Bruhat order and Hyperplane arrangements

SuHo Oh, Alexander Postnikov, Hwanchul Yoo

Massachusetts Insitute of Technology
August 10, 2009

Introduction

- Link Schubert varieties with Hyperplane arrangements

Introduction

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- Hyperplane arrangements

Introduction

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- $X_{w}, w \in W$
- Hyperplane arrangements
- $\mathcal{A}_{w}, w \in W$

Introduction

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- $X_{w}, w \in W$
- Poincare Polynomial
- Hyperplane arrangements
- $\mathcal{A}_{w}, w \in W$
- Distance Enumerator Polynomial

Introduction

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- $X_{w}, w \in W$
- Poincare Polynomial
- Setting $q=1$, \# of elements in [id, w].
- Hyperplane arrangements
- $\mathcal{A}_{w}, w \in W$
- Distance Enumerator Polynomial
- Setting $q=1$, \# of regions in the arrangement.

Introduction

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- $X_{w}, w \in W$
- Poincare Polynomial
- Setting $q=1$, \# of elements in [id, w].
- Type A :
- Hyperplane arrangements
- $\mathcal{A}_{w}, w \in W$
- Distance Enumerator Polynomial
- Setting $q=1$, \# of regions in the arrangement.

Introduction

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- $X_{w}, w \in W$
- Poincare Polynomial
- Setting $q=1$, \# of elements in [id, w].
- Hyperplane arrangements
- $\mathcal{A}_{w}, w \in W$
- Distance Enumerator Polynomial
- Setting $q=1$, \# of regions in the arrangement.
- Type A :
- Two polynomials equal iff w avoids 3412, 4231.

Introduction

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- $X_{w}, w \in W$
- Poincare Polynomial
- Setting $q=1$, \# of elements in [id, w].
- Type A :
- Two polynomials equal iff w avoids 3412, 4231.
- Nice way to compute Poincare polynomial

Introduction

- Link Schubert varieties with Hyperplane arrangements
- Schubert varieties
- $X_{w}, w \in W$
- Poincare Polynomial
- Setting $q=1$, \# of elements in [id, w].
- Type A :
- Two polynomials equal iff w avoids $3412,4231$.
- Nice way to compute Poincare polynomial
- A conjecture(?) for general W

Bruhat order and Poincaré polynomials

- $X_{w}=B \bar{w} B / B$

Bruhat order and Poincaré polynomials

- $X_{w}=B \bar{w} B / B$
- [id, w] :=\{úS $\left.S_{n} \mid u \leq w\right\}$

Bruhat order and Poincaré polynomials

- $X_{w}=B \bar{w} B / B$
- [id, w] := $\left.u \in S_{n} \mid u \leq w\right\}$
- Poincaré polynomial of X_{w} : Rank generating function for [id, w]

$$
P_{w}(q)=\sum_{u \leq w} q^{\ell(u)}
$$

Bruhat order and Poincaré polynomials

- $X_{w}=B \bar{w} B / B$
- [id, w] := $\left.u \in S_{n} \mid u \leq w\right\}$
- Poincaré polynomial of X_{w} : Rank generating function for [id, w]

$$
P_{w}(q)=\sum_{u \leq w} q^{\ell(u)}
$$

- (Lakshmibai-Sandhya) X_{w} smooth iff w avoids 3412, 4231.

Bruhat order and Poincaré polynomials

- $X_{w}=B \bar{w} B / B$
- [id, w] := $\left.u \in S_{n} \mid u \leq w\right\}$
- Poincaré polynomial of X_{w} : Rank generating function for [id, w]

$$
P_{w}(q)=\sum_{u \leq w} q^{\ell(u)}
$$

- (Lakshmibai-Sandhya) X_{w} smooth iff w avoids 3412, 4231.
- (Carrell-Peterson) X_{w} smooth iff P_{w} palindromic.

