Critical sets of master functions: resonance and logarithmic derivations

Graham Denham

Department of Mathematics University of Western Ontario

Sapporo MSJ-SI: 12 August 2009

Credits:

- D. Cohen, G. D., M. Falk, A. Varchenko, *Critical points and resonance of hyperplane arrangements*, arXiv:0907.0896v1
- American Institute of Mathematics SQuaREs program: H. Schenck, M. Schultze, M. Wakefield, U. Walther.

Credits:

- D. Cohen, G. D., M. Falk, A. Varchenko, *Critical points and resonance of hyperplane arrangements*, arXiv:0907.0896v1
- American Institute of Mathematics SQuaREs program: H. Schenck, M. Schultze, M. Wakefield, U. Walther.

Outline

- · History: master functions, zeroes of one-forms
- Geometry associated with critical sets:
 - logarithmic differential forms
 - another characterization of free arrangements
- Critical points and resonance
- The codimension of the critical set is not "combinatorial."

History

Definition (Master functions)

Let $R = \mathbb{C}[x_1, \ldots, x_\ell]$, and $f_1, \ldots, f_n \in R$ be linear forms. Let $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$. The master function $\Phi_{\lambda} = \Phi_{\lambda}(f_1, \ldots, f_n)$ is defined by:

$$\Phi_{\lambda} = \prod_{i=1}^{n} f_{i}^{\lambda_{i}}.$$

Question: describe solutions to $\nabla \Phi_{\lambda} = 0$. Some history:

- hypergeometric functions: Aomoto, Kita; Orlik, Terao; Mukhin, Scherbak, Varchenko; Damon; Silvotti.
- optimization (algebraic statistics): Catanese, Hoşten, Khetan, Sturmfels.

History

Definition (Master functions)

Let $R = \mathbb{C}[x_1, \ldots, x_\ell]$, and $f_1, \ldots, f_n \in R$ be linear forms. Let $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$. The master function $\Phi_{\lambda} = \Phi_{\lambda}(f_1, \ldots, f_n)$ is defined by:

$$\Phi_{\lambda} = \prod_{i=1}^{n} f_i^{\lambda_i}.$$

Question: describe solutions to $\nabla \Phi_{\lambda} = 0$. Some history:

- hypergeometric functions: Aomoto, Kita; Orlik, Terao; Mukhin, Scherbak, Varchenko; Damon; Silvotti.
- optimization (algebraic statistics): Catanese, Hoşten, Khetan, Sturmfels.

History

Definition (Master functions)

Let $R = \mathbb{C}[x_1, \ldots, x_\ell]$, and $f_1, \ldots, f_n \in R$ be linear forms. Let $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$. The master function $\Phi_{\lambda} = \Phi_{\lambda}(f_1, \ldots, f_n)$ is defined by:

$$\Phi_{\lambda} = \prod_{i=1}^{n} f_{i}^{\lambda_{i}}.$$

Question: describe solutions to $\nabla \Phi_{\lambda} = 0$. Some history:

- hypergeometric functions: Aomoto, Kita; Orlik, Terao; Mukhin, Scherbak, Varchenko; Damon; Silvotti.
- optimization (algebraic statistics): Catanese, Hoşten, Khetan, Sturmfels.

 \mathcal{A} will always be an essential, central arrangement of n hyperplanes in ℓ -dimensional affine space. Let

$$M = \mathbb{C}^{\ell} - \bigcup_{i=1}^{n} H_{i},$$
$$\mathbb{P}M = \mathbb{P}^{\ell-1} - \bigcup_{i} \overline{H}_{i}.$$

Then, for a point $\mathbf{x} \in \mathbb{C}^{\ell}$,

$$\nabla \Phi_{\lambda}(\mathbf{x}) = 0 \quad \Leftrightarrow \quad \nabla \log \Phi_{\lambda}(\mathbf{x}) = 0$$
$$\Leftrightarrow \quad \sum_{i=1}^{n} \lambda_{i} \frac{df_{i}}{f_{i}} \Big|_{\mathbf{x}} = 0.$$

 \mathcal{A} will always be an essential, central arrangement of n hyperplanes in ℓ -dimensional affine space. Let

$$M = \mathbb{C}^{\ell} - \bigcup_{i=1}^{n} H_{i},$$
$$\mathbb{P}M = \mathbb{P}^{\ell-1} - \bigcup_{i} \overline{H}_{i}.$$

Then, for a point $\mathbf{x} \in \mathbb{C}^{\ell}$,

$$\nabla \Phi_{\lambda}(\mathbf{x}) = \mathbf{0} \quad \Leftrightarrow \quad \nabla \log \Phi_{\lambda}(\mathbf{x}) = \mathbf{0}$$
$$\Leftrightarrow \quad \sum_{i=1}^{n} \lambda_{i} \frac{df_{i}}{f_{i}}\Big|_{\mathbf{x}} = \mathbf{0}.$$

 \mathcal{A} will always be an essential, central arrangement of n hyperplanes in ℓ -dimensional affine space. Let

$$M = \mathbb{C}^{\ell} - \bigcup_{i=1}^{n} H_{i},$$
$$\mathbb{P}M = \mathbb{P}^{\ell-1} - \bigcup_{i} \overline{H}_{i}.$$

Then, for a point $\mathbf{x} \in \mathbb{C}^{\ell}$,

$$\begin{aligned} \nabla \Phi_{\lambda}(\mathbf{x}) &= \mathbf{0} \quad \Leftrightarrow \quad \nabla \log \Phi_{\lambda}(\mathbf{x}) = \mathbf{0} \\ \Leftrightarrow \quad \sum_{i=1}^{n} \lambda_{i} \frac{\mathrm{d}f_{i}}{f_{i}} \Big|_{\mathbf{x}} = \mathbf{0}. \end{aligned}$$

