Hyperbolic volumes, configuration spaces and iterated integrals

Toshitake Kohno

(The University of Tokyo)
(1) Express volume functions as Chen's iterated integrals of logarithmic forms on certain configuration spaces.
(1) Express volume functions as Chen's iterated integrals of logarithmic forms on certain configuration spaces.
(2) Analytic continuation from spherical to hyperbolic volume functions.
(1) Express volume functions as Chen's iterated integrals of logarithmic forms on certain configuration spaces.
(2) Analytic continuation from spherical to hyperbolic volume functions.
(3) Nilpotent flat connections for volume functions.
(1) Express volume functions as Chen's iterated integrals of logarithmic forms on certain configuration spaces.
(2) Analytic continuation from spherical to hyperbolic volume functions.
(3) Nilpotent flat connections for volume functions.
(4) Asymptotic behavior of volumes.
M_{κ}^{n} : spherical, Euclidean or hyperbolic space of constant curvature κ and of dimension $n \geq 2$. $\kappa=1 \quad S^{n}$ (unit sphere in \mathbf{R}^{n+1})
$\kappa=-1 \quad \mathcal{H}^{n}$
(hyperboloid model in the Minkowski space)
M_{κ}^{n} : spherical, Euclidean or hyperbolic space of constant curvature κ and of dimension $n \geq 2$.
$\kappa=1 \quad S^{n}$ (unit sphere in \mathbf{R}^{n+1})
$\kappa=-1 \quad \mathcal{H}^{n}$
(hyperboloid model in the Minkowski space)
$H_{j}, 1 \leq j \leq m$: hyperplanes in \mathbf{R}^{n+1} defined by linear forms $f_{j}: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$
C : the intersection of the half spaces

$$
f_{j} \geq 0, \quad 1 \leq j \leq m
$$

spherical polyhedron $\quad P=S^{n} \cap C$

hyperbolic polyhedron $\quad P=\mathcal{H}^{n} \cap C$

Volume of P :
function on the moduli space of arrangements

1 Schläfli formula

$\{P\}$: a family of smoothly parametrized compact n dimensional polyhedra in M_{κ}^{n} $V_{n}(P)$ the n-dimensional volume of P

$$
\kappa d V_{n}(P)=\frac{1}{n-1} \sum_{F} V_{n-2}(F) d \theta_{F}
$$

$F:(n-2)$-dimensional face of P
θ_{F} : the dihedral angle of the two
($n-1$)-dimensional faces meeting at F

2 The space of Gram matrices

$\Delta: n$-dimensional simplex in M_{κ}^{n}
$E_{1}, \cdots, E_{n+1}:(n-1)$-dimensional faces of Δ
$\theta_{i j}$: the dihedral angle between E_{i} and E_{j}
The Gram matrix $A=\left(a_{i j}\right)$ of the simplex Δ :
$(n+1) \times(n+1)$ matrix defined by

$$
a_{i j}=-\cos \theta_{i j}
$$

2 The space of Gram matrices

$\Delta: n$-dimensional simplex in M_{κ}^{n}
$E_{1}, \cdots, E_{n+1}:(n-1)$-dimensional faces of Δ
$\theta_{i j}$: the dihedral angle between E_{i} and E_{j}
The Gram matrix $A=\left(a_{i j}\right)$ of the simplex Δ :
$(n+1) \times(n+1)$ matrix defined by

$$
a_{i j}=-\cos \theta_{i j}
$$

$X_{n}(\mathbf{R})$: the set of all symmetric unidiagonal $(n+1) \times(n+1)$ matirices
C_{n}^{+}, C_{n}^{0} or C_{n}^{-}: the set of all possible Gram matrices for spherical, Euclidean or hyperbolic simplices.
C_{n}^{+}, C_{n}^{0} or C_{n}^{-}: the set of all possible Gram matrices for spherical, Euclidean or hyperbolic simplices.

Lemma

The union $C_{n}=C_{n}^{+} \cup C_{n}^{0} \cup C_{n}^{-}$is a convex open set in $X_{n}(\mathbf{R})$ and the codimension one Euclidean locus C_{n}^{0} is a topological cell which cuts C_{n} into two open cells C_{n}^{+}and C_{n}^{-}.