Bruhat order and Poincaré polynomials

- $X_{w}=B \bar{w} B / B$
- [id, w] := $\left\{u \in S_{n} \mid u \leq w\right\}$
- Poincaré polynomial of X_{w} : Rank generating function for [id, w]

$$
P_{w}(q)=\sum_{u \leq w} q^{\ell(u)}
$$

- (Lakshmibai-Sandhya) X_{w} smooth iff w avoids 3412, 4231.
- (Carrell-Peterson) X_{w} smooth iff P_{w} palindromic.
- (Gasharov) $P_{w}(q)$ factors as products of form $[a]_{q}$ where $[a]_{q}:=\left(1-q^{a}\right) /(1-q)=1+q+q^{2}+\cdots+q^{a-1}$

Example : S_{4}

X_{w} smooth $\leftrightarrow w$ avoids $3412,4231 \leftrightarrow P_{w}$ palindromic.

Example : S_{4}

X_{w} smooth $\leftrightarrow w$ avoids $3412,4231 \leftrightarrow P_{w}$ palindromic.

- $P_{1234}=1$

Example : S_{4}

X_{w} smooth $\leftrightarrow w$ avoids $3412,4231 \leftrightarrow P_{w}$ palindromic.

- $P_{1234}=1$
- $P_{2143}=1+2 q+q^{2}$

Example : S_{4}

X_{w} smooth $\leftrightarrow w$ avoids $3412,4231 \leftrightarrow P_{w}$ palindromic.

- $P_{1234}=1$
- $P_{2143}=1+2 q+q^{2}$
- $P_{3412}=$
$1+3 q+5 q^{2}+4 q^{3}+q^{4}$

Example : S_{4}

X_{w} smooth $\leftrightarrow w$ avoids $3412,4231 \leftrightarrow P_{w}$ palindromic.

- $P_{1234}=1$
- $P_{2143}=1+2 q+q^{2}$
- $P_{3412}=$
$1+3 q+5 q^{2}+4 q^{3}+q^{4}$
- $P_{4321}=1+3 q+5 q^{2}+$ $6 q^{3}+5 q^{4}+3 q^{5}+q^{6}$

Inversion Hyperplane arrangement

- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.

Inversion Hyperplane arrangement

- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- (Hultman-Linusson-Shareshian-Sjöstrand) \#Regions of $\mathcal{A}_{w}=$ $P_{w}(1)$ iff w avoids 4231, 35142, 42513, 351624.

Inversion Hyperplane arrangement

- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- (Hultman-Linusson-Shareshian-Sjöstrand) \#Regions of $\mathcal{A}_{w}=$ $P_{w}(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_{w} :

Inversion Hyperplane arrangement

- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- (Hultman-Linusson-Shareshian-Sjöstrand) \#Regions of $\mathcal{A}_{w}=$ $P_{w}(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_{w} :
- Regions $r, r^{\prime}, d\left(r, r^{\prime}\right):=$ Minimal \# hyperplanes crossed to go from r to r^{\prime}.

Inversion Hyperplane arrangement

- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- (Hultman-Linusson-Shareshian-Sjöstrand) \#Regions of $\mathcal{A}_{w}=$ $P_{w}(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_{w} :
- Regions $r, r^{\prime}, d\left(r, r^{\prime}\right):=$ Minimal \# hyperplanes crossed to go from r to r^{\prime}.
- r_{0} : Region containing $(1, \ldots, n)$.

Inversion Hyperplane arrangement

- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- (Hultman-Linusson-Shareshian-Sjöstrand) \#Regions of $\mathcal{A}_{w}=$ $P_{w}(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_{w} :
- Regions $r, r^{\prime}, d\left(r, r^{\prime}\right):=$ Minimal \# hyperplanes crossed to go from r to r^{\prime}.
- r_{0} : Region containing $(1, \ldots, n)$.
- Distance Enumerator Polynomial of r_{0} :

$$
R_{\mathcal{A}_{w}}(q):=\sum_{r} q^{d\left(r, r_{0}\right)}
$$

Inversion Hyperplane arrangement

- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- (Hultman-Linusson-Shareshian-Sjöstrand) \#Regions of $\mathcal{A}_{w}=$ $P_{w}(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_{w} :
- Regions $r, r^{\prime}, d\left(r, r^{\prime}\right):=$ Minimal \# hyperplanes crossed to go from r to r^{\prime}.
- r_{0} : Region containing $(1, \ldots, n)$.
- Distance Enumerator Polynomial of r_{0} :

$$
R_{\mathcal{A}_{w}}(q):=\sum_{r} q^{d\left(r, r_{0}\right)}
$$

- Let G be inversion graph of $w . \mathcal{O}$ be an acyclic orientation. $\operatorname{des}(\mathcal{O}):=$ \# edges oriented rightwards.