 \mathcal{A} will always be an essential, central arrangement of n hyperplanes in ℓ -dimensional affine space. Let

$$M = \mathbb{C}^{\ell} - \bigcup_{i=1}^{n} H_{i},$$
$$\mathbb{P}M = \mathbb{P}^{\ell-1} - \bigcup_{i} \overline{H}_{i}.$$

Then, for a point $\mathbf{x} \in \mathbb{C}^{\ell}$,

$$abla \Phi_{\lambda}(\mathbf{x}) = \mathbf{0} \quad \Leftrightarrow \quad
abla \log \Phi_{\lambda}(\mathbf{x}) = \mathbf{0}$$

 $\Leftrightarrow \quad \sum_{i=1}^{n} \lambda_{i} \frac{df_{i}}{f_{i}}\Big|_{\mathbf{x}} = \mathbf{0}.$

Example (from $\mathfrak{s}I_2$ KZ-equations)

Consider the master function

$$\Phi_{\ell,n} = \prod_{i=1}^{\ell} \prod_{j=1}^{n} (x_i - z_j x_0)^{m_j/\kappa} \prod_{1 \le p < q \le \ell} (x_p - x_q)^{2/\kappa},$$

where $\kappa \in \mathbb{C}^*$, $m_1, \ldots, m_n \in \mathbb{Z}_{\geq 0}$, and $z_1, \ldots, z_n \in \mathbb{C}$. Varchenko: isolated critical points \rightsquigarrow commuting Hamiltonians in Gaudin model for Bethe Ansatz.

Resonance

The smallest example

Let $\omega_{\lambda} := d \log \Phi_{\lambda}$.

Example

Consider the master function

$$\Phi_{\lambda} = \mathbf{X}^{\lambda_1} \mathbf{Y}^{\lambda_2} (\mathbf{X} - \mathbf{Y})^{\lambda_3}.$$

Then

$$\omega_{\lambda} = \left(\frac{\lambda_1}{x} + \frac{\lambda_3}{x - y}\right) \mathrm{d}x + \left(\frac{\lambda_2}{y} - \frac{\lambda_3}{x - y}\right) \mathrm{d}y.$$

So $\omega_{\lambda} = 0$ when

$$\frac{\lambda_1}{x} + \frac{\lambda_3}{x - y} = 0,$$
$$\frac{\lambda_2}{y} - \frac{\lambda_3}{x - y} = 0,$$

equivalent (on *M*) to $\lambda_1 + \lambda_2 + \lambda_3 = 0$, $\lambda_1 y + \lambda_2 x = 0$.

- Let Σ_λ = Σ_λ(A) = {x ∈ M(A): ω_λ(x) = 0} denote the critical set for a choice of weights λ.
- Equations are homogeneous: let $\mathbb{P}\Sigma_{\lambda}$ be the quotient in $\mathbb{P}^{\ell-1}$.

- Let Σ_λ = Σ_λ(A) = {x ∈ M(A): ω_λ(x) = 0} denote the critical set for a choice of weights λ.
- Equations are homogeneous: let $\mathbb{P}\Sigma_{\lambda}$ be the quotient in $\mathbb{P}^{\ell-1}$.

- Let Σ_λ = Σ_λ(A) = {**x** ∈ M(A): ω_λ(**x**) = 0} denote the critical set for a choice of weights λ.
- Equations are homogeneous: let PΣ_λ be the quotient in P^{ℓ-1}.

- Let Σ_λ = Σ_λ(A) = {**x** ∈ M(A): ω_λ(**x**) = 0} denote the critical set for a choice of weights λ.
- Equations are homogeneous: let PΣ_λ be the quotient in P^{ℓ-1}.

The (projective) critical set is usually isolated

Theorem (Varchenko/ \mathbb{R} ; Orlik-Terao/ \mathbb{C} (1995))

For any arrangement A, there is an open set $Y \subseteq \mathbb{C}^n$ such that: for all $\lambda \in Y$, $\mathbb{P}\Sigma_{\lambda}$ is isolated and nondegenerate. Moreover,

$$|\mathbb{P}\Sigma_{\lambda}| = \beta(\mathcal{A}) = (\widetilde{\chi}(\mathbb{P}M)).$$

A universal construction

Fixing the arrangement and allowing the weights to vary has good properties. Let $\Sigma = \Sigma(A)$ be the variety of all solutions to $\omega_{\lambda} = 0$ in $M \times \mathbb{C}^n$. One may project $\Sigma \subseteq M \times \mathbb{C}^n$ to either factor.

Theorem (Orlik-Terao '95)

The projection $\Sigma \to M$ gives Σ the structure of a rank $n - \ell$ vector bundle on M. In particular, Σ is smooth and has dimension n.

In equations: let a_1, \ldots, a_n be coordinates in \mathbb{C}^n , and

$$\omega_{\underline{\mathbf{a}}} = \sum_{i=1}^{n} \mathbf{a}_i \mathrm{d}\mathbf{f}_i / \mathbf{f}_i.$$

Then $\Sigma = V(I')$, where

$$I' = (\langle \frac{\partial}{\partial x_i}, \omega_{\underline{a}} \rangle \colon 1 \le i \le \ell),$$

where $\langle \cdot \rangle$ denotes the duality pairing on the (co)tangent bundle of *M*.

Resonance

Notation (Logarithmic derivations, forms)

- Let D(A) consist of those derivations $\theta \colon R \to R$ for which $\theta(f_i) \in (f_i)$ for all $i, 1 \le i \le n$.
- Ω^p(*A): meromorphic p-forms, with (arbitrary) poles on the hyperplanes, 1 ≤ p ≤ ℓ.
- $\Omega^{p}(\mathcal{A})$: logarithmic p-forms: $\eta \in \Omega^{p}(*\mathcal{A})$ for which $Q\eta$ and $dQ/Q \wedge \eta$ are regular p-forms.

