Critical sets of master functions: resonance and logarithmic derivations

Graham Denham

Department of Mathematics

University of Western Ontario
Sapporo MSJ-SI: 12 August 2009

Credits:

- D. Cohen, G. D., M. Falk, A. Varchenko, Critical points and resonance of hyperplane arrangements, arXiv:0907.0896v1
- American Institute of Mathematics SQuaREs program: H. Schenck, M. Schultze, M. Wakefield, U. Walther.

Credits:

- D. Cohen, G. D., M. Falk, A. Varchenko, Critical points and resonance of hyperplane arrangements, arXiv:0907.0896v1
- American Institute of Mathematics SQuaREs program: H. Schenck, M. Schultze, M. Wakefield, U. Walther.

Outline

- History: master functions, zeroes of one-forms
- Geometry associated with critical sets:
- logarithmic differential forms
- another characterization of free arrangements
- Critical points and resonance
- The codimension of the critical set is not "combinatorial."

History

Definition (Master functions)

Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right]$, and $f_{1}, \ldots, f_{n} \in R$ be linear forms. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}$. The master function $\Phi_{\lambda}=\Phi_{\lambda}\left(f_{1}, \ldots, f_{n}\right)$ is defined by:

$$
\Phi_{\lambda}=\prod_{i=1}^{n} f_{i}^{\lambda_{i}}
$$

Question: describe solutions to $\nabla \Phi_{\lambda}=0$. Some history:

- hypergeometric functions: Aomoto, Kita; Orlik, Terao; Mukhin, Scherbak, Varchenko; Damon; Silvotti.
- optimization (algebraic statistics): Catanese, Hoşten, Khetan, Sturmfels.

History

Definition (Master functions)

Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right]$, and $f_{1}, \ldots, f_{n} \in R$ be linear forms. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}$. The master function $\Phi_{\lambda}=\Phi_{\lambda}\left(f_{1}, \ldots, f_{n}\right)$ is defined by:

$$
\Phi_{\lambda}=\prod_{i=1}^{n} f_{i}^{\lambda_{i}}
$$

Question: describe solutions to $\nabla \Phi_{\lambda}=0$. Some history:

- hypergeometric functions: Aomoto, Kita; Orlik, Terao; Mukhin, Scherbak, Varchenko; Damon; Silvotti.
- optimization (algebraic statistics): Catanese, Hoşten, Khetan, Sturmfels.

History

Definition (Master functions)

Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{\ell}\right]$, and $f_{1}, \ldots, f_{n} \in R$ be linear forms. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}$. The master function $\Phi_{\lambda}=\Phi_{\lambda}\left(f_{1}, \ldots, f_{n}\right)$ is defined by:

$$
\Phi_{\lambda}=\prod_{i=1}^{n} f_{i}^{\lambda_{i}}
$$

Question: describe solutions to $\nabla \Phi_{\lambda}=0$. Some history:

- hypergeometric functions: Aomoto, Kita; Orlik, Terao; Mukhin, Scherbak, Varchenko; Damon; Silvotti.
- optimization (algebraic statistics): Catanese, Hoşten, Khetan, Sturmfels.

Notation (Hyperplane arrangement)

\mathcal{A} will always be an essential, central arrangement of n hyperplanes in ℓ-dimensional affine space. Let

$$
\begin{aligned}
M & =\mathbb{C}^{\ell}-\bigcup_{i=1}^{n} H_{i} \\
\mathbb{P} M & =\mathbb{P}^{\ell-1}-\bigcup_{i} \bar{H}_{i}
\end{aligned}
$$

Then, for a point $\mathbf{x} \in \mathbb{C}^{\ell}$,

Moral: the question amounts to characterizing the zero locus of a
1-form

Notation (Hyperplane arrangement)

\mathcal{A} will always be an essential, central arrangement of n hyperplanes in ℓ-dimensional affine space. Let

$$
\begin{aligned}
M & =\mathbb{C}^{\ell}-\bigcup_{i=1}^{n} H_{i} \\
\mathbb{P} M & =\mathbb{P}^{\ell-1}-\bigcup_{i} \bar{H}_{i} .
\end{aligned}
$$

Then, for a point $\mathbf{x} \in \mathbb{C}^{\ell}$,

$$
\nabla \Phi_{\lambda}(\mathbf{x})=0 \Leftrightarrow \nabla \log \Phi_{\lambda}(\mathbf{x})=0
$$

Moral: the question amounts to characterizing the zero locus of a
1-form

Notation (Hyperplane arrangement)

\mathcal{A} will always be an essential, central arrangement of n hyperplanes in ℓ-dimensional affine space. Let

$$
\begin{aligned}
M & =\mathbb{C}^{\ell}-\bigcup_{i=1}^{n} H_{i} \\
\mathbb{P} M & =\mathbb{P}^{\ell-1}-\bigcup_{i} \bar{H}_{i}
\end{aligned}
$$

Then, for a point $\mathbf{x} \in \mathbb{C}^{\ell}$,

$$
\begin{aligned}
\nabla \Phi_{\lambda}(\mathbf{x})=0 & \Leftrightarrow \nabla \log \Phi_{\lambda}(\mathbf{x})=0 \\
& \left.\Leftrightarrow \sum_{i=1}^{n} \lambda_{i} \frac{\mathrm{~d} f_{i}}{f_{i}}\right|_{\mathbf{x}}=0
\end{aligned}
$$

Moral: the question amounts to characterizing the zero locus of a
1-form.

Notation (Hyperplane arrangement)

\mathcal{A} will always be an essential, central arrangement of n hyperplanes in ℓ-dimensional affine space. Let

$$
\begin{aligned}
M & =\mathbb{C}^{\ell}-\bigcup_{i=1}^{n} H_{i} \\
\mathbb{P} M & =\mathbb{P}^{\ell-1}-\bigcup_{i} \bar{H}_{i}
\end{aligned}
$$

Then, for a point $\mathbf{x} \in \mathbb{C}^{\ell}$,

$$
\begin{aligned}
\nabla \Phi_{\lambda}(\mathbf{x})=0 & \Leftrightarrow \nabla \log \Phi_{\lambda}(\mathbf{x})=0 \\
& \left.\Leftrightarrow \sum_{i=1}^{n} \lambda_{i} \frac{\mathrm{~d} f_{i}}{f_{i}}\right|_{\mathbf{x}}=0 .
\end{aligned}
$$

Moral: the question amounts to characterizing the zero locus of a 1-form.

Example (from $\mathfrak{s} /_{2} \mathrm{KZ}$-equations)

Consider the master function

$$
\Phi_{\ell, n}=\prod_{i=1}^{\ell} \prod_{j=1}^{n}\left(x_{i}-z_{j} x_{0}\right)^{m_{j} / \kappa} \prod_{1 \leq p<q \leq \ell}\left(x_{p}-x_{q}\right)^{2 / \kappa}
$$

where $\kappa \in \mathbb{C}^{*}, m_{1}, \ldots, m_{n} \in \mathbb{Z}_{\geq 0}$, and $z_{1}, \ldots, z_{n} \in \mathbb{C}$.
Varchenko: isolated critical points \rightsquigarrow commuting Hamiltonians in Gaudin model for Bethe Ansatz.

The smallest example

Let $\omega_{\lambda}:=\mathrm{d} \log \Phi_{\lambda}$.

Example

Consider the master function

$$
\Phi_{\lambda}=x^{\lambda_{1}} y^{\lambda_{2}}(x-y)^{\lambda_{3}} .
$$

Then

$$
\omega_{\lambda}=\left(\frac{\lambda_{1}}{x}+\frac{\lambda_{3}}{x-y}\right) \mathrm{d} x+\left(\frac{\lambda_{2}}{y}-\frac{\lambda_{3}}{x-y}\right) \mathrm{d} y .
$$

So $\omega_{\lambda}=0$ when

$$
\begin{aligned}
& \frac{\lambda_{1}}{x}+\frac{\lambda_{3}}{x-y}=0 \\
& \frac{\lambda_{2}}{y}-\frac{\lambda_{3}}{x-y}=0
\end{aligned}
$$

equivalent (on M) to $\lambda_{1}+\lambda_{2}+\lambda_{3}=0, \lambda_{1} y+\lambda_{2} x=0$.

Example ($x^{\lambda_{1}} y^{\lambda_{2}}(x-y)^{\lambda_{3}}$, continued)
So if $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$, there is a single critical point at $\left[\lambda_{2}:-\lambda_{1}\right] \in \mathbb{P}^{1}$.