Inversion Hyperplane arrangement

- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- (Hultman-Linusson-Shareshian-Sjöstrand) \#Regions of $\mathcal{A}_{w}=$ $P_{w}(1)$ iff w avoids 4231, 35142, 42513, 351624.
- Lets define q-analog of R_{w} :
- Regions $r, r^{\prime}, d\left(r, r^{\prime}\right):=$ Minimal \# hyperplanes crossed to go from r to r^{\prime}.
- r_{0} : Region containing $(1, \ldots, n)$.
- Distance Enumerator Polynomial of r_{0} :

$$
R_{\mathcal{A}_{w}}(q):=\sum_{r} q^{d\left(r, r_{0}\right)}
$$

- Let G be inversion graph of $w . \mathcal{O}$ be an acyclic orientation. $\operatorname{des}(\mathcal{O}):=$ \# edges oriented rightwards.
- Then $R_{\mathcal{A}_{w}}$ equals:

$$
R_{G}(q):=\sum_{\mathcal{O}} q^{\operatorname{des}(\mathcal{O})}
$$

Examples

Examples

$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$

- $R_{\mathcal{A}_{1234}}=1$

Examples

Examples

Examples

Very brief outline of the proof

Lemma (Björner-Edelman-Ziegler)

G on vertex set $[n]$ has vertex v adjacent to m vertices such that
(1) Set of all neighbors of v form a clique in G
(2) All neighbors of v less than v, or
(2) All neighbors of v greater than v.

Then $R_{G}(q)=[m+1]_{q} R_{G \backslash v}(q)$.

Very brief outline of the proof

Lemma (Björner-Edelman-Ziegler)

G on vertex set $[n]$ has vertex v adjacent to m vertices such that
(1) Set of all neighbors of v form a clique in G
(2) (1) All neighbors of v less than v, or
(2) All neighbors of v greater than v.

Then $R_{G}(q)=[m+1]_{q} R_{G \backslash v}(q)$.

- Find a nice ordering on inversion graph G such that :

Very brief outline of the proof

Lemma (Björner-Edelman-Ziegler)

G on vertex set $[n]$ has vertex v adjacent to m vertices such that
(1) Set of all neighbors of v form a clique in G
(2) (1) All neighbors of v less than v, or
(2) All neighbors of v greater than v.

Then $R_{G}(q)=[m+1]_{q} R_{G \backslash \vee}(q)$.

- Find a nice ordering on inversion graph G such that:
- Perfect elimination ordering : $\forall i, \operatorname{Nbr}\left(v_{i}\right) \cap\left\{v_{1}, \cdots, v_{i-1}\right\}$ form clique.

Very brief outline of the proof

Lemma (Björner-Edelman-Ziegler)

G on vertex set $[n]$ has vertex v adjacent to m vertices such that
(1) Set of all neighbors of v form a clique in G
(2) All neighbors of v less than v, or
(2) All neighbors of v greater than v.

Then $R_{G}(q)=[m+1]_{q} R_{G \backslash v}(q)$.

- Find a nice ordering on inversion graph G such that:
- Perfect elimination ordering : $\forall i, \operatorname{Nbr}\left(v_{i}\right) \cap\left\{v_{1}, \cdots, v_{i-1}\right\}$ form clique.
- $\forall i, \operatorname{Nbr}\left(v_{i}\right) \cap\left\{v_{1}, \cdots, v_{i-1}\right\}$ are all greater(or less) than v_{i}.

Very brief outline of the proof

Lemma (Björner-Edelman-Ziegler)

G on vertex set $[n]$ has vertex v adjacent to m vertices such that
(1) Set of all neighbors of v form a clique in G
(2) All neighbors of v less than v, or
(3) All neighbors of v greater than v.