Recall that D(A) and $\Omega^1(A)$ are dual to each other. For certain arrangements, D(A) is a free *R*-module. (*A* is a "free arrangement.")

Conjecture (Terao)

Resonance

Notation (Logarithmic derivations, forms)

- Let D(A) consist of those derivations $\theta \colon R \to R$ for which $\theta(f_i) \in (f_i)$ for all $i, 1 \le i \le n$.
- Ω^p(*A): meromorphic p-forms, with (arbitrary) poles on the hyperplanes, 1 ≤ p ≤ ℓ.
- $\Omega^{p}(\mathcal{A})$: logarithmic p-forms: $\eta \in \Omega^{p}(*\mathcal{A})$ for which $Q\eta$ and $dQ/Q \wedge \eta$ are regular p-forms.

Recall that D(A) and $\Omega^1(A)$ are dual to each other. For certain arrangements, D(A) is a free *R*-module. (*A* is a "free arrangement.")

Conjecture (Terao)

Resonance

Notation (Logarithmic derivations, forms)

- Let D(A) consist of those derivations $\theta \colon R \to R$ for which $\theta(f_i) \in (f_i)$ for all $i, 1 \le i \le n$.
- Ω^p(*A): meromorphic p-forms, with (arbitrary) poles on the hyperplanes, 1 ≤ p ≤ ℓ.
- Ω^p(A): logarithmic p-forms: η ∈ Ω^p(*A) for which Qη and dQ/Q ∧ η are regular p-forms.

Recall that D(A) and $\Omega^1(A)$ are dual to each other. For certain arrangements, D(A) is a free *R*-module. (*A* is a "free arrangement.")

Conjecture (Terao)

Resonance

Notation (Logarithmic derivations, forms)

- Let D(A) consist of those derivations $\theta \colon R \to R$ for which $\theta(f_i) \in (f_i)$ for all $i, 1 \le i \le n$.
- Ω^p(*A): meromorphic p-forms, with (arbitrary) poles on the hyperplanes, 1 ≤ p ≤ ℓ.
- Ω^p(A): logarithmic p-forms: η ∈ Ω^p(*A) for which Qη and dQ/Q ∧ η are regular p-forms.

Recall that D(A) and $\Omega^1(A)$ are dual to each other. For certain arrangements, D(A) is a free *R*-module. (*A* is a "free arrangement.")

Conjecture (Terao)

Resonance

Notation (Logarithmic derivations, forms)

- Let D(A) consist of those derivations $\theta \colon R \to R$ for which $\theta(f_i) \in (f_i)$ for all $i, 1 \le i \le n$.
- Ω^p(*A): meromorphic p-forms, with (arbitrary) poles on the hyperplanes, 1 ≤ p ≤ ℓ.
- Ω^p(A): logarithmic p-forms: η ∈ Ω^p(*A) for which Qη and dQ/Q ∧ η are regular p-forms.

Recall that D(A) and $\Omega^1(A)$ are dual to each other. For certain arrangements, D(A) is a free *R*-module. (*A* is a "free arrangement.")

Conjecture (Terao)

Let

$$I = (\langle \theta, \omega_{\underline{a}} \rangle : \theta \in D(\mathcal{A})),$$

a homogeneous ideal of R.

(Compare: $I' = (\langle \partial / \partial x_i, \omega_{\underline{a}} \rangle : 1 \le i \le n)$, and $\Sigma = V(I')$.)

Proposition

For any arrangement \mathcal{A} , $V(I) = \overline{\Sigma} \subseteq \mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Main idea: show I = (QI') : Q.

Example (xy(x - y) again)

D(A) is generated by Euler derivation θ_1 and $\theta_2 = x^2 \partial/\partial x + y^2 \partial/\partial y$, so

$$I = (a_1 + a_2 + a_3, a_1y + a_2x).$$

Let

$$I = (\langle \theta, \omega_{\underline{a}} \rangle : \theta \in D(\mathcal{A})),$$

a homogeneous ideal of R.

(Compare: $I' = (\langle \partial / \partial x_i, \omega_{\underline{a}} \rangle : 1 \le i \le n)$, and $\Sigma = V(I')$.)

Proposition

For any arrangement \mathcal{A} , $V(I) = \overline{\Sigma} \subseteq \mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Main idea: show I = (QI') : Q.

Example (xy(x - y) again)

D(A) is generated by Euler derivation θ_1 and $\theta_2 = x^2 \partial/\partial x + y^2 \partial/\partial y$, so

$$I = (a_1 + a_2 + a_3, a_1y + a_2x).$$

Let

$$I = (\langle \theta, \omega_{\underline{a}} \rangle : \theta \in D(\mathcal{A})),$$

a homogeneous ideal of R.

(Compare: $I' = (\langle \partial / \partial x_i, \omega_{\underline{a}} \rangle : 1 \le i \le n)$, and $\Sigma = V(I')$.)

Proposition

For any arrangement \mathcal{A} , $V(I) = \overline{\Sigma} \subseteq \mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Main idea: show I = (QI') : Q.

Example (xy(x - y) again)

D(A) is generated by Euler derivation θ_1 and $\theta_2 = x^2 \partial/\partial x + y^2 \partial/\partial y$, so

$$I = (a_1 + a_2 + a_3, a_1y + a_2x).$$

Let

$$I = (\langle \theta, \omega_{\underline{a}} \rangle : \theta \in D(\mathcal{A})),$$

a homogeneous ideal of R.

