \mathbb{C})_{3}=2 .
\end{gathered}
$$

$\S D(\mathcal{A})$ and freeness

For each i, fix $V\left(l_{i}\right)=H_{i} \in \mathcal{A}$. Let $Q_{\mathcal{A}}=\prod_{i=1}^{n} l_{i}$
Definition $5 D(\mathcal{A})=\left\{\theta \in \operatorname{Der}_{C}(S) \mid \theta\left(l_{i}\right) \in\left\langle l_{i}\right\rangle\right\}$ $\forall l_{i}$ with $V\left(l_{i}\right) \in \mathcal{A}$. \mathcal{A} is free $\leftrightarrow D(\mathcal{A})$ is free.

Exercise: if $\theta_{E}=\sum_{i=1}^{\ell} x_{i} \partial / \partial x_{i}$, then

$$
D(\mathcal{A}) \simeq S \cdot \theta_{E} \oplus \operatorname{syz}\left(\operatorname{Jac}\left(Q_{\mathcal{A}}\right)\right)
$$

where syz is the syzygy module and $\operatorname{Jac}\left(Q_{\mathcal{A}}\right)$ is the jacobian ideal of $Q_{\mathcal{A}}$.

Proposition 6 (K. Saito) \mathcal{A} is free exactly when there exist ℓ elements

$$
\theta_{i}=\sum_{j=1}^{\ell} f_{i j} \frac{\partial}{\partial x_{j}} \in D(\mathcal{A})
$$

such that the determinant of the matrix $\left[f_{i j}\right]$ is a nonzero constant multiple of the defining polynomial $Q_{\mathcal{A}}$.

Compute $D(\mathcal{A})$ for arrangements in \mathbb{P}^{2} :

Example 7 [A3 and Nonfano]

Example 8 [S3]

$\pi\left(D_{3}, t\right)=(1+t)(1+3 t)^{2}=\pi\left(S_{3}, t\right)$.

Theorem 9 (Terao) If $D(\mathcal{A}) \simeq \bigoplus_{i=1}^{\ell} S\left(-a_{i}\right)$, then

$$
\pi(\mathcal{A}, t)=\prod\left(1+a_{i} t\right)=\sum \operatorname{dim}_{\mathbb{C}} H^{i}\left(\mathbb{C}^{\ell} \backslash \mathcal{A}\right) t^{i}
$$

Conjecture 10 (Terao) If char $=0$, then freeness of $D(\mathcal{A})$ depends only on $L_{\mathcal{A}}$.

Example 11 [ZieglerAB] Compute $D(\mathcal{A})$ for arrangement

where 6 triple points lie on/off a conic.

Definition $12 D^{p}(\mathcal{A}) \subseteq \wedge^{p}\left(\operatorname{Der}_{\mathbb{C}}(S)\right)$ consists of θ such that

$$
\theta\left(l_{i}, f_{2}, \ldots, f_{p}\right) \in\left\langle l_{i}\right\rangle, \forall V\left(l_{i}\right) \in \mathcal{A}, f_{i} \in S
$$

Theorem 13 (Solomon-Terao) $\chi(\mathcal{A}, t)=$
$(-1)^{\ell}{ }_{l i m} m_{x \rightarrow 1} \sum_{p \geq 0} H S\left(D^{p}(\mathcal{A}) ; x\right)(t(x-1)-1)^{p}$.

Problem How does $\operatorname{pdim} D^{p}(\mathcal{A})$
depend on $L_{\mathcal{A}}$?

Theorem 14 (Yuzvinsky) If $\hat{\mathcal{A}}$ a closed subarrangement of \mathcal{A}, then $\operatorname{pdim} D(\mathcal{A}) \geq \operatorname{pdim} D(\widehat{\mathcal{A}})$.

Aside from this, virtually nothing is known!
G a (simple) graph on ℓ vertices and edges E .
Put $\mathcal{A}_{G}=\left\{z_{i}-z_{j}=0 \mid(i, j) \in \mathrm{E} \subseteq \mathbb{C}^{\ell}\right\}$
Stanley \mathcal{A}_{G} is supersolvable $\leftrightarrow G$ is chordal.