Then $R_{G}(q)=[m+1]_{q} R_{G \backslash v}(q)$.

- Find a nice ordering on inversion graph G such that :
- Perfect elimination ordering : $\forall i, \operatorname{Nbr}\left(v_{i}\right) \cap\left\{v_{1}, \cdots, v_{i-1}\right\}$ form clique.
- $\forall i, \operatorname{Nbr}\left(v_{i}\right) \cap\left\{v_{1}, \cdots, v_{i-1}\right\}$ are all greater(or less) than v_{i}.
- So we have a recursive factorization of $R_{w}(q)$.

Very brief outline of the proof

Lemma (Björner-Edelman-Ziegler)

G on vertex set $[n]$ has vertex v adjacent to m vertices such that
(1) Set of all neighbors of v form a clique in G
(2) All neighbors of v less than v, or
(3) All neighbors of v greater than v.

Then $R_{G}(q)=[m+1]_{q} R_{G \backslash v}(q)$.

- Find a nice ordering on inversion graph G such that:
- Perfect elimination ordering : $\forall i, \operatorname{Nbr}\left(v_{i}\right) \cap\left\{v_{1}, \cdots, v_{i-1}\right\}$ form clique.
- $\forall i, \operatorname{Nbr}\left(v_{i}\right) \cap\left\{v_{1}, \cdots, v_{i-1}\right\}$ are all greater(or less) than v_{i}.
- So we have a recursive factorization of $R_{w}(q)$.
- The recurrence is same as Gasharov's for $P_{w}(q)$.

General Conjecture

General Conjecture

- $X_{w}, w \in S_{n}$
- $X_{w}, w \in W$, for other types

General Conjecture

- $X_{w}, w \in S_{n}$
- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- $X_{w}, w \in W$, for other types
- $\mathcal{A}_{w}: \alpha(x)=0$ s.t. $\alpha>0, w(\alpha)<0$

General Conjecture

- $X_{w}, w \in S_{n}$
- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- Theorem : $P_{w}(q)=R_{w}(q)$ iff X_{w} smooth
- $X_{w}, w \in W$, for other types
- $\mathcal{A}_{w}: \alpha(x)=0$ s.t. $\alpha>0, w(\alpha)<0$
- Conjecture : $P_{w}(q)=R_{w}(q)$ iff X_{w} rationally smooth

General Conjecture

- $X_{w}, w \in S_{n}$
- $\mathcal{A}_{w}: x_{i}-x_{j}=0$ for each $1 \leq i<j \leq n, w(i)>w(j)$.
- Theorem : $P_{w}(q)=R_{w}(q)$ iff X_{w} smooth
- w avoiding 3412, 4231
- $X_{w}, w \in W$, for other types
- $\mathcal{A}_{w}: \alpha(x)=0$ s.t. $\alpha>0, w(\alpha)<0$
- Conjecture : $P_{w}(q)=R_{w}(q)$ iff X_{w} rationally smooth
- w avoiding some patterns

Type B,D ...

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

- X_{w} rat.smooth iff $P_{w}(q)$ factors as $\left[e_{i}\right] q_{q}$'s.

Type B,D ...

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

- X_{w} rat.smooth iff $P_{w}(q)$ factors as $\left[e_{i}\right]{ }_{q}$'s.
- Type B : X_{w} rat.smooth iff w avoids

Type B,D ...

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

- X_{w} rat.smooth iff $P_{w}(q)$ factors as $\left[e_{i}\right]_{q}$'s.

$\overline{1} 2 \overline{3}$	$1 \overline{2} \overline{3}$	$12 \overline{3}$	$1 \overline{3} \overline{2}$	$\overline{2} 1 \overline{3}$	$\overline{2} 1 \overline{3}$	$2 \overline{1} \overline{3}$
$2 \overline{3} \overline{1}$	$\overline{3} 1 \overline{2}$	$\overline{3} \overline{2} \overline{1}$	$\overline{3} \overline{2} 1$	$\overline{3} 2 \overline{1}$	$3 \overline{2} \overline{1}$	$3 \overline{2} 1$
$\overline{2} \overline{4} 31$	$2 \overline{4} 31$	$\overline{3} \overline{4} \overline{1} \overline{2}$	$\overline{3} 4 \overline{1} 2$	$\overline{3} 412$	$34 \overline{1} 2$	3412
$4 \overline{1} 3 \overline{2}$	$413 \overline{2}$	$\overline{4} 231$	$423 \overline{1}$	4231		

Type B,D ...