(Compare: $I' = (\langle \partial / \partial x_i, \omega_{\underline{a}} \rangle : 1 \le i \le n)$, and $\Sigma = V(I')$.)

Proposition

For any arrangement \mathcal{A} , $V(I) = \overline{\Sigma} \subseteq \mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Main idea: show I = (QI') : Q.

Example (xy(x - y) again)

D(A) is generated by Euler derivation θ_1 and $\theta_2 = x^2 \partial / \partial x + y^2 \partial / \partial y$, so

$$I = (a_1 + a_2 + a_3, a_1y + a_2x).$$

Remark

 $\overline{\Sigma}(A)$ is not smooth. The components of $\overline{\Sigma} - \Sigma$ are indexed by irreducible subspaces in the intersection lattice. (Use de Concini-Procesi wonderful compactification.)

Example (A_3)

Consider arrangement defined by Q = xyz(x - y)(x - z)(y - z). Let $\Phi_1 = (x(y - z))/(z(x - y)), \ \Phi_2 = (y(x - z))(z(x - y)).$ Let $\Phi_{\lambda(a,b)} = \Phi_1^a \Phi_2^b$. From this morning's argument we get

$$\omega_{\lambda} = (ay(x-z) + bx(y-z))\eta,$$

Example (A_3)

Consider arrangement defined by Q = xyz(x - y)(x - z)(y - z). Let $\Phi_1 = (x(y - z))/(z(x - y)), \ \Phi_2 = (y(x - z))(z(x - y)).$ Let $\Phi_{\lambda(a,b)} = \Phi_1^a \Phi_2^b$. From this morning's argument we get

$$\omega_{\lambda} = (ay(x-z) + bx(y-z))\eta,$$

Example (A_3)

Consider arrangement defined by Q = xyz(x - y)(x - z)(y - z). Let $\Phi_1 = (x(y - z))/(z(x - y)), \ \Phi_2 = (y(x - z))(z(x - y)).$ Let $\Phi_{\lambda(a,b)} = \Phi_1^a \Phi_2^b$. From this morning's argument we get

$$\omega_{\lambda} = (ay(x-z) + bx(y-z))\eta,$$

Example (A₃)

Consider arrangement defined by Q = xyz(x - y)(x - z)(y - z). Let $\Phi_1 = (x(y - z))/(z(x - y)), \ \Phi_2 = (y(x - z))(z(x - y)).$ Let $\Phi_{\lambda(a,b)} = \Phi_1^a \Phi_2^b$. From this morning's argument we get

$$\omega_{\lambda} = (ay(x-z) + bx(y-z))\eta,$$

Example (A_3 , continued)

On the other hand, $\overline{\Sigma}_{\lambda(1,0)}$ is given by y(x-z) = 0, a union of lines.

So: $\overline{\Sigma}_{\lambda}$ is not closure of Σ_{λ} .

Another characterization of freeness

Since Σ is smooth, $\overline{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

 $\overline{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is *tame* if $pdim_R\Omega^p(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$.

(Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If A is tame, then $\overline{\Sigma}$ is arithmetically Cohen-Macaulay.

```
(C.I. \Rightarrow Gorenstein \Rightarrow a.C.M.)
```

- If $\overline{\Sigma}$ is arithmetically Cohen-Macaulay, is \mathcal{A} tame?
- Are there (nonfree) arrangements $\mathcal A$ for which $\overline{\Sigma}$ is Gorenstein?

Another characterization of freeness

Since Σ is smooth, $\overline{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

 $\overline{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is *tame* if $\operatorname{pdim}_{R}\Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$.

(Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If A is tame, then $\overline{\Sigma}$ is arithmetically Cohen-Macaulay.

```
(C.I. \Rightarrow Gorenstein \Rightarrow a.C.M.)
```

- If $\overline{\Sigma}$ is arithmetically Cohen-Macaulay, is \mathcal{A} tame?
- Are there (nonfree) arrangements \mathcal{A} for which $\overline{\Sigma}$ is Gorenstein?
Since Σ is smooth, $\overline{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

 $\overline{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is *tame* if $\operatorname{pdim}_{R}\Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$.

(Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If A is tame, then $\overline{\Sigma}$ is arithmetically Cohen-Macaulay.

- If $\overline{\Sigma}$ is arithmetically Cohen-Macaulay, is \mathcal{A} tame?
- Are there (nonfree) arrangements A for which $\overline{\Sigma}$ is Gorenstein?

Since Σ is smooth, $\overline{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

 $\overline{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is *tame* if $\operatorname{pdim}_{R}\Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$.

(Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If A is tame, then $\overline{\Sigma}$ is arithmetically Cohen-Macaulay.

- If $\overline{\Sigma}$ is arithmetically Cohen-Macaulay, is \mathcal{A} tame?
- Are there (nonfree) arrangements A for which $\overline{\Sigma}$ is Gorenstein?

Since Σ is smooth, $\overline{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

 $\overline{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is *tame* if $\operatorname{pdim}_{R}\Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$.

(Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If A is tame, then $\overline{\Sigma}$ is arithmetically Cohen-Macaulay.

- If $\overline{\Sigma}$ is arithmetically Cohen-Macaulay, is \mathcal{A} tame?
- Are there (nonfree) arrangements \mathcal{A} for which $\overline{\Sigma}$ is Gorenstein?

Since Σ is smooth, $\overline{\Sigma}$ is irreducible of codimension ℓ in $\mathbb{C}^{\ell} \times \mathbb{C}^{n}$.

Theorem (CDFV'09)

 $\overline{\Sigma}(\mathcal{A})$ is a complete intersection if and only if \mathcal{A} is free.

Definition

Say an arrangement \mathcal{A} is *tame* if $\operatorname{pdim}_{R}\Omega^{p}(\mathcal{A}) \leq p$ for $1 \leq p \leq \ell$.