Kung,- Induced k-cycle $\rightarrow \operatorname{pdim} D\left(\mathcal{A}_{G}\right) \geq k-3$

Example $15 G$ has induced 6-cycle (compute)

Example $16 G$ has induced 4-cycle (compute)

Problem Graph theory formula for $\operatorname{pdim} D\left(\mathcal{A}_{G}\right)$?

Proving freeness: three ways

1. Addition-Deletion Theorem (Terao)
$\left(\mathcal{A}^{\prime}, \mathcal{A}, \mathcal{A}^{\prime \prime}\right)$ a triple: $\mathcal{A}^{\prime}=\mathcal{A} \backslash H, \mathcal{A}^{\prime \prime}=\left.\mathcal{A}\right|_{H}$.
Any two below imply third.

- $D(\mathcal{A}) \simeq \oplus_{i=1}^{n} S\left(-b_{i}\right)$
- $D\left(\mathcal{A}^{\prime}\right) \simeq S\left(-b_{n}+1\right) \oplus_{i=1}^{n-1} S\left(-b_{i}\right)$
- $D\left(\mathcal{A}^{\prime \prime}\right) \simeq \oplus_{i=1}^{n-1} S / L\left(-b_{i}\right)$

2. Supersolvable (Terao, via AD)
3. Multiarrangements (Yoshinaga)
$\mathcal{A} \subseteq \mathbb{P}^{2}$ is free \leftrightarrow

- $\pi(\mathcal{A}, t)=(1+t)(1+a t)(1+b t)$ and
- $D\left(\left.\mathcal{A}\right|_{H}, \mathbf{m}\right) \simeq S / L(-a) \oplus S / L(-b)$, holds $\forall H=V(L) \in \mathcal{A}$, with $\mathbf{m}\left(H_{i}\right)=\mu_{\mathcal{A}}\left(H \cap H_{i}\right)$.

§Multiarrangements

Definition 17 (\mathcal{A}, \mathbf{m}): assign a multiplicity m_{i} to each hyperplane.

$$
D(\mathcal{A}, \mathbf{m})=\left\{\theta \mid \theta\left(l_{i}\right) \in\left\langle l_{i}^{m_{i}}\right\rangle\right\} .
$$

Example 18 [Ziegler, again!] Consider the two multiarrangements in \mathbb{P}^{1}
$\left.\mathcal{A}_{1}=(1,0),(0,1),(1,1),(1,-1)\right) *$ in \mathbb{A}^{2}
$\left.\mathcal{A}_{2}=(1,0),(0,1),(1,1),(1, a)\right)(a \neq-1)$
To compute $D\left(\mathcal{A}_{1},(1,1,3,3)\right)$, we must find all $\theta=f_{1}(x, y) \partial / \partial x+f_{2} \partial / \partial y$ such that

$$
\begin{aligned}
& \theta(x) \in\langle x\rangle, \theta(x+y) \\
& \theta(y) \in\langle x+y\rangle^{3} \\
& \theta\langle y\rangle, \theta(x-y) \in\langle x-y\rangle^{3}
\end{aligned}
$$

So compute kernel of

$$
\left[\begin{array}{cccccc}
1 & 0 & x & 0 & 0 & 0 \\
0 & 1 & 0 & y & 0 & 0 \\
1 & 1 & 0 & 0 & (x+y)^{3} & 0 \\
1 & -1 & 0 & 0 & 0 & (x-y)^{3}
\end{array}\right]
$$

Theorem 19 (Abe, Terao, Wakefield)

$$
\begin{aligned}
& \Psi(\mathcal{A}, \mathbf{m}, t, q)=\sum_{p=0}^{\ell} H S\left(D^{p}(\mathcal{A}, \mathbf{m}, q)\right)(t(q-1)-1)^{p} \\
& \qquad \chi((\mathcal{A}, \mathbf{m}), t)=(-1)^{\ell} \Psi(\mathcal{A}, \mathbf{m}, t, 1) \\
& \text { If } D^{1}(\mathcal{A}, \mathbf{m}) \simeq \oplus S\left(-d_{i}\right) \text { then } \\
& \qquad \chi((\mathcal{A}, \mathbf{m}), t)=\prod_{i=1}^{\ell}\left(1+d_{i} t\right)
\end{aligned}
$$

Abe, Terao, Wakefield also prove an additiondeletion theorem for multiarrangements, using Euler multiplicity for the restriction.