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

- X_{w} rat.smooth iff $P_{w}(q)$ factors as $\left[e_{i}\right]_{q}$'s.

$\overline{1} 2 \overline{3}$	$1 \overline{2} \overline{3}$	$12 \overline{3}$	$1 \overline{3} \overline{2}$	$\overline{2} \overline{1} \overline{3}$	$\overline{2} 1 \overline{3}$	$2 \overline{1} \overline{3}$
$2 \overline{3} \overline{1}$	$\overline{3} 1 \overline{2}$	$\overline{3} \overline{2} \overline{1}$	$\overline{3} \overline{2} 1$	$\overline{3} 2 \overline{1}$	$3 \overline{2} \overline{1}$	$3 \overline{2} 1$
$\overline{2} \overline{4} 31$	$2 \overline{4} 31$	$\overline{3} \overline{4} \overline{1} \overline{2}$	$\overline{3} 4 \overline{1} 2$	$\overline{3} 412$	$34 \overline{1} 2$	3412
$4 \overline{1} 3 \overline{2}$	$413 \overline{2}$	$\overline{4} 231$	$423 \overline{1}$	4231		

- Type $\mathrm{D}: X_{w}$ rat.smooth iff w avoids

Type B,D ...

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

- X_{w} rat.smooth iff $P_{w}(q)$ factors as $\left[e_{i}\right] q$'s.

$\overline{1} 2 \overline{3}$	$1 \overline{2} \overline{3}$	$12 \overline{3}$	$1 \overline{3} \overline{2}$	$\overline{2} 1 \overline{3}$	$\overline{2} 1 \overline{3}$	$2 \overline{1} \overline{3}$
$2 \overline{1} \overline{1}$	$\overline{3} 1 \overline{1}$	$\overline{3} \overline{2} \overline{1}$	$\overline{3} \overline{2} 1$	$\overline{3} 2 \overline{1}$	$3 \overline{2} \overline{1}$	$3 \overline{2} 1$
$\overline{2} \overline{4} 31$	$2 \overline{4} 31$	$\overline{3} \overline{4} \overline{1} \overline{2}$	$\overline{3} 4 \overline{1} 2$	$\overline{3} 412$	$34 \overline{1} 2$	3412
$4 \overline{1} 3 \overline{2}$	$413 \overline{2}$	$\overline{4} 231$	$423 \overline{1}$	4231		