(Includes rank-3 arrangements, generic and free arrangements.)

Theorem (CDFV'09)

If A is tame, then $\overline{\Sigma}$ is arithmetically Cohen-Macaulay.

- If $\overline{\Sigma}$ is arithmetically Cohen-Macaulay, is \mathcal{A} tame?
- Are there (nonfree) arrangements ${\mathcal A}$ for which $\overline{\Sigma}$ is Gorenstein?

Example

Let ${\mathcal A}$ be arrangement of 15 hyperplanes in ${\mathbb C}^4$ dual to the points

 $\{(b_1, b_2, b_3, b_4) \colon b_i \in \{0, 1\}, \text{ not all zero}\}.$

Then ${\cal A}$ is not tame (pdim $\Omega^1=$ 2) [Solomon-Terao,'87] and $\overline{\Sigma}$ is not a.C.M.

• Converse unknown.

Example

Let ${\mathcal A}$ be arrangement of 15 hyperplanes in ${\mathbb C}^4$ dual to the points

 $\{(b_1, b_2, b_3, b_4) \colon b_i \in \{0, 1\}, \text{ not all zero}\}.$

Then ${\cal A}$ is not tame (pdim $\Omega^1=$ 2) [Solomon-Terao,'87] and $\overline{\Sigma}$ is not a.C.M.

• Converse unknown.

Resonance varieties

Let $A = H^{\cdot}(\mathbb{P}M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A} . Identify $A^{1} = \{\lambda \in \mathbb{C}^{n} : \sum_{i=1}^{n} \lambda_{i} = 0\}.$

Definition

The *p*th resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

 $\mathcal{R}^p(\mathcal{A}) = \{\omega_\lambda \in \mathcal{A}^1 : H^p(\mathcal{A}, \omega_\lambda \wedge -) \neq \mathbf{0}\}.$

Then [Eisenbud-Popescu-Yuzvinsky'03]

$$0 = \mathcal{R}^0 \subseteq \mathcal{R}^1 \subseteq \mathcal{R}^2 \subseteq \cdots \subseteq \mathcal{R}^{\ell-1} = A^1.$$

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2} = \emptyset$, (but $Y \subseteq A^1$). Recall

 $\lambda \in Y \Rightarrow \operatorname{codim} \Sigma_{\lambda} = \ell - 1.$

Resonance varieties

Let $A = H^{\cdot}(\mathbb{P}M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A} . Identify $A^{1} = \{\lambda \in \mathbb{C}^{n} : \sum_{i=1}^{n} \lambda_{i} = 0\}.$

Definition

The *p*th resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

$$\mathcal{R}^p(\mathcal{A}) = \{\omega_\lambda \in \mathcal{A}^1 : H^p(\mathcal{A}, \omega_\lambda \wedge -) \neq \mathbf{0}\}.$$

Then [Eisenbud-Popescu-Yuzvinsky'03]

$$0 = \mathcal{R}^0 \subseteq \mathcal{R}^1 \subseteq \mathcal{R}^2 \subseteq \cdots \subseteq \mathcal{R}^{\ell-1} = A^1.$$

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2} = \emptyset$, (but $Y \subseteq A^1$). Recall

 $\lambda \in Y \Rightarrow \operatorname{codim} \Sigma_{\lambda} = \ell - 1.$

Resonance varieties

Let $A = H^{\cdot}(\mathbb{P}M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A} . Identify $A^{1} = \{\lambda \in \mathbb{C}^{n} : \sum_{i=1}^{n} \lambda_{i} = 0\}.$

Definition

The *p*th resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

$$\mathcal{R}^p(\mathcal{A}) = \{\omega_\lambda \in \mathcal{A}^1 \colon H^p(\mathcal{A}, \omega_\lambda \wedge -)
eq \mathbf{0}\}.$$

Then [Eisenbud-Popescu-Yuzvinsky'03]

$$0 = \mathcal{R}^0 \subseteq \mathcal{R}^1 \subseteq \mathcal{R}^2 \subseteq \cdots \subseteq \mathcal{R}^{\ell-1} = A^1.$$

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2} = \emptyset$, (but $Y \subseteq A^1$). Recall

 $\lambda \in Y \Rightarrow \operatorname{codim} \Sigma_{\lambda} = \ell - 1.$

Resonance varieties

Let $A = H^{\cdot}(\mathbb{P}M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A} . Identify $A^{1} = \{\lambda \in \mathbb{C}^{n} : \sum_{i=1}^{n} \lambda_{i} = 0\}.$

Definition

The *p*th resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

$$\mathcal{R}^p(\mathcal{A}) = \{\omega_\lambda \in \mathcal{A}^1 \colon H^p(\mathcal{A}, \omega_\lambda \wedge -)
eq \mathbf{0}\}.$$

Then [Eisenbud-Popescu-Yuzvinsky'03]

$$0 = \mathcal{R}^0 \subseteq \mathcal{R}^1 \subseteq \mathcal{R}^2 \subseteq \cdots \subseteq \mathcal{R}^{\ell-1} = A^1.$$

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2} = \emptyset$, (but $Y \subseteq A^1$). Recall

$$\lambda \in Y \Rightarrow \operatorname{codim} \Sigma_{\lambda} = \ell - 1.$$

Resonance varieties

Let $A = H^{\cdot}(\mathbb{P}M, \mathbb{Z})$, the (deconed) Orlik-Solomon algebra of \mathcal{A} . Identify $A^{1} = \{\lambda \in \mathbb{C}^{n} : \sum_{i=1}^{n} \lambda_{i} = 0\}.$