- Let $\Sigma_{\lambda}=\Sigma_{\lambda}(\mathcal{A})=\left\{\mathbf{x} \in M(\mathcal{A}): \omega_{\lambda}(\mathbf{x})=0\right\}$ denote the critical set for a choice of weights λ.
- Equations are homogeneous: let \mathbb{P}_{λ} be the quotient in $\mathbb{P}^{\ell-1}$

Example ($x^{\lambda_{1}} y^{\lambda_{2}}(x-y)^{\lambda_{3}}$, continued)
So if $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$, there is a single critical point at $\left[\lambda_{2}:-\lambda_{1}\right] \in \mathbb{P}^{1}$.

- Let $\Sigma_{\lambda}=\Sigma_{\lambda}(\mathcal{A})=\left\{\mathbf{x} \in M(\mathcal{A}): \omega_{\lambda}(\mathbf{x})=0\right\}$ denote the critical set for a choice of weights λ.

Example ($x^{\lambda_{1}} y^{\lambda_{2}}(x-y)^{\lambda_{3}}$, continued)
So if $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$, there is a single critical point at $\left[\lambda_{2}:-\lambda_{1}\right] \in \mathbb{P}^{1}$.

- Let $\Sigma_{\lambda}=\Sigma_{\lambda}(\mathcal{A})=\left\{\mathbf{x} \in M(\mathcal{A}): \omega_{\lambda}(\mathbf{x})=0\right\}$ denote the critical set for a choice of weights λ.
- Equations are homogeneous: let \mathbb{P}_{λ} be the quotient in $\mathbb{P}^{\ell-1}$.

Example ($x^{\lambda_{1}} y^{\lambda_{2}}(x-y)^{\lambda_{3}}$, continued)

So if $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$, there is a single critical point at $\left[\lambda_{2}:-\lambda_{1}\right] \in \mathbb{P}^{1}$.

- Let $\Sigma_{\lambda}=\Sigma_{\lambda}(\mathcal{A})=\left\{\mathbf{x} \in M(\mathcal{A}): \omega_{\lambda}(\mathbf{x})=0\right\}$ denote the critical set for a choice of weights λ.
- Equations are homogeneous: let \mathbb{P}_{λ} be the quotient in $\mathbb{P}^{\ell-1}$.

The (projective) critical set is usually isolated

Theorem (Varchenko/R; Orlik-Terao/ \mathbb{C} (1995))

For any arrangement \mathcal{A}, there is an open set $Y \subseteq \mathbb{C}^{n}$ such that: for all $\lambda \in Y, \mathbb{P} \Sigma_{\lambda}$ is isolated and nondegenerate. Moreover,

$$
\left|\mathbb{P} \Sigma_{\lambda}\right|=\beta(\mathcal{A})=(\widetilde{\chi}(\mathbb{P} M)) .
$$

A universal construction

Fixing the arrangement and allowing the weights to vary has good properties. Let $\Sigma=\Sigma(\mathcal{A})$ be the variety of all solutions to $\omega_{\lambda}=0$ in $M \times \mathbb{C}^{n}$. One may project $\Sigma \subseteq M \times \mathbb{C}^{n}$ to either factor.

Theorem (Orlik-Terao '95)

The projection $\Sigma \rightarrow M$ gives Σ the structure of a rank $n-\ell$ vector bundle on M. In particular, Σ is smooth and has dimension n.

In equations: let a_{1}, \ldots, a_{n} be coordinates in \mathbb{C}^{n}, and

$$
\omega_{\underline{\mathbf{a}}}=\sum_{i=1}^{n} \mathrm{a}_{i} \mathrm{~d} f_{i} / f_{j} .
$$

Then $\Sigma=V\left(I^{\prime}\right)$, where

$$
I^{\prime}=\left(\left\langle\frac{\partial}{\partial x_{i}}, \omega_{\underline{\mathbf{a}}}\right\rangle: 1 \leq i \leq \ell\right),
$$

where $\langle\cdot\rangle$ denotes the duality pairing on the (co)tangent bundle of M.

Notation (Logarithmic derivations, forms)

- Let $D(\mathcal{A})$ consist of those derivations $\theta: R \rightarrow R$ for which $\theta\left(f_{i}\right) \in\left(f_{i}\right)$ for all $i, 1 \leq i \leq n$.
- $\Omega^{p}(* \mathcal{A})$: meromorphic p-forms, with (arbitrary) poles on the hyperplanes, $1 \leq p \leq \ell$.
- $\Omega^{p}(\mathcal{A})$: logarithmic p-forms: $\eta \in \Omega^{p}(* \mathcal{A})$ for which Q_{η} and $d Q / Q \wedge \eta$ are regular p-forms.

> Recall that $D(\mathcal{A})$ and $\Omega^{1}(\mathcal{A})$ are dual to each other. For certain arrangements, $D(\mathcal{A})$ is a free R-module. (\mathcal{A} is a "free arrangement.")

Conjecture (Terao)
If $L(\mathcal{A}) \cong L\left(\mathcal{A}^{\prime}\right)$, then \mathcal{A} and \mathcal{A}^{\prime} are both free, or both not free.

Notation (Logarithmic derivations, forms)

- Let $D(\mathcal{A})$ consist of those derivations $\theta: R \rightarrow R$ for which $\theta\left(f_{i}\right) \in\left(f_{i}\right)$ for all $i, 1 \leq i \leq n$.
- $\Omega^{p}(* \mathcal{A})$: meromorphic p-forms, with (arbitrary) poles on the hyperplanes, $1 \leq p \leq \ell$.

> Recall that $D(\mathcal{A})$ and $\Omega^{1}(\mathcal{A})$ are dual to each other. For certain arrangements, $D(\mathcal{A})$ is a free R-module. (\mathcal{A} is a "free arrangement.")

\square
If $L(\mathcal{A}) \cong L\left(\mathcal{A}^{\prime}\right)$, then \mathcal{A} and \mathcal{A}^{\prime} are both free, or both not free.

Notation (Logarithmic derivations, forms)

- Let $D(\mathcal{A})$ consist of those derivations $\theta: R \rightarrow R$ for which $\theta\left(f_{i}\right) \in\left(f_{i}\right)$ for all $i, 1 \leq i \leq n$.
- $\Omega^{p}(* \mathcal{A})$: meromorphic p-forms, with (arbitrary) poles on the hyperplanes, $1 \leq p \leq \ell$.
- $\Omega^{p}(\mathcal{A})$: logarithmic p-forms: $\eta \in \Omega^{p}(* \mathcal{A})$ for which $Q \eta$ and $d Q / Q \wedge \eta$ are regular p-forms.

> Recall that $D(\mathcal{A})$ and $\Omega^{1}(\mathcal{A})$ are dual to each other. For certain arrangements, $D(\mathcal{A})$ is a free R-module. (\mathcal{A} is a "free arrangement.")

\square
If $L(\mathcal{A}) \cong L\left(\mathcal{A}^{\prime}\right)$, then \mathcal{A} and \mathcal{A}^{\prime} are both free, or both not free.

Notation (Logarithmic derivations, forms)

- Let $D(\mathcal{A})$ consist of those derivations $\theta: R \rightarrow R$ for which $\theta\left(f_{i}\right) \in\left(f_{i}\right)$ for all $i, 1 \leq i \leq n$.
- $\Omega^{p}(* \mathcal{A})$: meromorphic p-forms, with (arbitrary) poles on the hyperplanes, $1 \leq p \leq \ell$.
- $\Omega^{p}(\mathcal{A})$: logarithmic p-forms: $\eta \in \Omega^{p}(* \mathcal{A})$ for which $Q \eta$ and $d Q / Q \wedge \eta$ are regular p-forms.

Recall that $D(\mathcal{A})$ and $\Omega^{1}(\mathcal{A})$ are dual to each other. For certain arrangements, $D(\mathcal{A})$ is a free R-module. (\mathcal{A} is a "free arrangement.")

Conjecture (Terao)
If $I(A) \simeq I\left(A^{\prime}\right)$, then A and \mathcal{A}^{\prime} are both free, or both not free.

