A conjugation-free geometric presentation of fundamental groups of arrangements

David Garber

Department of Applied Mathematics, Faculty of Sciences
Holon Institute of Technology
Holon, Israel

In sabbatical: Jerusalem College of Technology, Jerusalem
Joint work with Meital Eliyahu and Mina Teicher

> Arrangements of hyperplanes, Sapporo, Japan, 11 August 2009

Importance and Applications

- Used by Chisini, Kulikov and Kulikov-Teicher in order to distinguish between connected components of the moduli space of surfaces.
- The Zariski-Lefschetz hyperplane section theorem:

$$
\pi_{1}\left(\mathbb{C P}^{N} \backslash S\right) \cong \pi_{1}(H \backslash H \cap S)
$$

where S is an hypersurface and H is a generic 2-plane. This invariant can be used also for computing the fundamental group of complements of hypersurfaces in $\mathbb{C P}^{N}$.

- Getting more examples of Zariski pairs: A pair of plane curves is called a Zariski pair if they have the same combinatorics, but their complements are not homeomorphic.
- Exploring new finite non-abelian groups which are serving as fundamental groups of complements of plane curves in general.
- Computing the fundamental group of the Galois cover of a surface: By the fundamental group of a complement of a branch curve of a surface, we can find the fundamental group of the Galois cover of the surface, with respect to a generic projection of the surface onto $\mathbb{C P}^{2}$.

Graph of multiple points

Line arrangement in $\mathbb{C P}^{2}$: An algebraic curve in $\mathbb{C P}^{2}$ which is a union of projective lines. An arrangement is called real if its defining equations can be written with real coefficients.
$G(\mathcal{L})$:
Vertices: Multiple points
Edges: Segments on lines with more than two multiple points.

(a)

(b)

Fan (1997): Let \mathcal{L} be an arrangement of n lines and $S=$ $\left\{a_{1}, \cdots, a_{p}\right\}$ be the set of multiple points of \mathcal{L} (multiplicity ≥ 3). Suppose that $\beta(\mathcal{L})=0$ (i.e. the graph $G(\mathcal{L})$ has no cycles). Then:

$$
\pi_{1}\left(\mathbb{C P}^{2}-\mathcal{L}\right) \cong \mathbb{Z}^{r} \oplus \mathbb{F}_{m\left(a_{1}\right)-1} \oplus \cdots \oplus \mathbb{F}_{m\left(a_{p}\right)-1}
$$

where $r=n+p-1-m\left(a_{1}\right)-\cdots-m\left(a_{p}\right)$.

G-Teicher: Part of this result by braid monodromy techniques.

Eliyahu-Liberman-Schaps-Teicher (2009): If the fundamental group is a sum of free groups, then $G(\mathcal{L})$ has no cycles.

Ceva arrangement

Fadell-Neuwirth (1962): If \mathcal{L} is the Ceva arrangement, then:

$$
\pi_{1}\left(\mathbb{C}^{2}-\mathcal{L}\right) \cong \mathbb{F} \ltimes \mathbb{F}_{2} \ltimes \mathbb{F}_{3}
$$

Eliyahu-G-Teicher (2008): Let \mathcal{L} be a real arrangement of 6 lines whose graph is a cycle of length 3, then:

$$
\pi_{1}\left(\mathbb{C}^{2}-\mathcal{L}\right) \cong \mathbb{F} \ltimes \mathbb{F}_{2} \ltimes\left(\mathbb{Z} \star \mathbb{Z}^{2}\right)
$$

Idea of proof:

Cohen-Suciu (1998): Presentation of $\mathbb{F}_{3} \rtimes_{\alpha_{3}} \mathbb{F}_{2} \rtimes_{\alpha_{2}} \mathbb{F}_{1}$:

$$
\mathbb{F}_{1}=\langle u\rangle, \quad \mathbb{F}_{2}=\langle t, s\rangle, \quad \mathbb{F}_{3}=\langle x, y, z\rangle
$$

The action of the automorphism α_{i} is defined as follows:
$\left(\alpha_{2}(u)\right)(t)=s t s^{-1}$,
$\left(\alpha_{2}(u)\right)(s)=s t s t^{-1} s^{-1}$,
$\left(\alpha_{2}(u)\right)(x)=x$, $\left(\alpha_{2}(u)\right)(y)=z y z^{-1}$,
$\left(\alpha_{2}(u)\right)(z)=z y z y^{-1} z^{-1}$
$\left(\alpha_{3}(s)\right)(x)=z x z^{-1}, \quad\left(\alpha_{3}(s)\right)(y)=z x z^{-1} x^{-1} y x z x^{-1} z^{-1}$,
$\left(\alpha_{3}(s)\right)(z)=z x z x^{-1} z^{-1}$
$\left(\alpha_{3}(t)\right)(x)=y x y^{-1}$,
$\left(\alpha_{3}(t)\right)(y)=y x y x^{-1} y^{-1}$, $\left(\alpha_{3}(t)\right)(z)=z$