Definition

The *p*th resonance variety $\mathcal{R}^{p}(\mathcal{A})$ of \mathcal{A} :

$$\mathcal{R}^p(\mathcal{A}) = \{\omega_\lambda \in \mathcal{A}^1 \colon H^p(\mathcal{A}, \omega_\lambda \wedge -) \neq \mathbf{0}\}.$$

Then [Eisenbud-Popescu-Yuzvinsky'03]

$$0 = \mathcal{R}^0 \subseteq \mathcal{R}^1 \subseteq \mathcal{R}^2 \subseteq \cdots \subseteq \mathcal{R}^{\ell-1} = A^1.$$

Orlik-Terao's set $Y \cap \mathcal{R}^{\ell-2} = \emptyset$, (but $Y \subseteq A^1$). Recall

$$\lambda \in Y \Rightarrow \operatorname{codim} \Sigma_{\lambda} = \ell - 1.$$

Master functions with "large" critical sets: let

$$\mathcal{S}^{p}(\mathcal{A}) = \{\lambda \in \mathcal{A}^{1} : \operatorname{codim} \overline{\Sigma}_{\lambda} \leq p\}.$$

(Note
$$\overline{\Sigma}_{c\lambda} = \overline{\Sigma}_{\lambda}$$
 for $c \neq 0$.)
Then

$$0 = \mathcal{S}^0 \subseteq \mathcal{S}^1 \subseteq \mathcal{S}^2 \subseteq \cdots \subseteq \mathcal{S}^{\ell-1} = \mathcal{A}^1.$$

Compare with resonance varieties?

Positive results:

- [Scherbak, Varchenko, '03]: critical set of discriminental master function
- [Cohen, Varchenko '03]: curves in critical set \leftrightarrow weights in $\mathcal{R}^{\ell-2}$.

Master functions with "large" critical sets: let

$$\mathcal{S}^{p}(\mathcal{A}) = \{\lambda \in \mathcal{A}^{1} : \operatorname{codim} \overline{\Sigma}_{\lambda} \leq p\}.$$

(Note
$$\overline{\Sigma}_{c\lambda} = \overline{\Sigma}_{\lambda}$$
 for $c \neq 0$.)

$$0 = \mathcal{S}^0 \subseteq \mathcal{S}^1 \subseteq \mathcal{S}^2 \subseteq \cdots \subseteq \mathcal{S}^{\ell-1} = \mathcal{A}^1.$$

- - [Scherbak, Varchenko, '03]: critical set of discriminental master
 - [Cohen, Varchenko '03]: curves in critical set \leftrightarrow weights in $\mathcal{R}^{\ell-2}$.

Master functions with "large" critical sets: let

$$\mathcal{S}^{p}(\mathcal{A}) = \{\lambda \in \mathcal{A}^{1} : \operatorname{codim} \overline{\Sigma}_{\lambda} \leq p\}.$$

(Note
$$\overline{\Sigma}_{c\lambda} = \overline{\Sigma}_{\lambda}$$
 for $c \neq 0$.)
Then

$$0 = \mathcal{S}^0 \subseteq \mathcal{S}^1 \subseteq \mathcal{S}^2 \subseteq \cdots \subseteq \mathcal{S}^{\ell-1} = A^1.$$

Compare with resonance varieties?

Positive results:

- [Scherbak, Varchenko, '03]: critical set of discriminental master function
- [Cohen, Varchenko '03]: curves in critical set \leftrightarrow weights in $\mathcal{R}^{\ell-2}$.

Master functions with "large" critical sets: let

$$\mathcal{S}^{p}(\mathcal{A}) = \{\lambda \in \mathcal{A}^{1} : \operatorname{codim} \overline{\Sigma}_{\lambda} \leq p\}.$$

(Note
$$\overline{\Sigma}_{c\lambda} = \overline{\Sigma}_{\lambda}$$
 for $c \neq 0$.)
Then

$$0=\mathcal{S}^0\subseteq \mathcal{S}^1\subseteq \mathcal{S}^2\subseteq \cdots\subseteq \mathcal{S}^{\ell-1}=A^1.$$

Compare with resonance varieties? Positive results:

- [Scherbak, Varchenko, '03]: critical set of discriminental master function
- [Cohen, Varchenko '03]: curves in critical set \leftrightarrow weights in $\mathcal{R}^{\ell-2}$.

A heuristic

Suppose that $\omega_{\lambda} \in \mathcal{R}^{1}(\mathcal{A})$. Then $\exists \eta \in \mathcal{A}^{1}$ for which

$$\omega_{\lambda} \wedge \eta = \mathbf{0},\tag{1}$$

but $\eta \notin \mathbb{C} \cdot \omega_{\lambda}$. But (1) is true on the level of forms, so $\exists f, g$ polynomials for which

$$egin{array}{rcl} f \omega_\lambda &=& oldsymbol{g} \eta; \ \omega_\lambda &=& oldsymbol{g} / oldsymbol{f} \cdot \eta. \end{array}$$

So $\Sigma_{\lambda} \supseteq V(g)$. (So, codimension 1.)

Resonance \Rightarrow high-dimensional critical sets

Theorem (CDFV'09)

Let \mathcal{A} be an arrangement. Then $\mathcal{R}^1(\mathcal{A}) \subseteq \mathcal{S}^1(\mathcal{A})$.

- If \mathcal{A} is tame, then additionally $\mathcal{R}^2 \subseteq \mathcal{S}^2$.
- If \mathcal{A} is free, then $\mathcal{R}^p \subseteq \mathcal{S}^p$ for all p.