Notation (Logarithmic derivations, forms)

- Let $D(\mathcal{A})$ consist of those derivations $\theta: R \rightarrow R$ for which $\theta\left(f_{i}\right) \in\left(f_{i}\right)$ for all $i, 1 \leq i \leq n$.
- $\Omega^{p}(* \mathcal{A})$: meromorphic p-forms, with (arbitrary) poles on the hyperplanes, $1 \leq p \leq \ell$.
- $\Omega^{p}(\mathcal{A})$: logarithmic p-forms: $\eta \in \Omega^{p}(* \mathcal{A})$ for which $Q \eta$ and $d Q / Q \wedge \eta$ are regular p-forms.

Recall that $D(\mathcal{A})$ and $\Omega^{1}(\mathcal{A})$ are dual to each other. For certain arrangements, $D(\mathcal{A})$ is a free R-module. (\mathcal{A} is a "free arrangement.")

Conjecture (Terao)

If $L(\mathcal{A}) \cong L\left(\mathcal{A}^{\prime}\right)$, then \mathcal{A} and \mathcal{A}^{\prime} are both free, or both not free.

Definition

Let

$$
I=\left(\left\langle\theta, \omega_{\underline{\mathrm{a}}}\right\rangle: \theta \in D(\mathcal{A})\right),
$$

a homogeneous ideal of R.
(Compare: $I^{\prime}=\left(\left\langle\partial / \partial x_{i}, \omega \underline{a}\right\rangle: 1 \leq i \leq n\right)$, and $\Sigma=V\left(I^{\prime}\right)$.)
Proposition
For any arrangement $\mathcal{A}, V(I)=\bar{\Sigma} \subseteq \mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Main idea: show $I=\left(Q^{\prime \prime}\right): Q$

Example $(x y(x-y)$ again)
$D(A)$ is generated by Fuler derivation θ_{1} and $\theta_{2}=x^{2} \partial / \partial x+y^{2} \partial / \partial y$,
SO

$$
I=\left(a_{1}+a_{2}+a_{3}, a_{1} y+a_{2} x\right)
$$

Definition

Let

$$
I=(\langle\theta, \omega \underline{\mathbf{a}}\rangle: \theta \in D(\mathcal{A})),
$$

a homogeneous ideal of R.
(Compare: $I^{\prime}=\left(\left\langle\partial / \partial x_{i}, \omega \underline{a}\right\rangle: 1 \leq i \leq n\right)$, and $\Sigma=V\left(I^{\prime}\right)$.)

Proposition

For any arrangement $\mathcal{A}, V(I)=\bar{\Sigma} \subseteq \mathbb{C}^{\ell} \times \mathbb{C}^{n}$.
Main idea: show $I=\left(Q I^{\prime}\right)$
Example ($x y(x-y)$ again)
$D(A)$ is generated by Fuler derivation θ_{1} and $\theta_{2}=x^{2} \partial / \partial x+y^{2} \partial / \partial y$,
SO

$$
I=\left(a_{1}+a_{2}+a_{3}, a_{1} y+a_{2} x\right)
$$

Definition

Let

$$
I=\left(\left\langle\theta, \omega_{\underline{\mathbf{a}}}\right\rangle: \theta \in D(\mathcal{A})\right),
$$

a homogeneous ideal of R.
(Compare: $I^{\prime}=\left(\left\langle\partial / \partial x_{i}, \omega \underline{\mathrm{a}}\right\rangle: 1 \leq i \leq n\right)$, and $\Sigma=V\left(I^{\prime}\right)$.)

Proposition

For any arrangement $\mathcal{A}, V(I)=\bar{\Sigma} \subseteq \mathbb{C}^{\ell} \times \mathbb{C}^{n}$.
Main idea: show $I=\left(Q I^{\prime}\right): Q$.
Example (xy $(x-y)$ again)
$D(\mathcal{A})$ is generated by Euler derivation θ_{1} and $\theta_{2}=x^{2} \partial / \partial x+y^{2} \partial / \partial y$,
SO

Definition

Let

$$
I=(\langle\theta, \omega \underline{\mathbf{a}}\rangle: \theta \in D(\mathcal{A})),
$$

a homogeneous ideal of R.
(Compare: $I^{\prime}=\left(\left\langle\partial / \partial x_{i}, \omega \underline{\mathrm{a}}\right\rangle: 1 \leq i \leq n\right)$, and $\Sigma=V\left(I^{\prime}\right)$.)

Proposition

For any arrangement $\mathcal{A}, V(I)=\bar{\Sigma} \subseteq \mathbb{C}^{\ell} \times \mathbb{C}^{n}$.
Main idea: show $I=\left(Q I^{\prime}\right): Q$.

Example $(x y(x-y)$ again)

$D(\mathcal{A})$ is generated by Euler derivation θ_{1} and $\theta_{2}=x^{2} \partial / \partial x+y^{2} \partial / \partial y$, so

$$
I=\left(a_{1}+a_{2}+a_{3}, a_{1} y+a_{2} x\right)
$$

Remark

$\bar{\Sigma}(\mathcal{A})$ is not smooth. The components of $\bar{\Sigma}-\Sigma$ are indexed by irreducible subspaces in the intersection lattice. (Use de Concini-Procesi wonderful compactification.)

A codimension-1 critical set

Example (A_{3})

Consider arrangement defined by $Q=x y z(x-y)(x-z)(y-z)$. Let $\Phi_{1}=(x(y-z)) /(z(x-y)), \Phi_{2}=(y(x-z))(z(x-y))$. Let $\Phi_{\lambda(a, b)}=\Phi_{1}^{a} \Phi_{2}^{b}$. From this morning's argument we get

$$
\omega_{\lambda}=(a y(x-z)+b x(y-z)) \eta
$$

where $\eta=\mathrm{d} \log \Phi_{1}-\mathrm{d} \log \Phi_{2}$.

A codimension-1 critical set

Example (A_{3})

Consider arrangement defined by $Q=x y z(x-y)(x-z)(y-z)$. Let $\Phi_{1}=(x(y-z)) /(z(x-y)), \Phi_{2}=(y(x-z))(z(x-y))$. Let $\Phi_{\lambda(a, b)}=\Phi_{1}^{a} \Phi_{2}^{b}$. From this morning's argument we get

$$
\omega_{\lambda}=(a y(x-z)+b x(y-z)) \eta
$$

where $\eta=\mathrm{d} \log \Phi_{1}-\mathrm{d} \log \Phi_{2}$. Then Σ_{λ} is given by $a y(x-z)+b x(y-z)$ as long as $a, b \neq 0$.

A codimension-1 critical set

Example (A_{3})

Consider arrangement defined by $Q=x y z(x-y)(x-z)(y-z)$. Let $\Phi_{1}=(x(y-z)) /(z(x-y)), \Phi_{2}=(y(x-z))(z(x-y))$. Let $\Phi_{\lambda(a, b)}=\Phi_{1}^{a} \Phi_{2}^{b}$. From this morning's argument we get

$$
\omega_{\lambda}=(a y(x-z)+b x(y-z)) \eta
$$

where $\eta=\mathrm{d} \log \Phi_{1}-\mathrm{d} \log \Phi_{2}$. Then Σ_{λ} is given by $a y(x-z)+b x(y-z)$ as long as $a, b \neq 0$.

A codimension-1 critical set

Example (A_{3})

Consider arrangement defined by $Q=x y z(x-y)(x-z)(y-z)$. Let $\Phi_{1}=(x(y-z)) /(z(x-y)), \Phi_{2}=(y(x-z))(z(x-y))$.
Let $\Phi_{\lambda(a, b)}=\Phi_{1}^{a} \Phi_{2}^{b}$. From this morning's argument we get

$$
\omega_{\lambda}=(a y(x-z)+b x(y-z)) \eta
$$

where $\eta=\mathrm{d} \log \Phi_{1}-\mathrm{d} \log \Phi_{2}$. Then Σ_{λ} is given by $a y(x-z)+b x(y-z)$ as long as $a, b \neq 0$.

Example (A_{3}, continued)

On the other hand, $\bar{\Sigma}_{\lambda(1,0)}$ is given by $y(x-z)=0$, a union of lines.
So: $\bar{\Sigma}_{\lambda}$ is not closure of Σ_{λ}.

Another characterization of freeness

Since Σ is smooth, $\bar{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.
Theorem (CDFV'09)
$\bar{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition
Say an arrangement \mathcal{A} is tame if pdim $\Omega^{\Omega^{p}}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$.
(Includes rank-3 arrangements, generic and free arrangements.)
Theorem (CDFV'09)
If Λ is tame then $\bar{\Sigma}$ is arithmetically Cohen-Macaulay.
(C.I. \Rightarrow Gorenstein \Rightarrow a.C.M.)