Hilbert-Burch Thm \longrightarrow any $(\mathcal{A}, \mathbf{m}) \subseteq \mathbb{P}^{1}$ is free. Problem \exists other arrangements which are free for any m? No! Abe, Terao, Yoshinaga: any such is a product of 1 and 2-dim arrangements. Problem Characterize pdim $D(\mathcal{A}, \mathbf{m})$. Problem Supersolvability for multiarrangements?

§Arrangements of hypersurfaces

Saito's criterion still holds. Are there other freeness theorems? Addition-Deletion theorem (even for $\mathcal{C} \subseteq \mathbb{P}^{2}$)?

Example 20 For the arrangement $\mathcal{C} \subseteq \mathbb{P}^{2}$

Compute $D(\mathcal{C})$
For a good theory, must control singularities.

Definition 21 Plane curve singularity is quasihomogeneous $\leftrightarrow \exists$ holo Δ vars so $f(x, y)=$ $\sum c_{i j} x^{i} y^{j}$ is weighted homogeneous: $\exists \alpha, \beta \in \mathbb{Q}$ s.t. $\sum c_{i j} x^{i \cdot \alpha} y^{j \cdot \beta}$ is homogeneous.

Definition 22 The Milnor number at $(0,0)$ is

$$
\mu_{(0,0)}(C)=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\{x, y\} /\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

The Tjurina number at $(0,0)$ is

$$
\tau_{(0,0)}(C)=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\{x, y\} /\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, f\right\rangle
$$

for general p, just translate. For $V(Q) \subseteq \mathbb{P}^{2}$, note the degree of $\operatorname{Jac}(Q)=\sum_{p \in \operatorname{sing}(V(Q))} \tau_{p}$.

Example 23 Let \mathcal{C} be as below:

If p an ordinary sing with k distinct branches, then $\mu_{p}(C)=(k-1)^{2}$, so the sum of the Milnor numbers is 20 . Compute $\operatorname{deg}(J)$. What happens at the origin?

Theorem 24 (K. Saito) If $C=V(f)$ has an isolated sing. at the origin, then

$$
f \in J a c(f) \leftrightarrow f \text { is quasihomogeneous. }
$$

For a qhomogeneous line/conic arrangement, \exists addition/deletion theorem (-,Tohaneanu). Compute $D(\mathcal{C})$ for

Can use AD to show this. Now change \mathcal{C} to \mathcal{C}^{\prime} via: $y=0 \longrightarrow x-13 y=0$ and compute $D\left(\mathcal{C}^{\prime}\right)$.

§Orlik-Terao algebra

The Orlik-Terao algebra is (almost) a symmetric version of the Orlik-Solomon algebra. If codim $\cap_{j=1}^{m} H_{i_{j}}<m$, then $\exists c_{i_{j}}$ with

$$
\begin{gathered}
\sum_{j=1}^{m} c_{i_{j}} \cdot l_{i_{j}}=0 \text { a dependency. } \\
\left.I_{\mathcal{A}}=\left\langle\sum_{j=1}^{m} c_{i_{j}}\left(y_{i_{1}} \cdots \widehat{y}_{i_{j}} \cdots y_{i_{m}}\right)\right| \text { over all deps }\right\rangle
\end{gathered}
$$

Definition 25 The Orlik-Terao algebra is

$$
C(\mathcal{A})=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{\mathcal{A}} .
$$

Example $26 \mathcal{A}=V\left(x_{1} \cdot x_{2} \cdot x_{3} \cdot\left(x_{1}+x_{2}+x_{3}\right)\right)$, the only dependency is

$$
l_{1}+l_{2}+l_{3}-l_{4}=0, \text { thus } C(\mathcal{A})=
$$

$\mathbb{C}\left[y_{1}, y_{2}, y_{3}, y_{4}\right] /\left\langle y_{2} y_{3} y_{4}+y_{1} y_{3} y_{4}+y_{1} y_{2} y_{4}-y_{1} y_{2} y_{3}\right\rangle$.