Methods:

• Complex of meromorphic forms resolves defining ideal of $\Sigma(\mathcal{A})$:

$$0 \to \Omega^0(*\mathcal{A}) \stackrel{\omega\underline{a}}{\to} \Omega^1(*\mathcal{A}) \stackrel{\omega\underline{a}}{\to} \cdots \stackrel{\omega\underline{a}}{\to} \Omega^\ell(*\mathcal{A}) \to S_{\mathcal{Q}}/l' \to 0,$$

where *S* is polynomial ring in $\ell + n$ variables (coordinates and parameters).

• The complex is self-dual, so

$$H^{p}(\Omega^{\cdot}(*\mathcal{A}),\omega_{\lambda}) \cong \operatorname{Ext}_{\mathcal{S}_{Q}}^{p}(\mathcal{S}_{Q}/I',(\mathcal{R}_{\lambda})_{Q}),$$

and codim of Σ_{λ} is least *p* for which $H^{p}(\Omega^{\cdot}(*\mathcal{A}), \omega_{\lambda}) \neq 0$.

Resonance \Rightarrow high-dimensional critical sets

Theorem (CDFV'09)

Let \mathcal{A} be an arrangement. Then $\mathcal{R}^1(\mathcal{A}) \subseteq \mathcal{S}^1(\mathcal{A})$.

- If \mathcal{A} is tame, then additionally $\mathcal{R}^2 \subseteq \mathcal{S}^2$.
- If \mathcal{A} is free, then $\mathcal{R}^p \subseteq \mathcal{S}^p$ for all p.

Methods:

Complex of meromorphic forms resolves defining ideal of Σ(A):

$$0 \to \Omega^0(*\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \Omega^1(*\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \cdots \stackrel{\omega \underline{a}}{\to} \Omega^\ell(*\mathcal{A}) \to \mathcal{S}_{\mathcal{Q}}/I' \to 0,$$

where *S* is polynomial ring in $\ell + n$ variables (coordinates and parameters).

• The complex is self-dual, so

$$H^{p}(\Omega^{\cdot}(*\mathcal{A}),\omega_{\lambda}) \cong \operatorname{Ext}_{S_{Q}}^{p}(S_{Q}/I',(R_{\lambda})_{Q}),$$

and codim of Σ_{λ} is least *p* for which $H^{p}(\Omega^{\cdot}(*\mathcal{A}), \omega_{\lambda}) \neq 0$.

Theorem (CDFV'09)

Let \mathcal{A} be an arrangement. Then $\mathcal{R}^1(\mathcal{A}) \subseteq \mathcal{S}^1(\mathcal{A})$.

- If \mathcal{A} is tame, then additionally $\mathcal{R}^2 \subseteq \mathcal{S}^2$.
- If \mathcal{A} is free, then $\mathcal{R}^p \subseteq \mathcal{S}^p$ for all p.

Methods:

Complex of meromorphic forms resolves defining ideal of Σ(A):

$$0 \to \Omega^0(*\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \Omega^1(*\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \cdots \stackrel{\omega \underline{a}}{\to} \Omega^\ell(*\mathcal{A}) \to \mathcal{S}_Q/I' \to 0,$$

where *S* is polynomial ring in $\ell + n$ variables (coordinates and parameters).

• The complex is self-dual, so

$$H^{p}(\Omega^{\cdot}(*\mathcal{A}),\omega_{\lambda})\cong \mathsf{Ext}^{p}_{\mathcal{S}_{Q}}(\mathcal{S}_{Q}/I',(\mathcal{R}_{\lambda})_{Q}),$$

and codim of Σ_{λ} is least *p* for which $H^{p}(\Omega^{\cdot}(*A), \omega_{\lambda}) \neq 0$.

methods, continued

• Now consider complex of logarithmic forms,

$$0 \to \Omega^{0}(\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \cdots \stackrel{\omega \underline{a}}{\to} \Omega^{\ell-1}(\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \Omega^{\ell}(\mathcal{A}) \to S/I \to 0.$$
 (2)

- If A is free, this is a free resolution of defining ideal of Σ(A) (Koszul complex).
- If A is tame, (2) is exact. (In general?)
- Conclude

$$H^{p}(\Omega^{\cdot}(\mathcal{A}), \omega_{\lambda}) \cong \operatorname{Tor}_{\ell-p}^{S}(S/I, R_{\lambda}),$$

- Show (A[·], ω_λ) → (Ω[·](A), d + ω_λ) is monomorphism in cohomology via [Schechtman-Varchenko'91].
- If \mathcal{A} is tame, $(\mathcal{A}^{\cdot}, \omega_{\lambda}) \rightarrow (\Omega^{\cdot}(\mathcal{A}), d + \varepsilon \omega_{\lambda})$ is quasiiso. for generic $\varepsilon \in \mathbb{C}^*$, via [Wiens-Yuzvinsky'97] and [Farber'01].
- Conclude $H^{p}(A^{\cdot}, \omega_{\lambda}) \neq 0 \Rightarrow H^{p}(\Omega^{\cdot}(\mathcal{A}), \omega_{\lambda}) \neq 0.$

methods, continued

• Now consider complex of logarithmic forms,

$$0 \to \Omega^{0}(\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \cdots \stackrel{\omega \underline{a}}{\to} \Omega^{\ell-1}(\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \Omega^{\ell}(\mathcal{A}) \to S/I \to 0.$$
 (2)

- If A is free, this is a free resolution of defining ideal of Σ(A) (Koszul complex).
- If A is tame, (2) is exact. (In general?)
- Conclude

$$H^{p}(\Omega^{\cdot}(\mathcal{A}), \omega_{\lambda}) \cong \operatorname{Tor}_{\ell-p}^{S}(S/I, R_{\lambda}),$$