- If Σ is arithmetically Cohen-Macaulay, is \mathcal{A} tame?
- Are there (nonfree) arranaements \mathcal{A} for which $\bar{\Sigma}$ is Gorenstein?

Another characterization of freeness

Since Σ is smooth, $\bar{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

$\bar{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is tame if $\operatorname{pdim}_{R} \Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$. (Includes rank-3 arrangements, generic and free arrangements.)

If \mathcal{A} is tame, then $\bar{\Sigma}$ is arithmetically Cohen-Macaulay.

Another characterization of freeness

Since Σ is smooth, $\bar{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

$\bar{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is tame if $\operatorname{pdim}_{R} \Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$. (Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If \mathcal{A} is tame, then $\bar{\Sigma}$ is arithmetically Cohen-Macaulay.

Another characterization of freeness

Since Σ is smooth, $\bar{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

$\bar{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is tame if $\operatorname{pdim}_{R} \Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$. (Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If \mathcal{A} is tame, then $\bar{\Sigma}$ is arithmetically Cohen-Macaulay.

$$
\text { (C.I. } \Rightarrow \text { Gorenstein } \Rightarrow \text { a.C.M.) }
$$

Another characterization of freeness

Since Σ is smooth, $\bar{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

$\bar{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is tame if $\operatorname{pdim}_{R} \Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$. (Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If \mathcal{A} is tame, then $\bar{\Sigma}$ is arithmetically Cohen-Macaulay.

$$
\text { (C.I. } \Rightarrow \text { Gorenstein } \Rightarrow \text { a.C.M.) }
$$

- If $\bar{\Sigma}$ is arithmetically Cohen-Macaulay, is \mathcal{A} tame?

Another characterization of freeness

Since Σ is smooth, Σ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

$\bar{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is tame if $\operatorname{pdim}_{R} \Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$.
(Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If \mathcal{A} is tame, then $\bar{\Sigma}$ is arithmetically Cohen-Macaulay.

$$
\text { (C.I. } \Rightarrow \text { Gorenstein } \Rightarrow \text { a.C.M.) }
$$

- If $\bar{\Sigma}$ is arithmetically Cohen-Macaulay, is \mathcal{A} tame?
- Are there (nonfree) arrangements \mathcal{A} for which $\bar{\Sigma}$ is Gorenstein?

Example

Let \mathcal{A} be arrangement of 15 hyperplanes in \mathbb{C}^{4} dual to the points

$$
\left\{\left(b_{1}, b_{2}, b_{3}, b_{4}\right): b_{i} \in\{0,1\}, \text { not all zero }\right\}
$$

Then \mathcal{A} is not tame (pdim $\Omega^{1}=2$) [Solomon-Terao,'87] and $\bar{\Sigma}$ is not a.C.M.

- Converse unknown.

Example

Let \mathcal{A} be arrangement of 15 hyperplanes in \mathbb{C}^{4} dual to the points

$$
\left\{\left(b_{1}, b_{2}, b_{3}, b_{4}\right): b_{i} \in\{0,1\}, \text { not all zero }\right\}
$$

Then \mathcal{A} is not tame ($\operatorname{pdim} \Omega^{1}=2$) [Solomon-Terao,'87] and $\bar{\Sigma}$ is not a.C.M.

- Converse unknown.

Resonance varieties

Let $A=H^{\prime}(\mathbb{P} M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A}. Identify $A^{1}=\left\{\lambda \in \mathbb{C}^{n}: \sum_{i=1}^{n} \lambda_{i}=0\right\}$.

Definition
The pth resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

$$
\mathcal{R}^{n}(A)=\left\{\omega_{\lambda} \in A^{1}: \quad, D^{D}\left(A, \omega_{\lambda} \wedge-\right) \neq 0\right\} .
$$

Then [Eisenbud-Popescu-Yuzvinsky'03]

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2}=\emptyset$, (but $Y \subseteq A^{1}$). Recall

Generalize?

Resonance varieties

Let $A=H^{\prime}(\mathbb{P} M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A}. Identify $A^{1}=\left\{\lambda \in \mathbb{C}^{n}: \sum_{i=1}^{n} \lambda_{i}=0\right\}$.

Definition

The p th resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

$$
\mathcal{R}^{p}(\mathcal{A})=\left\{\omega_{\lambda} \in A^{1}: H^{p}\left(A, \omega_{\lambda} \wedge-\right) \neq 0\right\} .
$$

Then [Eisenbud-Popescu-Yuzvinsky'03]

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2}=\emptyset$, (but $Y \subseteq A^{1}$). Recall

Resonance varieties

Let $A=H^{\prime}(\mathbb{P} M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A}. Identify $A^{1}=\left\{\lambda \in \mathbb{C}^{n}: \sum_{i=1}^{n} \lambda_{i}=0\right\}$.

Definition

The pth resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

$$
\mathcal{R}^{p}(\mathcal{A})=\left\{\omega_{\lambda} \in A^{1}: H^{p}\left(A, \omega_{\lambda} \wedge-\right) \neq 0\right\} .
$$

Then [Eisenbud-Popescu-Yuzvinsky'03]

$$
0=\mathcal{R}^{0} \subseteq \mathcal{R}^{1} \subseteq \mathcal{R}^{2} \subseteq \cdots \subseteq \mathcal{R}^{\ell-1}=A^{1}
$$

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2}=\emptyset$, (but $Y \subseteq A^{1}$). Recall

Resonance varieties

Let $A=H^{\prime}(\mathbb{P} M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A}. Identify $\boldsymbol{A}^{1}=\left\{\lambda \in \mathbb{C}^{n}: \sum_{i=1}^{n} \lambda_{i}=0\right\}$.

Definition

The pth resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

$$
\mathcal{R}^{p}(\mathcal{A})=\left\{\omega_{\lambda} \in A^{1}: H^{p}\left(A, \omega_{\lambda} \wedge-\right) \neq 0\right\} .
$$

Then [Eisenbud-Popescu-Yuzvinsky'03]

$$
0=\mathcal{R}^{0} \subseteq \mathcal{R}^{1} \subseteq \mathcal{R}^{2} \subseteq \cdots \subseteq \mathcal{R}^{\ell-1}=A^{1}
$$

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2}=\emptyset$, (but $Y \subseteq A^{1}$). Recall

$$
\lambda \in Y \Rightarrow \operatorname{codim} \Sigma_{\lambda}=\ell-1
$$

Resonance varieties

Let $A=H^{\prime}(\mathbb{P} M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A}. Identify $\boldsymbol{A}^{1}=\left\{\lambda \in \mathbb{C}^{n}: \sum_{i=1}^{n} \lambda_{i}=0\right\}$.

Definition

The pth resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

$$
\mathcal{R}^{p}(\mathcal{A})=\left\{\omega_{\lambda} \in A^{1}: H^{p}\left(A, \omega_{\lambda} \wedge-\right) \neq 0\right\} .
$$

Then [Eisenbud-Popescu-Yuzvinsky'03]

$$
0=\mathcal{R}^{0} \subseteq \mathcal{R}^{1} \subseteq \mathcal{R}^{2} \subseteq \cdots \subseteq \mathcal{R}^{\ell-1}=A^{1}
$$

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2}=\emptyset$, (but $Y \subseteq A^{1}$). Recall

$$
\lambda \in Y \Rightarrow \operatorname{codim} \Sigma_{\lambda}=\ell-1
$$

Generalize?