$12 \overline{3}$	$\overline{1} 2 \overline{3}$	$\overline{1} \overline{3} \overline{2}$	$1 \overline{3} \overline{2}$	$\overline{2} \overline{1} \overline{3}$	$\overline{3} \overline{2} \overline{1}$	
$\overline{1} 4 \overline{3} 2$	$\overline{2} 1 \overline{3} \overline{4}$	$2 \overline{3} \overline{3} \overline{4}$	$21 \overline{3} \overline{4}$	$\overline{2} \overline{3} 1 \overline{4}$	$2 \overline{3} 1 \overline{4}$	
$2 \overline{4} 31$	$\overline{2} \overline{4} 3 \overline{1}$	$\overline{2} 4 \overline{3} \overline{1}$	$24 \overline{3} \overline{1}$	$2 \overline{4} 3 \overline{1} \overline{1}$	$\overline{2} 4 \overline{3} 1$	
$\overline{2} \overline{4} 31$	$3 \overline{1} \overline{2} \overline{4}$	$31 \overline{2} \overline{4}$	$3 \overline{2} 1 \overline{4}$	$3 \overline{2} \overline{4} 1$	$\overline{3} \overline{4} 1 \overline{2}$	
$3 \overline{4} \overline{1} \overline{2}$	$\overline{3} 412$	$34 \overline{1} 2$	$\overline{3} 4 \overline{1} 2$	3412	$\overline{3} \overline{4} \overline{1} \overline{2}$	
$3 \overline{4} 1 \overline{2}$	$\overline{3} \overline{4} \overline{2} 1$	$34 \overline{2} \overline{1}$	$\overline{3} 4 \overline{2} 1$	$3 \overline{2} \overline{2} 1$	$\overline{4} \overline{1} \overline{3} 2$	
$413 \overline{2}$	$\overline{4} 13 \overline{2}$	$4 \overline{1} 3 \overline{2}$	$\overline{4} 13 \overline{2}$	$4 \overline{1} \overline{3} 2$	$\overline{4} 1 \overline{3} 2$	$4 \overline{2} 1 \overline{3}$
$42 \overline{3} \overline{1}$	$\overline{4} 2 \overline{3} 1$	$\overline{4} 231$	$423 \overline{1}$	$\overline{4} 23 \overline{1}$	4231	$42 \overline{3} 1$
$4 \overline{3} \overline{1} \overline{2}$	$4 \overline{3} \overline{1} 2$	$\overline{4} \overline{3} 12$	$4 \overline{3} 1 \overline{2}$	$4 \overline{3} \overline{2} 1$		

Type B,D ...

From (Billey) Pattern avoidance and rational smoothness of Schubert varieties:

- X_{w} rat.smooth iff $P_{w}(q)$ factors as $\left[e_{i}\right]_{q}$'s.

$\overline{1} 2 \overline{3}$	$1 \overline{2} \overline{3}$	$12 \overline{3}$	$1 \overline{3} \overline{2}$	$\overline{2} 1 \overline{3}$	$\overline{2} 1 \overline{3}$	$2 \overline{1} \overline{3}$
$2 \overline{3} \overline{1}$	$\overline{3} 1 \overline{2}$	$\overline{3} \overline{2} \overline{1}$	$\overline{3} \overline{2} 1$	$\overline{3} 2 \overline{1}$	$3 \overline{2} \overline{1}$	$3 \overline{2} 1$
$\overline{2} \overline{4} 31$	$2 \overline{4} 31$	$\overline{3} \overline{4} \overline{1} \overline{2}$	$\overline{3} 4 \overline{1} 2$	$\overline{3} 412$	$34 \overline{1} 2$	3412
$4 \overline{1} 3 \overline{2}$	$413 \overline{2}$	$\overline{4} 231$	$423 \overline{1}$	4231		

- Type B : X_{w} rat.smooth iff w avoids

$12 \overline{3}$	$\overline{1} 2 \overline{3}$	$\overline{1} \overline{3} \overline{2}$	$1 \overline{3} \overline{2}$	$\overline{2} 1 \overline{3} \overline{1}$	$\overline{3} \overline{2} \overline{1}$	
$\overline{1} 4 \overline{3} 2$	$\overline{2} 1 \overline{3} \overline{4}$	$2 \overline{3} \overline{3} \overline{4}$	$21 \overline{3} \overline{4}$	$\overline{2} \overline{3} 1 \overline{4}$	$2 \overline{3} 1 \overline{4}$	
$2 \overline{4} 31$	$\overline{2} \overline{4} 3 \overline{1}$	$\overline{2} 4 \overline{3} \overline{1}$	$24 \overline{3} \overline{1}$	$2 \overline{4} 3 \overline{1}$	$\overline{2} 4 \overline{3} 1$	
$\overline{2} \overline{4} 31$	$3 \overline{1} \overline{2} \overline{4}$	$31 \overline{2} \overline{4}$	$3 \overline{2} 1 \overline{4}$	$3 \overline{2} \overline{4} 1$	$\overline{3} \overline{4} 1 \overline{2}$	
$3 \overline{4} \overline{1} \overline{2}$	$\overline{3} 412$	$34 \overline{1} 2$	$\overline{3} 4 \overline{1} 2$	3412	$\overline{3} \overline{4} \overline{1} \overline{2}$	
$3 \overline{4} 1 \overline{2}$	$\overline{3} \overline{4} \overline{2} 1$	$34 \overline{2} \overline{1}$	$\overline{3} 4 \overline{2} 1$	$3 \overline{4} \overline{2} 1$	$\overline{4} \overline{1} \overline{3} 2$	
$413 \overline{2}$	$\overline{4} \overline{1} 3 \overline{2}$	$4 \overline{1} 3 \overline{2}$	$\overline{4} 13 \overline{2}$	$4 \overline{1} \overline{3} 2$	$\overline{4} 1 \overline{3} 2$	$4 \overline{2} 1 \overline{3}$
$4 \overline{2} \overline{3} \overline{1}$	$\overline{4} 2 \overline{3} 1$	$\overline{4} 231$	$423 \overline{1}$	$\overline{4} 23 \overline{1}$	4231	$4 \overline{2} \overline{3} 1$
$4 \overline{3} \overline{1} \overline{2}$	$4 \overline{3} \overline{1} 2$	$\overline{4} \overline{3} 12$	$4 \overline{3} 1 \overline{2}$	$4 \overline{3} \overline{2} 1$		