3 Iterated integrals

$\omega_{1}, \cdots, \omega_{k}$: differential 1-forms on a smooth manifold M
$\gamma:[0,1] \rightarrow M$ a smooth path pull-back $\gamma^{*} \omega_{i}=f_{i}(t) d t, 1 \leq i \leq k$.

3 Iterated integrals

$\omega_{1}, \cdots, \omega_{k}$: differential 1-forms on a smooth manifold M
$\gamma:[0,1] \rightarrow M$ a smooth path pull-back $\gamma^{*} \omega_{i}=f_{i}(t) d t, 1 \leq i \leq k$.

The iterated integral of the 1-forms $\int_{\gamma} \omega_{1} \omega_{2} \cdots \omega_{k}$ is defined as
$\int_{0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1} f_{1}\left(t_{1}\right) f_{2}\left(t_{2}\right) \cdots f_{k}\left(t_{k}\right) d t_{1} d t_{2} \cdots d t_{k}$
$\omega_{1}, \cdots, \omega_{k}$: differential forms on M $\mathcal{P} M$: the space of smooth paths on M

$$
\begin{gathered}
\Delta_{k}=\left\{\left(t_{1}, \cdots, t_{k}\right) \in \mathbf{R}^{k} ; 0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1\right\} \\
\varphi: \Delta_{k} \times \mathcal{P} M \rightarrow \underbrace{M \times \cdots \times M}_{k}
\end{gathered}
$$

defined by $\varphi\left(t_{1}, \cdots, t_{k} ; \gamma\right)=\left(\gamma\left(t_{1}\right), \cdots, \gamma\left(t_{k}\right)\right)$
The iterated integral of $\omega_{1}, \cdots, \omega_{k}$ is defined as

$$
\int \omega_{1} \cdots \omega_{k}=\int_{\Delta_{k}} \varphi^{*}\left(\omega_{1} \times \cdots \times \omega_{k}\right)
$$

Proposition [K. T. Chen]

As a differential form on the space of paths fixing endpoints $d \int \omega_{1} \cdots \omega_{k}$ is

$$
\begin{aligned}
& \sum_{j=1}^{k}(-1)^{\nu_{j-1}+1} \int \omega_{1} \cdots \omega_{j-1} d \omega_{j} \omega_{j+1} \cdots \omega_{k} \\
+ & \sum_{j=1}^{k-1}(-1)^{\nu_{j}+1} \int \omega_{1} \cdots \omega_{j-1}\left(\omega_{j} \wedge \omega_{j+1}\right) \omega_{j+2} \cdots \omega_{k}
\end{aligned}
$$

where $\nu_{j}=\operatorname{deg} \omega_{1}+\cdots+\operatorname{deg} \omega_{j}-j$.

4 Volumes of spherical simplices

For a positive integer m with $2 m \leq n+1$ let

$$
I_{0} \subset I_{1} \subset \cdots \subset I_{k} \subset \cdots \subset I_{m}
$$

be an increasing sequence of subsets of $I=\{1,2, \cdots, n+1\}$ such that $\left|I_{k}\right|=2 k$.
$\mathcal{F}_{m}[n]:$ the set of all such sequences $\left(I_{0} \cdots I_{m}\right)$
$\Delta: n$-dimensional spherical simplex with faces

$$
E_{1}, \cdots, E_{n+1}
$$

Put

$$
\begin{gathered}
\Delta\left(I_{k}\right)=\bigcap_{j \in I_{k}} E_{j}, \quad k=1,2, \cdots \\
I_{k}=\left\{a_{1}, b_{1}, \cdots, a_{k}, b_{k}\right\}, \quad k=1,2, \cdots
\end{gathered}
$$

$\theta\left(I_{k-1}, I_{k}\right)$: the dihedral angle between the faces $\Delta\left(I_{k-1}\right) \cap E_{a_{k}}$ and $\Delta\left(I_{k-1}\right) \cap E_{b_{k}}$

Define a 1-form on C_{n}^{+}by

$$
\omega\left(I_{k-1}, I_{k}\right)=d \theta\left(I_{k-1}, I_{k}\right)
$$

Take a path connecting $A \in C_{n}^{+}$and $\mathbf{x}_{0} \in C_{n}^{0}$.
$\Delta(A) \subset S^{n}$ spherical simplex with a Gram matrix A