Artinian version of Orlik-Terao algebra is

$$
A O T=C(\mathcal{A}) /\left\langle x_{1}^{2}, \ldots, x_{n}^{2}\right\rangle
$$

Theorem 27 (Orlik-Terao)

$$
H S(A O T)=\pi(\mathcal{A}, t)
$$

answering a question of Aomoto. For the previous example, Hilbert series of AOT is

$$
1+4 t+\binom{4}{2} t^{2}+\left(\binom{4}{3}-1\right) t^{3}
$$

Theorem 28 (Terao)

$$
H S(O T, t)=\pi\left(\mathcal{A}, \frac{t}{1-t}\right) .
$$

Can show that

$$
0 \rightarrow I_{\mathcal{A}} \rightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \xrightarrow{\phi} \mathbb{C}\left[\frac{1}{l_{1}}, \ldots, \frac{1}{l_{n}}\right] \rightarrow 0
$$

so $V\left(I_{\mathcal{A}}\right) \subseteq \mathbb{P}^{n-1}$ is irreducible and rational. Problem What is the geometry of $V\left(I_{\mathcal{A}}\right)$?

Definition $29 \mathcal{A}$ is 2-formal if all dependencies are generated by dependencies among three hyperplanes.

Theorem 30 (Falk-Randell) $K(\pi, 1)$ and $q O S$ arrangements are 2-formal.

Theorem 31 (Yuzvinsky) Free arrangements are 2-formal.

WARNING! ZieglerA is 2-formal, ZieglerB is not. How to detect?

Formality involves the actual dependencies, which are captured by $C(\mathcal{A})$! Compute OT and AOT for Ziegler arrangements.

Theorem 32 (-,Tohaneanu)

$$
\mathcal{A} \text { is } 2 \text {-formal } \leftrightarrow \operatorname{codim}\left(I_{2}\right)=n-\ell .
$$

What about other information? Is $V\left(I_{\mathcal{A}}\right)$ smooth? Compute for $V\left(y_{2} y_{3} y_{4}+y_{1} y_{3} y_{4}+y_{1} y_{2} y_{4}-y_{1} y_{2} y_{3}\right)$.

Notice that the map $\phi\left(y_{i}\right)=\frac{1}{l_{i}}$ can be rewritten as

$$
y_{i} \mapsto \alpha_{i}=l_{1} \cdot l_{2} \cdots \widehat{l_{i}} \cdots l_{n} .
$$

For simplicity, restrict to \mathbb{P}^{2}. For the braid arrangement A_{3}, we obtain a map to \mathbb{P}^{5}, whose image is a rational surface, with Hilbert polynomial (compute!)

Let X be the blowup of \mathbb{P}^{2} at $\operatorname{sing}(\mathcal{A})$, and

$$
D_{\mathcal{A}}=(n-1) E_{0}-\sum_{p_{i} \in L_{2}(\mathcal{A})} \mu\left(p_{i}\right) E_{i} .
$$

The intersection pairing on X is given by $E_{0}^{2}=1, E_{i \neq 0}^{2}=-1$ and $E_{i} \cdot E_{j \neq i}=0$
Since $K_{X}=-3 E_{0}+\sum E_{i}$, we have

$$
\begin{aligned}
D_{\mathcal{A}}^{2} & =(n-1)^{2}-\sum_{p \in L_{2}(\mathcal{A})} \mu(p)^{2} \\
-D_{\mathcal{A}} K & =3(n-1)-\sum_{p \in L_{2}(\mathcal{A})} \mu(p),
\end{aligned}
$$

Proudfoot-Speyer (CM) and Riemann-Roch:

$$
\begin{aligned}
H^{0}\left(D_{\mathcal{A}}\right) & =\frac{(n-1)^{2}-\sum \mu(p)^{2}+3(n-1)-\sum \mu(p)}{2}+1 \\
& =\binom{n+1}{2}-\sum_{p \in L_{2}(\mathcal{A})}\binom{\mu(p)+1}{2} .
\end{aligned}
$$

Double count edges between $L_{1}(\mathcal{A})$ and $L_{2}(\mathcal{A})$:

$$
\binom{n}{2}=\sum_{p \in L_{2}(\mathcal{A})}\binom{\mu(p)+1}{2}
$$

hence $h^{0}\left(D_{\mathcal{A}}\right)=n$.