- Type D : X_{w} rat.smooth iff w avoids $\begin{array}{lllll}4 \overline{3} 12 & 4 \overline{3} 12 & \overline{4} 312 & 4 \overline{3} 12 & 4 \overline{3} \overline{2} 1\end{array}$
- Almost done for B,D.

Further remarks

- Conjecture : For $w \in S_{n}, R_{w}(q)$ factorizes into [a] ${ }_{q}$'s iff w is smooth.

Further remarks

- Conjecture : For $w \in S_{n}, R_{w}(q)$ factorizes into [a] ${ }_{q}$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_{G}.

Further remarks

- Conjecture : For $w \in S_{n}, R_{w}(q)$ factorizes into [a] ${ }_{q}$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_{G}.
- G chordal implies \mathcal{A}_{G} is free.

Further remarks

- Conjecture : For $w \in S_{n}, R_{w}(q)$ factorizes into [a] ${ }_{q}$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_{G}.
- G chordal implies \mathcal{A}_{G} is free.
- G_{4231} is chordal, but $R_{4231}(q)=1+4 q+4 q^{2}+4 q^{3}+4 q^{4}+q^{5}$.

Further remarks

- Conjecture : For $w \in S_{n}, R_{w}(q)$ factorizes into [a] ${ }_{q}$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_{G}.
- G chordal implies \mathcal{A}_{G} is free.
- G_{4231} is chordal, but $R_{4231}(q)=1+4 q+4 q^{2}+4 q^{3}+4 q^{4}+q^{5}$.
- For type D , also allow $\left(1+q+\cdots+q^{k-1}+2 q^{k}+q^{k+1}+\cdots+q^{2 k}\right)$.

Further remarks

- Conjecture : For $w \in S_{n}, R_{w}(q)$ factorizes into [a] ${ }_{q}$'s iff w is smooth.
- When w smooth, a's equal the roots of χ_{G}.
- G chordal implies \mathcal{A}_{G} is free.
- G_{4231} is chordal, but $R_{4231}(q)=1+4 q+4 q^{2}+4 q^{3}+4 q^{4}+q^{5}$.
- For type D , also allow $\left(1+q+\cdots+q^{k-1}+2 q^{k}+q^{k+1}+\cdots+q^{2 k}\right)$.
- There may be more linking Schubert variety or Kazhdan-Lustzig Polynomials to inversion Hyperplane arrangements!