Definition

Master functions with "large" critical sets: let

$$
\mathcal{S}^{p}(\mathcal{A})=\left\{\lambda \in A^{1}: \operatorname{codim} \bar{\Sigma}_{\lambda} \leq p\right\} .
$$

(Note $\bar{\Sigma}_{c \lambda}=\bar{\Sigma}_{\lambda}$ for $c \neq 0$.)
Then

Compare with resonance varieties?
Positive results:

- [Scherbak, Varchenko, '03]: critical set of discriminental master function
- [Cohen, Varchenko '03]: curves in critical set \leftrightarrow weights in $\mathcal{R}^{\ell-2}$

Definition

Master functions with "large" critical sets: let

$$
\mathcal{S}^{p}(\mathcal{A})=\left\{\lambda \in A^{1}: \operatorname{codim} \bar{\Sigma}_{\lambda} \leq p\right\} .
$$

(Note $\bar{\Sigma}_{c \lambda}=\bar{\Sigma}_{\lambda}$ for $\left.c \neq 0.\right)$

Compare with resonance varieties?
Positive results:

- [Scherbak, Varchenko, '03]: critical set of discriminental master function
- [Cohen, Varchenko '03]: curves in critical set \leftrightarrow weights in \mathcal{R}^{l-2}

Definition

Master functions with "large" critical sets: let

$$
\mathcal{S}^{p}(\mathcal{A})=\left\{\lambda \in A^{1}: \operatorname{codim} \bar{\Sigma}_{\lambda} \leq p\right\} .
$$

(Note $\bar{\Sigma}_{c \lambda}=\bar{\Sigma}_{\lambda}$ for $\left.c \neq 0.\right)$
Then

$$
0=\mathcal{S}^{0} \subseteq \mathcal{S}^{1} \subseteq \mathcal{S}^{2} \subseteq \cdots \subseteq \mathcal{S}^{\ell-1}=A^{1}
$$

Compare with resonance varieties?

- [Scherbak, Varchenko, '03]: critical set of discriminental master function
- [Cohen, Varchenko '03]: curves in critical set \longleftrightarrow weights in \mathcal{R}^{1-2}

Definition

Master functions with "large" critical sets: let

$$
\mathcal{S}^{p}(\mathcal{A})=\left\{\lambda \in A^{1}: \operatorname{codim} \bar{\Sigma}_{\lambda} \leq p\right\} .
$$

(Note $\bar{\Sigma}_{c \lambda}=\bar{\Sigma}_{\lambda}$ for $\left.c \neq 0.\right)$
Then

$$
0=\mathcal{S}^{0} \subseteq \mathcal{S}^{1} \subseteq \mathcal{S}^{2} \subseteq \cdots \subseteq \mathcal{S}^{\ell-1}=A^{1}
$$

Compare with resonance varieties?
Positive results:

- [Scherbak, Varchenko, '03]: critical set of discriminental master function
- [Cohen, Varchenko '03]: curves in critical set \leftrightarrow weights in $\mathcal{R}^{\ell-2}$.

A heuristic

Suppose that $\omega_{\lambda} \in \mathcal{R}^{1}(\mathcal{A})$. Then $\exists \eta \in A^{1}$ for which

$$
\begin{equation*}
\omega_{\lambda} \wedge \eta=0 \tag{1}
\end{equation*}
$$

but $\eta \notin \mathbb{C} \cdot \omega_{\lambda}$. But (1) is true on the level of forms, so $\exists f, g$ polynomials for which

$$
\begin{aligned}
f \omega_{\lambda} & =g \eta ; \\
\omega_{\lambda} & =g / f \cdot \eta .
\end{aligned}
$$

So $\Sigma_{\lambda} \supseteq V(g)$. (So, codimension 1.)

Resonance \Rightarrow high-dimensional critical sets

Theorem (CDFV'09)

Let \mathcal{A} be an arrangement. Then $\mathcal{R}^{1}(\mathcal{A}) \subseteq \mathcal{S}^{1}(\mathcal{A})$.

- If \mathcal{A} is tame, then additionally $\mathcal{R}^{2} \subseteq \mathcal{S}^{2}$.
- If \mathcal{A} is free, then $\mathcal{R}^{p} \subseteq \mathcal{S}^{p}$ for all p.

Methods:

- Complex of meromorphic forms resolves defining ideal of $\Sigma(\mathcal{A})$:
where S is polynomial ring in $\ell+n$ variables (coordinates and parameters).
- The complex is self-dual, so

$$
H^{p}\left(\Omega(* \mathcal{A}), \omega_{\lambda}\right) \cong \operatorname{Ext}_{S_{Q}}^{p}\left(S_{Q} / I^{\prime},\left(R_{\lambda}\right)_{Q}\right),
$$

Resonance \Rightarrow high-dimensional critical sets

Theorem (CDFV'09)

Let \mathcal{A} be an arrangement. Then $\mathcal{R}^{1}(\mathcal{A}) \subseteq \mathcal{S}^{1}(\mathcal{A})$.

- If \mathcal{A} is tame, then additionally $\mathcal{R}^{2} \subseteq \mathcal{S}^{2}$.
- If \mathcal{A} is free, then $\mathcal{R}^{p} \subseteq \mathcal{S}^{p}$ for all p.

Methods:

- Complex of meromorphic forms resolves defining ideal of $\Sigma(\mathcal{A})$:

$$
0 \rightarrow \Omega^{0}(* \mathcal{A}) \stackrel{\omega}{\rightarrow} \Omega^{1}(* \mathcal{A}) \stackrel{\omega \mathrm{a}}{\rightarrow} \cdots \stackrel{\omega \mathrm{a}}{\rightarrow} \Omega^{\ell}(* \mathcal{A}) \rightarrow S_{Q} / I^{\prime} \rightarrow 0,
$$

where S is polynomial ring in $\ell+n$ variables (coordinates and parameters).
The complex is self-dual, so
$H^{p}\left(\Omega(* \mathcal{A}), \omega_{\lambda}\right) \cong \operatorname{Ext}_{S_{Q}}^{p}\left(S_{Q} / I^{\prime},\left(R_{\lambda}\right)_{Q}\right)$,

Theorem (CDFV'09)

Let \mathcal{A} be an arrangement. Then $\mathcal{R}^{1}(\mathcal{A}) \subseteq \mathcal{S}^{1}(\mathcal{A})$.

- If \mathcal{A} is tame, then additionally $\mathcal{R}^{2} \subseteq \mathcal{S}^{2}$.
- If \mathcal{A} is free, then $\mathcal{R}^{p} \subseteq \mathcal{S}^{p}$ for all p.

Methods:

- Complex of meromorphic forms resolves defining ideal of $\Sigma(\mathcal{A})$:

$$
0 \rightarrow \Omega^{0}(* \mathcal{A}) \stackrel{\omega}{\rightarrow} \Omega^{1}(* \mathcal{A}) \stackrel{\omega}{\rightarrow} \cdots \stackrel{\omega}{\rightarrow} \Omega^{\ell}(* \mathcal{A}) \rightarrow S_{Q} / I^{\prime} \rightarrow 0,
$$

where S is polynomial ring in $\ell+n$ variables (coordinates and parameters).

- The complex is self-dual, so

$$
H^{p}\left(\Omega(* \mathcal{A}), \omega_{\lambda}\right) \cong \operatorname{Ext}_{S_{Q}}^{p}\left(S_{Q} / I^{\prime},\left(R_{\lambda}\right)_{Q}\right),
$$

and codim of Σ_{λ} is least p for which $H^{p}\left(\Omega(* \mathcal{A}), \omega_{\lambda}\right) \neq 0$.

methods, continued

- Now consider complex of logarithmic forms,

$$
\begin{equation*}
0 \rightarrow \Omega^{0}(\mathcal{A}) \stackrel{\omega_{\mathrm{a}}}{\rightarrow} \cdots \stackrel{\omega_{\mathrm{a}}}{\rightarrow} \Omega^{\ell-1}(\mathcal{A}) \stackrel{\omega_{\mathrm{a}}}{\rightarrow} \Omega^{\ell}(\mathcal{A}) \rightarrow S / I \rightarrow 0 . \tag{2}
\end{equation*}
$$

- If \mathcal{A} is free, this is a free resolution of defining ideal of $\bar{\Sigma}(\mathcal{A})$ (Koszul complex).
- If \mathcal{A} is tame, (2) is exact. (In general?)
- Conclude

$$
H^{p}\left(\Omega(\mathcal{A}), \omega_{\lambda}\right) \cong \operatorname{Tor}_{\ell-p}^{S}\left(S / I, R_{\lambda}\right),
$$

relate to codimension of $\bar{\Sigma}_{\lambda}$

- Show $\left(A^{\prime}, \omega_{\lambda}\right) \rightarrow\left(\Omega^{\prime}(\mathcal{A}), \mathrm{d}+\omega_{\lambda}\right)$ is monomorphism in cohomology via [Schechtman-Varchenko'91].
- If \mathcal{A} is tame, $\left(\mathcal{A}^{\cdot}, \omega_{\lambda}\right) \rightarrow\left(\Omega^{\cdot}(\mathcal{A}), \mathrm{d}+\varepsilon \omega_{\lambda}\right)$ is quasiiso. for generic $\varepsilon \in \mathbb{C}^{*}$, via [Wiens-Yuzvinsky'97] and [Farber'01].
- Conclude $H^{P}\left(A^{\prime}, \omega_{\lambda}\right) \neq 0 \Rightarrow H^{P}\left(\Omega(\mathcal{A}), \omega_{\lambda}\right) \neq 0$.