Theorem [Aomoto (1977)] Put $m=\left[\frac{n+1}{2}\right]$.
The volume of the n-dimensional spherical simplex $\Delta(A)$ with a Gram matrix A is expressed as

$$
\sum \frac{1}{(n-1)!!} \int_{\mathbf{x}_{0}}^{A} \omega\left(I_{m-1}, I_{m}\right) \cdots \omega\left(I_{0}, I_{1}\right)
$$

where the sum is for any

$$
\left(I_{0} \cdots I_{m}\right) \in \mathcal{F}_{m}[n]
$$

5 Logarithmic forms

$$
I_{k}=\left\{a_{1}, b_{1}, \cdots, a_{k}, b_{k}\right\}, \quad k=1,2, \cdots
$$

$D\left(I_{k}\right)$: the small determinant of the Gram matrix A with rows and columns indexed by I_{k}
$D\left(I_{k-1}, I_{k}\right)$: the small determinant of A with rows and and columns indexed by $I_{k-1} \cup\left\{a_{k}\right\}$ and $I_{k-1} \cup\left\{b_{k}\right\}$

Proposition $\omega\left(I_{k-1}, I_{k}\right)=d \theta\left(I_{k-1}, I_{k}\right)$ is

 expressed by means of small determinants of the Gram matrix as$$
\frac{1}{2 i} d \log \left(\frac{-D\left(I_{k-1}, I_{k}\right)+i \sqrt{D\left(I_{k-1}\right) D\left(I_{k}\right)}}{-D\left(I_{k-1}, I_{k}\right)-i \sqrt{D\left(I_{k-1}\right) D\left(I_{k}\right)}}\right)
$$

$$
=d \arctan \left(-\frac{\sqrt{D\left(I_{k-1}\right) D\left(I_{k}\right)}}{D\left(I_{k-1}, I_{k}\right)}\right)
$$

6 Example - volume of 3-simplex

$d V=\frac{1}{2} \sum_{1 \leq i<j \leq 4} \arctan \left(-\frac{\sin \theta_{i j} \sqrt{\operatorname{det} A}}{D_{i j}}\right) d \theta_{i j}$
$\theta_{i j}$: dihedral angle between 2 faces
$D_{i j}$: the small determinant $D(\{i, j\},\{1,2,3,4\})$
Formula for V in terms of $\theta_{i j}$ due to
Y.Cho-H.Kim, J. Murakami-M.Yano

7 Analytic continuation to hyperbolic volumes

$S(A)$: Schläfli function on C_{n}^{+}defined by

$$
\sum \frac{1}{(n-1)!!} \int_{\mathbf{x}_{0}}^{A} \omega\left(I_{m-1}, I_{m}\right) \cdots \omega\left(I_{0}, I_{1}\right)
$$

for $\left(I_{0} \cdots I_{m}\right) \in \mathcal{F}_{m}[n]$
$X_{n+1}(\mathbf{C})$: the set of $(n+1) \times(n+1)$ symmetric unidiagonal complex matrices.

For a subset J of $I=\{1,2, \cdots, n+1\}$ define $Z(J)$ to be the set consisting of $A \in X_{n+1}(\mathbf{C})$ such that the small determinant $D(J)$ of A vanishes. Set

$$
\mathcal{Z}=\bigcup_{J \subset I,|J| \equiv 1 \bmod 2} Z(J) .
$$

\mathcal{Z} will be a singular locus of the volume function.
$\gamma:[0,1] \rightarrow X_{n+1}(\mathbf{C})$ a smooth path such that $\gamma(0)=\mathbf{x}_{0}, \gamma(1)=A$ and $\gamma(t) \in X_{n+1}(\mathbf{C}) \backslash \mathcal{Z}$ for $t>0$.
Fix $I_{p}, I_{q} \subset I$ with $I_{p} \subset I_{q}$.
Theorem The iterated integral

$$
F=\sum_{I_{p} \subset I_{p+1} \subset \cdots \subset I_{q}} \int_{\gamma} \omega\left(I_{q-1}, I_{q}\right) \cdots \omega\left(I_{p}, I_{p+1}\right),
$$

is invariant under the homotopy of a path γ
fixing the endpoints \mathbf{x}_{0} and A.

The integrability condition $d F=0$ follows from:
Lemma For $\left(I_{0}, \cdots, I_{m}\right) \in \mathcal{F}_{m}[n]$ there is a relation

$$
\sum_{K} \omega\left(I_{k}, K\right) \wedge \omega\left(K, I_{k+2}\right)=0
$$

where the sum is taken for any K with $|K|=2 k+2$ and $I_{k} \subset K \subset I_{k+2}$,
$k=0,1, \cdots, m-2$.