Appendix : Nice way to compute $P_{w}(q)$

- Records : Left-to-right maxima

Appendix : Nice way to compute $P_{w}(q)$

- Records : Left-to-right maxima
- $i=1, \ldots, n, r \leq i<r^{\prime}$ closest records.

$$
e_{i}:=\#\{j \mid r \leq j<i, w(j)>w(i)\}+\#\left\{k \mid r^{\prime} \leq k \leq n, w(k)<w(i)\right\} .
$$

Appendix : Nice way to compute $P_{w}(q)$

- Records : Left-to-right maxima
- $i=1, \ldots, n, r \leq i<r^{\prime}$ closest records.

$$
e_{i}:=\#\{j \mid r \leq j<i, w(j)>w(i)\}+\#\left\{k \mid r^{\prime} \leq k \leq n, w(k)<w(i)\right\} .
$$

Theorem

$w \in S_{n}$ smooth. e_{1}, \ldots, e_{n} as above. Then

$$
P_{w}(q)=R_{w}(q)=\left[e_{1}+1\right]_{q}\left[e_{2}+1\right]_{q} \cdots\left[e_{n}+1\right]_{q} .
$$

Appendix : Nice way to compute $P_{w}(q)$

- Records : Left-to-right maxima
- $i=1, \ldots, n, r \leq i<r^{\prime}$ closest records.

$$
e_{i}:=\#\{j \mid r \leq j<i, w(j)>w(i)\}+\#\left\{k \mid r^{\prime} \leq k \leq n, w(k)<w(i)\right\} .
$$

Theorem

$w \in S_{n}$ smooth. e_{1}, \ldots, e_{n} as above. Then

$$
P_{w}(q)=R_{w}(q)=\left[e_{1}+1\right]_{q}\left[e_{2}+1\right]_{q} \cdots\left[e_{n}+1\right]_{q} .
$$

- $w=5164732$

Appendix : Nice way to compute $P_{w}(q)$

- Records : Left-to-right maxima
- $i=1, \ldots, n, r \leq i<r^{\prime}$ closest records.

$$
e_{i}:=\#\{j \mid r \leq j<i, w(j)>w(i)\}+\#\left\{k \mid r^{\prime} \leq k \leq n, w(k)<w(i)\right\} .
$$

Theorem

$w \in S_{n}$ smooth. e_{1}, \ldots, e_{n} as above. Then

$$
P_{w}(q)=R_{w}(q)=\left[e_{1}+1\right]_{q}\left[e_{2}+1\right]_{q} \cdots\left[e_{n}+1\right]_{q} .
$$

- $w=\hat{5} 1 \hat{6} 4 \hat{7} 32$

Appendix : Nice way to compute $P_{w}(q)$

- Records : Left-to-right maxima
- $i=1, \ldots, n, r \leq i<r^{\prime}$ closest records.

$$
e_{i}:=\#\{j \mid r \leq j<i, w(j)>w(i)\}+\#\left\{k \mid r^{\prime} \leq k \leq n, w(k)<w(i)\right\} .
$$

Theorem

$w \in S_{n}$ smooth. e_{1}, \ldots, e_{n} as above. Then

$$
P_{w}(q)=R_{w}(q)=\left[e_{1}+1\right]_{q}\left[e_{2}+1\right]_{q} \cdots\left[e_{n}+1\right]_{q} .
$$

- $w=\hat{5} 1 \hat{6} 4 \hat{7} 32$
- $\left(e_{1}, \ldots, e_{7}\right)=(0+3,1+0,0+2,1+2,0+0,1+0,2+0)$.

Appendix : Nice way to compute $P_{w}(q)$

- Records : Left-to-right maxima
- $i=1, \ldots, n, r \leq i<r^{\prime}$ closest records.

$$
e_{i}:=\#\{j \mid r \leq j<i, w(j)>w(i)\}+\#\left\{k \mid r^{\prime} \leq k \leq n, w(k)<w(i)\right\} .
$$

Theorem

$w \in S_{n}$ smooth. e_{1}, \ldots, e_{n} as above. Then

$$
P_{w}(q)=R_{w}(q)=\left[e_{1}+1\right]_{q}\left[e_{2}+1\right]_{q} \cdots\left[e_{n}+1\right]_{q} .
$$

- $w=\hat{5} 1 \hat{6} 4 \hat{7} 32$
- $\left(e_{1}, \ldots, e_{7}\right)=(0+3,1+0,0+2,1+2,0+0,1+0,2+0)$.
- $P_{w}(q)=R_{w}(q)=[4]_{q}[2]_{q}[3]_{q}[4]_{q}[1]_{q}[2]_{q}[3]_{q}$.