methods, continued

- Now consider complex of logarithmic forms,

$$
\begin{equation*}
0 \rightarrow \Omega^{0}(\mathcal{A}) \xrightarrow{\omega_{\mathrm{a}}} \cdots \stackrel{\omega_{\mathrm{a}}}{\rightarrow} \Omega^{\ell-1}(\mathcal{A}) \stackrel{\omega_{\mathrm{a}}}{\rightarrow} \Omega^{\ell}(\mathcal{A}) \rightarrow S / I \rightarrow 0 . \tag{2}
\end{equation*}
$$

- If \mathcal{A} is free, this is a free resolution of defining ideal of $\bar{\Sigma}(\mathcal{A})$ (Koszul complex).
- If \mathcal{A} is tame, (2) is exact. (In general?)
- Conclude

$$
H^{p}\left(\Omega(\mathcal{A}), \omega_{\lambda}\right) \cong \operatorname{Tor}_{\ell-p}^{S}\left(S / I, R_{\lambda}\right)
$$

relate to codimension of $\bar{\Sigma}_{\lambda}$.

- Show $\left(A^{\prime}, \omega_{\lambda}\right) \rightarrow\left(\Omega^{\prime}(\mathcal{A}), \mathrm{d}+\omega_{\lambda}\right)$ is monomorphism in
cohomology via [Schechtman-Varchenko'91].
- If \mathcal{A} is tame, $\left(\mathcal{A}^{*}, \omega_{\lambda}\right) \rightarrow\left(\Omega^{\cdot}(\mathcal{A}), \mathrm{d}+\varepsilon \omega_{\lambda}\right)$ is quasiiso. for generic $\varepsilon \in \mathbb{C}^{*}$, via [Wiens-Yuzvinsky'97] and [Farber'01].
- Conclude $H^{P}\left(A^{\prime}, \omega_{\lambda}\right) \neq 0 \Rightarrow H^{P}\left(\Omega(\mathcal{A}), \omega_{\lambda}\right) \neq 0$.

methods, continued

- Now consider complex of logarithmic forms,

$$
\begin{equation*}
0 \rightarrow \Omega^{0}(\mathcal{A}) \xrightarrow{\omega_{\mathrm{a}}} \cdots \stackrel{\omega_{\mathrm{a}}}{\rightarrow} \Omega^{\ell-1}(\mathcal{A}) \stackrel{\omega_{\mathrm{a}}}{\rightarrow} \Omega^{\ell}(\mathcal{A}) \rightarrow S / I \rightarrow 0 . \tag{2}
\end{equation*}
$$

- If \mathcal{A} is free, this is a free resolution of defining ideal of $\bar{\Sigma}(\mathcal{A})$ (Koszul complex).
- If \mathcal{A} is tame, (2) is exact. (In general?)
- Conclude

$$
H^{p}\left(\Omega(\mathcal{A}), \omega_{\lambda}\right) \cong \operatorname{Tor}_{\ell-p}^{S}\left(S / I, R_{\lambda}\right)
$$

relate to codimension of $\bar{\Sigma}_{\lambda}$.

- Show $\left(\boldsymbol{A}^{\cdot}, \omega_{\lambda}\right) \rightarrow\left(\Omega^{\prime}(\mathcal{A}), \mathrm{d}+\omega_{\lambda}\right)$ is monomorphism in cohomology via [Schechtman-Varchenko'91].
- If \mathcal{A} is tame, $\left(\mathcal{A}^{-}, \omega_{\lambda}\right) \rightarrow\left(\Omega^{\prime}(\mathcal{A}), \mathrm{d}+\varepsilon \omega_{\lambda}\right)$ is quasiiso. for generic $\varepsilon \in \mathbb{C}^{*}$, via [Wiens-Yuzvinsky'97] and [Farber'01].

methods, continued

- Now consider complex of logarithmic forms,

$$
\begin{equation*}
0 \rightarrow \Omega^{0}(\mathcal{A}) \xrightarrow{\omega_{\mathrm{a}}} \cdots \stackrel{\omega_{\mathrm{a}}}{\rightarrow} \Omega^{\ell-1}(\mathcal{A}) \stackrel{\omega_{\mathrm{a}}}{\rightarrow} \Omega^{\ell}(\mathcal{A}) \rightarrow S / I \rightarrow 0 . \tag{2}
\end{equation*}
$$

- If \mathcal{A} is free, this is a free resolution of defining ideal of $\bar{\Sigma}(\mathcal{A})$ (Koszul complex).
- If \mathcal{A} is tame, (2) is exact. (In general?)
- Conclude

$$
H^{p}\left(\Omega(\mathcal{A}), \omega_{\lambda}\right) \cong \operatorname{Tor}_{\ell-p}^{S}\left(S / I, R_{\lambda}\right)
$$

relate to codimension of $\bar{\Sigma}_{\lambda}$.

- Show $\left(\boldsymbol{A}^{\cdot}, \omega_{\lambda}\right) \rightarrow\left(\Omega^{\prime}(\mathcal{A}), \mathrm{d}+\omega_{\lambda}\right)$ is monomorphism in cohomology via [Schechtman-Varchenko'91].
- If \mathcal{A} is tame, $\left(\mathcal{A}^{-}, \omega_{\lambda}\right) \rightarrow\left(\Omega^{\cdot}(\mathcal{A}), \mathrm{d}+\varepsilon \omega_{\lambda}\right)$ is quasiiso. for generic $\varepsilon \in \mathbb{C}^{*}$, via [Wiens-Yuzvinsky'97] and [Farber'01].
- Conclude $H^{p}\left(A^{\prime}, \omega_{\lambda}\right) \neq 0 \Rightarrow H^{p}\left(\Omega(\mathcal{A}), \omega_{\lambda}\right) \neq 0$.

"Correct" setting is blown up:

- Let $\bar{\Sigma}_{\lambda}^{Y}$ be critical set of Φ_{λ} in in minimal blowup $Y \times \rightarrow \mathbb{P}^{\ell-1}$ with normal crossing divisors.
- [Dimca'08]: $\lambda \in R^{p}(\mathcal{A})$ implies codim of $\bar{\Sigma}_{\lambda}$ at most p. (More generality, too.)

"Correct" setting is blown up:

- Let $\bar{\Sigma}_{\lambda}^{Y}$ be critical set of Φ_{λ} in in minimal blowup $Y \times \rightarrow \mathbb{P}^{\ell-1}$ with normal crossing divisors.
- [Dimca'08]: $\lambda \in R^{p}(\mathcal{A})$ implies codim of $\bar{\Sigma}_{\lambda}^{Y}$ at most p. (More generality, too.)

Resonance is not enough

Theorem

Suppose \mathcal{A} is an arrangement with rank-2 flats X, X^{\prime} for which

1. $|X|,\left|X^{\prime}\right| \geq 3$;
2. There is no hyperplane H for which $H \leq X$ and $H \leq X^{\prime}$.

Then there exists a λ for which Σ_{λ} has codimension 1, but $H^{1}\left(A, \omega_{\lambda}\right)=0$. (So $\mathcal{S}^{1} \supsetneq \mathcal{R}^{1}$).

Idea: for a suitable λ supported on hyperplanes of X and $X^{\prime}, \bar{\Sigma}_{\lambda}$ is the linear space $X+X^{\prime}$.

Resonance is not enough

Theorem

Suppose \mathcal{A} is an arrangement with rank-2 flats X, X^{\prime} for which

1. $|X|,\left|X^{\prime}\right| \geq 3$;
2. There is no hyperplane H for which $H \leq X$ and $H \leq X^{\prime}$.

Then there exists a λ for which Σ_{λ} has codimension 1 , but $H^{1}\left(A, \omega_{\lambda}\right)=0$. (So $\mathcal{S}^{1} \supsetneq \mathcal{R}^{1}$).

Idea: for a suitable λ supported on hyperplanes of X and $X^{\prime}, \bar{\Sigma}_{\lambda}$ is the linear space $X+X^{\prime}$.