Conjugation-free presentations

By rotation, Ceva arrangement becomes an arrangement \mathcal{L} whose graph is a triangle:

Its effect is one new relation $[x, z]=e$. Hence, the change is:

$$
\left(\alpha_{3}(s)\right)(x)=x, \quad\left(\alpha_{3}(s)\right)(y)=y, \quad\left(\alpha_{3}(s)\right)(z)=z
$$

Note that $\langle x, y, z \mid x z=z x\rangle \cong \mathbb{Z}^{2} * \mathbb{Z}$. Hence, we get the group structure: $\left(\mathbb{Z}^{2} * \mathbb{Z}\right) \rtimes_{\alpha_{3}} \mathbb{F}_{2} \rtimes_{\alpha_{2}} \mathbb{F}$.

Question: Can one generalize it to a cycle of length n ?

Lattice of an arrangement

Generic presentation of the fundamental group

 (Orlik-Terao, Arvola, Randell, Cohen-Suciu, ...)Let \mathcal{L} be an arrangement of n lines.

Then $\pi_{1}\left(\mathbb{C}^{2}-\mathcal{L}\right)$ is generated by x_{1}, \ldots, x_{n} - the natural topological generators.

The relations: for each intersection point of multiplicity k :

$$
x_{i_{k}}^{s_{k}} x_{i_{k-1}}^{s_{k-1}} \cdots x_{i_{1}}^{s_{1}}=x_{i_{k-1}}^{s_{k-1}} \cdots x_{i_{1}}^{s_{1}} x_{i_{k}}^{s_{k}}=\cdots=x_{i_{1}}^{s_{1}} x_{i_{k}}^{s_{k}} \cdots x_{i_{2}}^{s_{2}}
$$

where $a^{b}=b^{-1} a b$ and s_{i} are words in $\left\langle x_{1}, \ldots, x_{n}\right\rangle(1 \leq i \leq k)$.

Conjugation-free geometric presentation of fundamental group

A conjugation-free geometric presentation of a fundamental group is a presentation with the natural topological generators x_{1}, \ldots, x_{n} and the cyclic relations:

$$
x_{i_{k}} x_{i_{k-1}} \cdots x_{i_{1}}=x_{i_{k-1}} \cdots x_{i_{1}} x_{i_{k}}=\cdots=x_{i_{1}} x_{i_{k}} \cdots x_{i_{2}}
$$

with no conjugations on the generators.

Main importance: For this family the lattice determines the fundamental group. Moreover, one can read this presentation directly from the arrangement.

Eliyahu-G-Teicher (2008): if $G(\mathcal{L})$ is a union of cycles, then $\pi_{1}\left(\mathbb{C}^{2}-\mathcal{L}\right)$ has a conjugation-free geometric presentation.

Family A_{n} :

A_{6}

Computationally proved: A_{5}, A_{6} have a conjugation-free geometric presentation. A_{3} (Ceva) and A_{7} have no conjugation-free geometric presentation.

Conjecture (Eliyahu-G-Teicher, 2008): If $G(\mathcal{L})$ is a A_{n}-free graph, then $\pi_{1}\left(\mathbb{C}^{2}-\mathcal{L}\right)$ has a conjugation-free geometric presentation.

Nice arrangements (Jiang-Yau)

For \mathcal{L}, define a graph $G(V, E)$: The vertices are the multiple points of \mathcal{L}. u, v are connected if there exists $\ell \in \mathcal{L}$ such that $u, v \in \ell$.

For $v \in V$, define a subgraph $G_{\mathcal{L}}(v)$: The vertex set is v and all his neighbors from G. u, v are connected if there exists $\ell \in \mathcal{L}$ such that $u, v \in \ell$.
\mathcal{L} is nice if there is $V^{\prime} \subset V$ such that $G_{\mathcal{L}}(v) \cap G_{\mathcal{L}}(u)=\emptyset$ for all $u, v \in V^{\prime}$, and if we delete the vertex v and the edges of its subgraph $G_{\mathcal{L}}(v)$ from G, for all $v \in V^{\prime}$, we get a forest (a graph without cycles).