Idea of proof of Lemma

Reduce to the case of 3-dimensional simplex. The Schläfli's formula implies

$$
\sum_{i<j} d \ell\left(E_{i j}\right) \wedge d \theta_{i j}=0
$$

Theorem The Schläfli function $S(A)$ is analytically continued to a multi-valued holomorphic function on $X_{n+1}(\mathbf{C}) \backslash \mathcal{Z}$.

Theorem The Schläfli function $S(A)$ is analytically continued to a multi-valued holomorphic function on $X_{n+1}(\mathbf{C}) \backslash \mathcal{Z}$.

Corollary For $A \in C_{n}^{-}$the volume of the hyperbolic simplex $\Delta(A) \subset \mathcal{H}^{n}$ is related to the analytic continuation of the Schläfli function by

$$
i^{n} V(\Delta(A))=S(A)
$$

The volume corrected curvature $\kappa V(\Delta(A))^{\frac{2}{n}}$ for $A \in C_{n}$ is scaling invariant and is considered to be a function on C_{n}.

Proposition The volume corrected curvature $\kappa V(\Delta(A))^{\frac{2}{n}}$ is an analytic function on the set of
Gram matrices $C_{n}=C_{n}^{+} \cup C_{n}^{0} \cup C_{n}^{-}$.

8 Nilpotent connections

X : complement of a hypersurface defined by f_{j}
E : trivial vector bundle over X with fiber V

$$
\omega=\sum_{j} A_{j} d \log f_{j}
$$

A_{j} : nilpotent endomorphism of V
Integrability condition

$$
\omega \wedge \omega=0
$$

Theorem There is a one-to-one correspondence between unipotent representation of $\pi_{1}(X)$ and integrable nilpotent connection

$$
\omega=\sum_{j} A_{j} d \log f_{j}
$$

Riemann Hilbert problem for unipotent monodromy (Aomoto, Hain)

Back to Schläfli function with $m=\left[\frac{n+1}{2}\right]$.
Define $f\left(I_{m-k} ; z\right), 0 \leq k \leq m$ by

$$
\sum \int_{\gamma} \omega\left(I_{m-1}, I_{m}\right) \cdots \omega\left(I_{m-k}, I_{m-k+1}\right)
$$

for $I_{m-k} \subset I_{m-k+1} \subset \cdots \subset I_{m}$,
where $I_{p} \subset I$ with $\left|I_{p}\right|=2 p$
γ : a path from a base point $\mathbf{x}_{0} \in C_{n}^{0}$ to $z \in X_{n+1}(\mathbf{C}) \backslash \mathcal{Z}$
W_{k} : the vector space over \mathbf{C} spanned by $f\left(I_{m-k} ; z\right)$ for all $I_{m-k} \subset I$

$$
\text { Put } W=W_{0} \oplus W_{1} \oplus \cdots \oplus W_{m}
$$

Theorem Any $\varphi \in W$ satisfies the differential equation $d \varphi=\varphi \omega$ with

$$
\omega=\sum_{I_{p-1} \subset I_{p}} A\left(I_{p-1}, I_{p}\right) \omega\left(I_{p-1}, I_{p}\right)
$$

$A\left(I_{p-1}, I_{p}\right)$ is a nilpotent endomorphism of W.

Final remarks

(1) It is possible to analyze the asymptotic behavior of the volume function by means of the nilpotent connection in Theorem.

Hyperbolic volume function extends continuously on the boundary of C_{n}^{-}. (conjectured by Milnor, due to Feng Luo ... by a different method)
(2) Study Gauss-Manin connection for

$$
\int_{\Delta} e^{-\mu\left(x_{1}^{2}+\cdots+x_{n+1}^{2}\right)} f_{1}^{\lambda_{1}} \cdots f_{m}^{\lambda_{m}} d x_{1} \cdots d x_{n+1}
$$

where Δ is a chamber.

Monodromy in the case of discriminantal arrangement (fiber of $M_{n+\ell} \rightarrow M_{n}$) with $\mu=0$ corresponds to LKB representation of braid groups. Specialization $\lambda_{j} \rightarrow 0$ gives information on volume functions.