Theorem

Suppose \mathcal{A} is an arrangement with rank-2 flats X, X^{\prime} for which

1. $|X|,\left|X^{\prime}\right| \geq 3$;
2. There is no hyperplane H for which $H \leq X$ and $H \leq X^{\prime}$.

Then there exists a λ for which Σ_{λ} has codimension 1, but $H^{1}\left(A, \omega_{\lambda}\right)=0$. (So $\mathcal{S}^{1} \supsetneq \mathcal{R}^{1}$).

Idea: for a suitable λ supported on hyperplanes of X and $X^{\prime}, \bar{\Sigma}_{\lambda}$ is the linear space $X+X^{\prime}$.

Theorem

Suppose \mathcal{A} is an arrangement with rank-2 flats X, X^{\prime} for which

1. $|X|,\left|X^{\prime}\right| \geq 3$;
2. There is no hyperplane H for which $H \leq X$ and $H \leq X^{\prime}$.

Then there exists a λ for which Σ_{λ} has codimension 1, but $H^{1}\left(A, \omega_{\lambda}\right)=0$. (So $\mathcal{S}^{1} \supsetneq \mathcal{R}^{1}$).

Idea: for a suitable λ supported on hyperplanes of X and $X^{\prime}, \bar{\Sigma}_{\lambda}$ is the linear space $X+X^{\prime}$.

Example

Let \mathcal{A} be the projective arrangement given by

$$
Q=(x+z)(2 x+z)(3 x+z)(y+z)(2 y+z)(3 y+z) .
$$

The two triple points determine the line in \mathbb{P}^{2} given by $z=0$. This line is in $\bar{\Sigma}_{\lambda}$ for all master functions

The weight $\lambda\left(b_{1}, b_{2}\right)$ is nonresonant (as long as $b_{1}, b_{2} \neq 0$.)

Example

Let \mathcal{A} be the projective arrangement given by $Q=(x+z)(2 x+z)(3 x+z)(y+z)(2 y+z)(3 y+z)$.

$$
0-0-0
$$

The two triple points determine the line in \mathbb{P}^{2} given by $z=0$. This line is in $\bar{\Sigma}_{\lambda}$ for all master functions

The weight $\lambda\left(b_{1}, b_{2}\right)$ is nonresonant (as long as $b_{1}, b_{2} \neq 0$.)

Example

Let \mathcal{A} be the projective arrangement given by $Q=(x+z)(2 x+z)(3 x+z)(y+z)(2 y+z)(3 y+z)$.

The two triple points determine the line in \mathbb{P}^{2} given by $z=0$. This line is in $\bar{\Sigma}_{\lambda}$ for all master functions

The weight $\lambda\left(b_{1}, b_{2}\right)$ is nonresonant (as long as $b_{1}, b_{2} \neq 0$.)

Example

Let \mathcal{A} be the projective arrangement given by $Q=(x+z)(2 x+z)(3 x+z)(y+z)(2 y+z)(3 y+z)$.

The two triple points determine the line in \mathbb{P}^{2} given by $z=0$. This line is in $\bar{\Sigma}_{\lambda}$ for all master functions

$$
\Phi_{\lambda\left(b_{1}, b_{2}\right)}=\left(\frac{(x+z)(3 x+z)^{3}}{(2 x+z)^{-4}}\right)^{b_{1}}\left(\frac{(y+z)(3 y+z)^{3}}{(2 y+z)^{-4}}\right)^{b_{2}}
$$

The weight $\lambda\left(b_{1}, b_{2}\right)$ is nonresonant (as long as $b_{1}, b_{2} \neq 0$.)

some explanation

- Consider the map $\phi: R^{n} \rightarrow \Omega^{1}(\mathcal{A})$ given extending

$$
\lambda \mapsto \omega_{\lambda}
$$

R-linearly. Dual $\phi^{*}: D(\mathcal{A}) \rightarrow R^{n}$ by

$$
\theta \mapsto\left(\theta\left(f_{1}\right) / f_{1}, \ldots, \theta\left(f_{n}\right) / f_{n}\right) .
$$

- Σ is the graph of $\widetilde{\operatorname{ker} \phi}$.
- Pick basis for linear space of relations amongst fi's: say $\sum_{i=1}^{n} c_{i j} f_{i}=0$ for $1 \leq j \leq n-\ell$.
- Let B be the $n \times(n-\ell)$ matrix with $B_{i j}=c_{i j} f_{i}$.
- Get exact sequences

some explanation

- Consider the map $\phi: R^{n} \rightarrow \Omega^{1}(\mathcal{A})$ given extending

$$
\lambda \mapsto \omega_{\lambda}
$$

R-linearly. Dual $\phi^{*}: D(\mathcal{A}) \rightarrow R^{n}$ by

$$
\theta \mapsto\left(\theta\left(f_{1}\right) / f_{1}, \ldots, \theta\left(f_{n}\right) / f_{n}\right) .
$$

- Σ is the graph of $\widetilde{\operatorname{ker} \phi}$.
- Pick basis for linear space of relations amongst f_{i} 's: say $\sum_{i=1}^{n} c_{i j} f_{i}=0$ for $1 \leq j \leq n-\ell$.
- Let B be the $n \times(n-\ell)$ matrix with $B_{i j}=c_{i j} f_{i}$.
- Get exact sequences

some explanation

- Consider the map $\phi: R^{n} \rightarrow \Omega^{1}(\mathcal{A})$ given extending

$$
\lambda \mapsto \omega_{\lambda}
$$

R-linearly. Dual $\phi^{*}: D(\mathcal{A}) \rightarrow R^{n}$ by

$$
\theta \mapsto\left(\theta\left(f_{1}\right) / f_{1}, \ldots, \theta\left(f_{n}\right) / f_{n}\right) .
$$

- Σ is the graph of $\widetilde{\operatorname{ker} \phi}$.
- Pick basis for linear space of relations amongst f_{i} 's: say $\sum_{i=1}^{n} c_{i j} f_{i}=0$ for $1 \leq j \leq n-\ell$.
- Let B be the $n \times(n-\ell)$ matrix with $B_{i j}=c_{i j} f_{i}$.
- Get exact sequences

$$
0 \longrightarrow R^{n-\ell} \xrightarrow{B} R^{n} \xrightarrow{\phi} \Omega^{1}(\mathcal{A}) \longrightarrow \operatorname{coker} \phi \longrightarrow 0,
$$

some explanation

- Consider the map $\phi: R^{n} \rightarrow \Omega^{1}(\mathcal{A})$ given extending

$$
\lambda \mapsto \omega_{\lambda}
$$

R-linearly. Dual $\phi^{*}: D(\mathcal{A}) \rightarrow R^{n}$ by

$$
\theta \mapsto\left(\theta\left(f_{1}\right) / f_{1}, \ldots, \theta\left(f_{n}\right) / f_{n}\right) .
$$

- Σ is the graph of $\widetilde{\operatorname{ker} \phi}$.
- Pick basis for linear space of relations amongst f_{i} 's: say $\sum_{i=1}^{n} c_{i j} f_{i}=0$ for $1 \leq j \leq n-\ell$.
- Let B be the $n \times(n-\ell)$ matrix with $B_{i j}=c_{i j} f_{i}$.
- Get exact sequences

$$
\begin{aligned}
& 0 \longrightarrow R^{n-\ell} \xrightarrow{B} R^{n} \xrightarrow{\phi} \Omega^{1}(\mathcal{A}) \longrightarrow \operatorname{coker} \phi \longrightarrow 0, \\
& 0 \longrightarrow D(\mathcal{A}) \xrightarrow{\phi^{*}} R^{n} \xrightarrow{B^{*}} R^{n-\ell} \longrightarrow \operatorname{coker} B^{*} \longrightarrow 0 .
\end{aligned}
$$

Example $((x+z)(2 x+z)(3 x+z)(y+z)(2 y+z)(3 y+z))$
Here,

$$
B=\left(\begin{array}{cccccc}
x+z & -2(2 x+z) & 3 x+z & 0 & 0 & 0 \\
0 & 0 & 0 & y+z & -2(2 y+z) & 3 y+z \\
* & * & & \cdots & & *
\end{array}\right)^{t}
$$

Consider this mod z :

Kernels are saturated, so for any λ in span of $\lambda_{1}=(1,-4,3,0,0,0)$, $\lambda_{2}=(0,0,0,1,-4,3)$, zero locus of ω_{λ} contains line $z=0$.