\qquad

Jiang-Yau (1994): Let \mathcal{L}_{1} and \mathcal{L}_{2} be two nice projective arrangements in $\mathbb{C P}^{2}$. If their lattices are isomorphic, then their complements are diffeomorphic. In particular,

$$
\pi_{1}\left(\mathbb{C P}^{2}-\mathcal{L}_{1}\right) \cong \pi_{1}\left(\mathbb{C P}^{2}-\mathcal{L}_{2}\right)
$$

Remark (Eliyahu-G-Teicher): A_{5} has a conjugation-free geometric presentation, but is not nice and simple.

Question: Is there a nice or a simple arrangement which has no conjugation-free geometric presentation?

Proof of an arrangement whose graph is a cycle

Break into blocks

Presentation

Generators: $\left\{x_{1}, \ldots, x_{2 n}\right\}$
Relations:

- Quadruples of type Q1:

1. $\left[x_{2 i}, x_{2 n-3}\right]=e$ where $2 \leq i \leq n-2$
2. $\left[x_{2 i-1}, x_{2 n-3}\right]=e$ where $2 \leq i \leq n-2$
3. $\left[x_{2 i}, x_{2 n-3}^{-1} x_{2 n-2} x_{2 n-3}\right]=e$ where $2 \leq i \leq n-2$
4. $\left[x_{2 i-1}, x_{2 n-3}^{-1} x_{2 n-2} x_{2 n-3}\right]=e$ where $2 \leq i \leq n-2$

- Quadruples of type Q2: for $i, j \neq n-1,|i-j|>1,(i, j) \neq(n-2, n)$:

1. $\left[x_{2 i}, x_{2 i+1}^{-1} \cdots x_{2 j-1}^{-1} x_{2 j} x_{2 j-1} \cdots x_{2 i+1}\right]=e$
2. $\left[x_{2 i-1}, x_{2 i}^{-1} x_{2 i+1}^{-1} \cdots x_{2 j-1}^{-1} x_{2 j} x_{2 j-1} \cdots x_{2 i+1} x_{2 i}\right]=e$
3. $\left[x_{2 i}, x_{2 i+1}^{-1} \cdots x_{2 j-2}^{-1} x_{2 j-1} x_{2 j-2} \cdots x_{2 i+1}\right]=e$
4. $\left[x_{2 i-1}, x_{2 i}^{-1} x_{2 i+1}^{-1} \cdots x_{2 j-2}^{-1} x_{2 j-1} x_{2 j-2} \cdots x_{2 i+1} x_{2 i}\right]=e$

Presentation (cont.)

- A triple of type T1:

1. $\left[x_{2}, x_{2 n-3}\right]=e$
2. $\left[x_{1}, x_{2 n-3}\right]=e$
3. $x_{2 n-2} x_{2} x_{1}=x_{2} x_{1} x_{2 n-2}=x_{1} x_{2 n-2} x_{2}$

- Triples of type T2:

1. $x_{2 i+2} x_{2 i+1} x_{2 i-1}=x_{2 i+1} x_{2 i-1} x_{2 i+2}=x_{2 i-1} x_{2 i+2} x_{2 i+1}$ where $1 \leq i \leq n-3$
2. $\left[x_{2 i}, x_{2 i+2}\right]=e$ where $1 \leq i \leq n-3$
3. $\left[x_{2 i}, x_{2 i+1}\right]=e$ where $1 \leq i \leq n-3$

Presentation (cont.)

- A triple of type T3:

1. $x_{2 n} x_{2 n-1} x_{2 n-5}=x_{2 n-1} x_{2 n-5} x_{2 n}=x_{2 n-5} x_{2 n} x_{2 n-1}$
2. $\left[x_{2 n-4}, x_{2 n}\right]=e$
3. $\left[x_{2 n-4}, x_{2 n-1}\right]=e$

- A triple of type T4:

1. $\left[x_{2 n-2}, x_{2 n}\right]=e$
2. $\left[x_{2 n-3}, x_{2 n}\right]=e$
3. $x_{2 n-1} x_{2 n-2} x_{2 n-3}=x_{2 n-2} x_{2 n-3} x_{2 n-1}=x_{2 n-3} x_{2 n-1} x_{2 n-2}$

Proof of an arrangement whose graph is a union of cycles

We use:

Oka-Sakamoto (1978): Let C_{1} and C_{2} be algebraic plane curves in \mathbb{C}^{2}. Assume that the intersection $C_{1} \cap C_{2}$ consists of distinct $d_{1} \cdot d_{2}$ points, where $d_{i}(i=1,2)$ are the respective degrees of C_{1} and C_{2}. Then:

$$
\pi_{1}\left(\mathbb{C}^{2}-\left(C_{1} \cup C_{2}\right)\right) \cong \pi_{1}\left(\mathbb{C}^{2}-C_{1}\right) \oplus \pi_{1}\left(\mathbb{C}^{2}-C_{2}\right)
$$

THE END

Thank you!!!