Definition 33 Let $3 \leq k \in \mathbb{Z}$. A k-net in \mathbb{P}^{2} is a pair (\mathcal{A}, Z) where \mathcal{A} is a finite set of distinct lines partitioned into k subsets $\mathcal{A}=\cup_{i=1}^{k} \mathcal{A}_{i}$ and Z is a finite set of points, such that:

- for every $i \neq j$ and every $L \in \mathcal{A}_{i}, L^{\prime} \in \mathcal{A}_{j}$, $L \cap L^{\prime} \in Z$.
- for every $p \in Z$ and every $i \in\{1, \ldots, k\}, \exists a$ unique $L \in A_{i}$ containing Z.

Falk, Libgober, Pereira, Yuzvinsky resonance (next talk!) via nets. Let $m=\left|\mathcal{A}_{i}\right|$ (all equal). The existence of a (k, m) net
$\rightarrow D_{\mathcal{A}}=A+B$ with $h^{0}(A)=2$
$\rightarrow I_{\mathcal{A}} \supseteq 2 \times 2$ minors $2 \times\left(k m-\binom{m+1}{2}\right)$ matrix
\rightarrow Eagon-Northcott complex
$\cdots \rightarrow S_{2}\left(S^{2}\right)^{*} \otimes \Lambda^{4} G \rightarrow\left(S^{2}\right)^{*} \otimes \Lambda^{3} G \rightarrow \Lambda^{2} G \rightarrow \Lambda^{2} S^{2} \rightarrow S / I_{2} \rightarrow 0$.
is subcomplex of resolution of $S / I_{\mathcal{A}}, G=S(-1)^{k m-\binom{m+1}{2}}$

Example 34 For the arrangement A_{3}

$Z=$ triple points gives a $(3,2)$ net, with $A_{i}=$ lines thru $p_{i+3}, i=1,2,3$.

$$
\begin{gathered}
A=2 E_{0}-\sum_{\{p \mid \mu(p)=2\}} E_{p} \\
B=3 E_{0}-\sum_{p \in L_{2}(\mathcal{A})} E_{p} .
\end{gathered}
$$

So $n-\binom{m+1}{2}=6-3=3$ and I contains the 2×2 minors of a 2×3 matrix, whose resolution we saw at start of the talk! $D_{\mathcal{A}}$ almost gives a De-Concini-Procesi wonderful model: proper transforms of lines are contracted to points.

§Compactifications

Fulton-MacPherson $F(X, n)$ combinatorics A_{n}. De Concini-Procesi wonderful model for subspace complements (X easy, comb. complex).

$$
M(\mathcal{A}) \longrightarrow \mathbb{C}^{\ell} \times \prod_{D \in G} \mathbb{P}\left(\mathbb{C}^{\ell} / D\right)
$$

Version for a lattice L: Feichtner-Kozlov.

Definition 35 Building set: $G \subseteq L \mid \forall x \in L$, $\max \left\{G_{\leq x}\right\}=\left\{x_{1}, \ldots, x_{m}\right\}$ has $[\widehat{0}, x] \simeq \prod_{j=1}^{m}\left[\widehat{0}, x_{j}\right]$
A building set contains all irreducible $x \in L$.

Definition $36 N \subseteq G$ is nested if for any set of incomparable $\left\{x_{1}, \ldots, x_{p}\right\} \subseteq N$ with $p \geq 2$, $x_{1} \vee x_{2} \vee \cdots \vee x_{p}$ exists in L, but is not in G. Nested sets form a simplicial complex $N(G)$, vertices $=$ elements of G (vacuously nested).

Example 37 For A_{3}

(12),(123) is an edge because there are no incomparable subsets with ≥ 2 elts.

Feichtner and Yuzvinsky G building set in atomic lattice L.

$$
D(L, G)=\left[x_{g} \mid g \in G\right] / I,
$$

where I is generated by

$$
\prod_{\left.\left., g_{n}\right\} \notin N(G)\right\}} x_{g_{i}} \text { and } \sum_{g_{i} \geq H \in L_{1}} x_{g_{i}}
$$

Theorem 38 If \mathcal{A} is a hyperplane arrangement and G a building set containing $\hat{1}$, then

$$
D(L, G) \simeq H^{*}\left(Y_{\mathcal{A}, G}^{\mathbb{P}}, \mathbb{Z}\right)
$$

where $Y_{\mathcal{A}, G}^{\mathbb{P}}$ is the wonderful model arising from the building set G.