Observation: unlike resonance, equations defining \mathcal{S}^{1} depend on choice of matroid realization.

Example $((x+z)(2 x+z)(3 x+z)(y+z)(2 y+z)(3 y+z))$

Here,

$$
B=\left(\begin{array}{cccccc}
x+z & -2(2 x+z) & 3 x+z & 0 & 0 & 0 \\
0 & 0 & 0 & y+z & -2(2 y+z) & 3 y+z \\
* & * & & \cdots & & *
\end{array}\right)^{t}
$$

Consider this mod z :

$$
\bar{B}=\left(\begin{array}{cccccc}
x & -4 x & 3 x & 0 & 0 & 0 \\
0 & 0 & 0 & y & -4 y & 3 y \\
* & * & & \cdots & & *
\end{array}\right)^{t}
$$

Kernels are saturated, so for any λ in span of $\lambda_{1}=(1,-4,3,0,0,0)$, $\lambda_{2}=(0,0,0,1,-4,3)$, zero locus of ω_{λ} contains line $z=0$.

Observation: unlike resonance, equations defining \mathcal{S}^{1} depend on choice of matroid realization.

Example $((x+z)(2 x+z)(3 x+z)(y+z)(2 y+z)(3 y+z))$

Here,

$$
B=\left(\begin{array}{cccccc}
x+z & -2(2 x+z) & 3 x+z & 0 & 0 & 0 \\
0 & 0 & 0 & y+z & -2(2 y+z) & 3 y+z \\
* & * & & \cdots & & *
\end{array}\right)^{t}
$$

Consider this mod z :

$$
\bar{B}=\left(\begin{array}{cccccc}
x & -4 x & 3 x & 0 & 0 & 0 \\
0 & 0 & 0 & y & -4 y & 3 y \\
* & * & & \cdots & & *
\end{array}\right)^{t}
$$

Kernels are saturated, so for any λ in span of $\lambda_{1}=(1,-4,3,0,0,0)$, $\lambda_{2}=(0,0,0,1,-4,3)$, zero locus of ω_{λ} contains line $z=0$.

Observation: unlike resonance, equations defining \mathcal{S}^{1} depend on choice of matroid realization.

A more exotic example

Nevertheless, $\mathbb{P} \mathcal{S}^{1} \cong \mathbb{P}^{1}$ for each realization of the previous arrangement.

Example ("Ziegler arrangements")

All realizations: 4-dimensional. Realizations with six triple points on a conic: 3-dimensional. Call latter ones special. Special ones detected by Hilbert series of D(A) [Ziegler].

A more exotic example

Nevertheless, $\mathbb{P} \mathcal{S}^{1} \cong \mathbb{P}^{1}$ for each realization of the previous arrangement.

Example ("Ziegler arrangements")
Consider arrangements of 9 lines in \mathbb{P}^{2} with six triple points:

> All realizations: 4-dimensional. Realizations with six triple points on a conic: 3-dimensional. Call latter ones special. Special ones detected by Hilbert series of $D(\mathcal{A})$ [Ziegler].

A more exotic example

Nevertheless, $\mathbb{P} \mathcal{S}^{1} \cong \mathbb{P}^{1}$ for each realization of the previous arrangement.

Example ("Ziegler arrangements")
Consider arrangements of 9 lines in \mathbb{P}^{2} with six triple points:

All realizations: 4-dimensional. Realizations with six triple points on a conic: 3-dimensional. Call latter ones special. Special ones detected by Hilbert series of $D(\mathcal{A})$ [Ziegler].

A more exotic example

Nevertheless, $\mathbb{P} \mathcal{S}^{1} \cong \mathbb{P}^{1}$ for each realization of the previous arrangement.

Example ("Ziegler arrangements")

Consider arrangements of 9 lines in \mathbb{P}^{2} with six triple points:

All realizations: 4-dimensional. Realizations with six triple points on a conic: 3-dimensional. Call latter ones special. Special ones detected by Hilbert series of $D(\mathcal{A})$ [Ziegler].

As before, \mathcal{S}^{1} contains some \mathbb{P}^{1} 's coming from $\bar{\Sigma}_{\lambda}$'s which are projective lines.
More interesting: If \mathcal{A} is a special Ziegler arrangement, then there is
a $\lambda \in \mathbb{C}^{n}$, unique up to a scalar, for which $\bar{\Sigma}_{\lambda}$ is determined by the conic through the six triple points.

As before, \mathcal{S}^{1} contains some \mathbb{P}^{1} 's coming from $\bar{\Sigma}_{\lambda}$'s which are projective lines.
More interesting: If \mathcal{A} is a special Ziegler arrangement, then there is a $\lambda \in \mathbb{C}^{n}$, unique up to a scalar, for which $\bar{\Sigma}_{\lambda}$ is determined by the conic through the six triple points.

As before, \mathcal{S}^{1} contains some \mathbb{P}^{1} 's coming from $\bar{\Sigma}_{\lambda}$'s which are projective lines.
More interesting: If \mathcal{A} is a special Ziegler arrangement, then there is a $\lambda \in \mathbb{C}^{n}$, unique up to a scalar, for which $\bar{\Sigma}_{\lambda}$ is determined by the conic through the six triple points.

As before, \mathcal{S}^{1} contains some \mathbb{P}^{1} 's coming from $\bar{\Sigma}_{\lambda}$'s which are projective lines.
More interesting: If \mathcal{A} is a special Ziegler arrangement, then there is a $\lambda \in \mathbb{C}^{n}$, unique up to a scalar, for which $\bar{\Sigma}_{\lambda}$ is determined by the conic through the six triple points.

Conclusion: components of \mathcal{S}^{1} depend on choice of matroid realization.

Explicitly?

The Ziegler matroid realization is given by

$$
Q=x y z(x+y+z)\left(s_{1} x+z\right)\left(x+s_{2} y+z\right) f_{7}\left(s_{3} x+s_{3} y+z\right)\left(s_{4} x+y\right)
$$

where
$f_{7}=\left(s_{1} s_{3}-s_{3}+s_{1} s_{2} s_{4}+s_{3} s_{4}-s_{1} s_{3} s_{4}\right) x+s_{2}\left(s_{1}-s_{3}+s_{3} s_{4}\right) y+\left(s_{1}+s_{2} s_{4}-1\right) z$,
together with some open conditions. The six multiple points lie on a conic iff $s_{1}\left(1-s_{3}\right)=\left(s_{2}-1\right) s_{3} s_{4}$. In that case, let λ be any nonzero multiple of
$\left(s_{1}\left(s_{3}-1\right),-s_{1} s_{3},-s_{3} s_{4}, s_{3}, s_{1}-s_{1} s_{3}+s_{3} s_{4}, s_{3}\left(s_{1}-1\right), s_{3}-s_{1}-s_{3} s_{4}, s_{3}\left(s_{4}-1\right), s_{1}\right)$.
The critical set of the corresponding master function Φ_{λ} consists of the conic,

Explicitly?

The Ziegler matroid realization is given by

$$
Q=x y z(x+y+z)\left(s_{1} x+z\right)\left(x+s_{2} y+z\right) f_{7}\left(s_{3} x+s_{3} y+z\right)\left(s_{4} x+y\right)
$$

where
$f_{7}=\left(s_{1} s_{3}-s_{3}+s_{1} s_{2} s_{4}+s_{3} s_{4}-s_{1} s_{3} s_{4}\right) x+s_{2}\left(s_{1}-s_{3}+s_{3} s_{4}\right) y+\left(s_{1}+s_{2} s_{4}-1\right) z$,
together with some open conditions. The six multiple points lie on a conic iff $s_{1}\left(1-s_{3}\right)=\left(s_{2}-1\right) s_{3} s_{4}$. In that case, let λ be any nonzero multiple of

$$
\left(s_{1}\left(s_{3}-1\right),-s_{1} s_{3},-s_{3} s_{4}, s_{3}, s_{1}-s_{1} s_{3}+s_{3} s_{4}, s_{3}\left(s_{1}-1\right), s_{3}-s_{1}-s_{3} s_{4}, s_{3}\left(s_{4}-1\right), s_{1}\right)
$$

The critical set of the corresponding master function Φ_{λ} consists of the conic,

$$
\left(s_{3}-1\right) y z+s_{3} s_{4}\left(x^{2}+x y+x z\right)
$$