Importance is that $\overline{M_{0, n}} \simeq Y_{A_{n-2}, G}^{\mathbb{P}}$, giving beautiful description of $H^{*}\left(\overline{M_{0, n}}, \mathbb{Z}\right)$ (also Knudson, Keel) Compute $H^{*}\left(\overline{M_{0,5}}, \mathbb{Z}\right)$.
T. Abe, H. Terao, M. Wakefield, The Euler multiplicity and additiondeletion theorems for multiarrangements, J. Lond. Math. Soc. 77 (2008), 335-348.
T. Abe, H. Terao, M. Wakefield, The characteristic polynomial of a multiarrangement, Adv. in Math, 215 (2007), 825-838.
T. Abe, H. Terao, M. Yoshinaga, Totally free arrangements of hyperplanes, Proc. Amer. Math. Soc. 137 (2009),1405-1410.
C. De Concini, C. Procesi, Wonderful models of subspace arrangements. Selecta Math. 1 (1995), no. 3, 459-494.
M. Falk and R. Randell, On the homotopy theory of arrangements II, Adv. Stud. Pure. Math. 27 (2000), 93-125.
M. Falk, S. Yuzvinsky, Multinets, resonance varieties, and pencils of plane curves, Compos. Math. 143 (2007), 1069-1088 2339840
E. Feichtner, De Concini-Procesi wonderful arrangement models: a discrete geometer's point of view. Combinatorial and computational geometry, 333-360, Math. Sci. Res. Inst. Publ. , 52, Cambridge Univ. Press, Cambridge, 2005.
E. Feichtner, D. Kozlov, Incidence combinatorics of resolutions, Selecta Math. 10 (2004), no. 1, 37-60.
E. Feichtner, S. Yuzvinsky, Chow rings of toric varieties defined by atomic lattices. Invent. Math. 155 (2004), no. 3, 515-536.
W. Fulton, R. MacPherson, A compactification of configuration spaces. Ann. of Math. 139 (1994), 183-225.
P. Orlik, H. Terao, Arrangements of Hyperplanes, Grundlehren Math. Wiss., Bd. 300, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
P. Orlik, H. Terao, Commutative algebras for arrangements, Nagoya Math. J., 134 (1994), 65-73.
N. Proudfoot, D. Speyer, A broken circuit ring, Beiträge Algebra Geom., 47 (2006), 161-166.
K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291.
K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Inventiones Mathematicae 14 (1971), 123-142.
H. Schenck, Geometry and syzygies of rational surfaces and line arrangements, preprint, 2009.
H. Schenck, S. Tohaneanu, Freeness of Conic-Line arrangements in \mathbb{P}^{2}, Commentarii Mathematici Helvetici, 84 (2009), 235-258.
H. Schenck, S. Tohaneanu, The Orlik-Terao algebra and 2-formality, Math. Res. Lett. 16 (2009), 171-182.
H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepard-Todd-Brieskorn formula, Inventiones Mathematicae 63 (1981), 159-179.
H. Terao, Arrangements of hyperplanes and their freeness I, J.Fac.Science Univ.Tokyo 27 (1980), 293-312.
H. Terao, Algebras generated by reciprocals of linear forms, J. Algebra, 250 (2002), 549-558.
M. Wakefield, S. Yuzvinsky, Derivations of an effective divisor on the complex projective line, Trans. Amer. Math. Soc. 359 (2007), 4389-4403.
G. Ziegler, Multiarrangements of hyperplanes and their freeness, Contemporary Mathematics 90, 345-359. AMS, Providence, 1989.
M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math. 157 (2004), no. 2, 449-454.
M. Yoshinaga, On the freeness of 3-arrangements, Bull. London Math. Soc. 37 (2005), no. 1, 126-134.
S. Yuzvinsky, First two obstructions to the freeness of arrangements, Transactions of the A.M.S., 335 (1993), 231-244.