- Show (A[·], ω_λ) → (Ω[·](A), d + ω_λ) is monomorphism in cohomology via [Schechtman-Varchenko'91].
- If \mathcal{A} is tame, $(\mathcal{A}^{\cdot}, \omega_{\lambda}) \rightarrow (\Omega^{\cdot}(\mathcal{A}), d + \varepsilon \omega_{\lambda})$ is quasiiso. for generic $\varepsilon \in \mathbb{C}^*$, via [Wiens-Yuzvinsky'97] and [Farber'01].
- Conclude $H^{p}(A^{\cdot}, \omega_{\lambda}) \neq 0 \Rightarrow H^{p}(\Omega^{\cdot}(\mathcal{A}), \omega_{\lambda}) \neq 0.$

methods, continued

• Now consider complex of logarithmic forms,

$$0 \to \Omega^{0}(\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \cdots \stackrel{\omega \underline{a}}{\to} \Omega^{\ell-1}(\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \Omega^{\ell}(\mathcal{A}) \to S/I \to 0.$$
 (2)

- If A is free, this is a free resolution of defining ideal of Σ(A) (Koszul complex).
- If A is tame, (2) is exact. (In general?)
- Conclude

$$H^{p}(\Omega^{\cdot}(\mathcal{A}), \omega_{\lambda}) \cong \operatorname{Tor}_{\ell-p}^{S}(S/I, R_{\lambda}),$$

- Show (A[·], ω_λ) → (Ω[·](A), d + ω_λ) is monomorphism in cohomology via [Schechtman-Varchenko'91].
- If \mathcal{A} is tame, $(\mathcal{A}^{\cdot}, \omega_{\lambda}) \rightarrow (\Omega^{\cdot}(\mathcal{A}), d + \varepsilon \omega_{\lambda})$ is quasiiso. for generic $\varepsilon \in \mathbb{C}^*$, via [Wiens-Yuzvinsky'97] and [Farber'01].
- Conclude $H^{p}(A^{\cdot}, \omega_{\lambda}) \neq 0 \Rightarrow H^{p}(\Omega^{\cdot}(\mathcal{A}), \omega_{\lambda}) \neq 0.$

methods, continued

• Now consider complex of logarithmic forms,

$$0 \to \Omega^{0}(\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \cdots \stackrel{\omega \underline{a}}{\to} \Omega^{\ell-1}(\mathcal{A}) \stackrel{\omega \underline{a}}{\to} \Omega^{\ell}(\mathcal{A}) \to S/I \to 0.$$
 (2)

- If A is free, this is a free resolution of defining ideal of Σ(A) (Koszul complex).
- If A is tame, (2) is exact. (In general?)
- Conclude

$$H^{p}(\Omega^{\cdot}(\mathcal{A}), \omega_{\lambda}) \cong \operatorname{Tor}_{\ell-p}^{S}(S/I, R_{\lambda}),$$

- Show (A[·], ω_λ) → (Ω[·](A), d + ω_λ) is monomorphism in cohomology via [Schechtman-Varchenko'91].
- If \mathcal{A} is tame, $(\mathcal{A}^{\cdot}, \omega_{\lambda}) \rightarrow (\Omega^{\cdot}(\mathcal{A}), d + \varepsilon \omega_{\lambda})$ is quasiiso. for generic $\varepsilon \in \mathbb{C}^*$, via [Wiens-Yuzvinsky'97] and [Farber'01].
- Conclude $H^{p}(A^{\cdot}, \omega_{\lambda}) \neq 0 \Rightarrow H^{p}(\Omega^{\cdot}(\mathcal{A}), \omega_{\lambda}) \neq 0.$

"Correct" setting is blown up:

- Let Σ
 ^γ_λ be critical set of Φ_λ in in minimal blowup Y× → P^{ℓ-1} with normal crossing divisors.
- [Dimca'08]: λ ∈ R^p(A) implies codim of Σ^Y_λ at most p. (More generality, too.)

"Correct" setting is blown up:

- Let Σ
 ^γ_λ be critical set of Φ_λ in in minimal blowup Y× → P^{ℓ-1} with normal crossing divisors.
- [Dimca'08]: λ ∈ R^p(A) implies codim of Σ^Y_λ at most p. (More generality, too.)

Resonance is not enough

Theorem

Suppose A is an arrangement with rank-2 flats X, X' for which

- 1. $|X|, |X'| \ge 3;$
- 2. There is no hyperplane H for which $H \leq X$ and $H \leq X'$.

Then there exists a λ for which Σ_{λ} has codimension 1, but $H^{1}(A, \omega_{\lambda}) = 0$. (So $S^{1} \supseteq \mathcal{R}^{1}$).

Resonance is not enough

Theorem

Suppose A is an arrangement with rank-2 flats X, X' for which

- 1. $|X|, |X'| \ge 3;$
- 2. There is no hyperplane H for which $H \leq X$ and $H \leq X'$.

Then there exists a λ for which Σ_{λ} has codimension 1, but $H^{1}(A, \omega_{\lambda}) = 0$. (So $S^{1} \supseteq \mathcal{R}^{1}$).

Theorem

Suppose A is an arrangement with rank-2 flats X, X' for which

1. $|X|, |X'| \ge 3;$

2. There is no hyperplane H for which $H \le X$ and $H \le X'$.

Then there exists a λ for which Σ_{λ} has codimension 1, but $H^{1}(A, \omega_{\lambda}) = 0$. (So $S^{1} \supseteq \mathcal{R}^{1}$).

Theorem

Suppose A is an arrangement with rank-2 flats X, X' for which

1. $|X|, |X'| \ge 3;$

2. There is no hyperplane H for which $H \le X$ and $H \le X'$.

Then there exists a λ for which Σ_{λ} has codimension 1, but $H^{1}(A, \omega_{\lambda}) = 0$. (So $S^{1} \supseteq \mathcal{R}^{1}$).

Example

Let \mathcal{A} be the projective arrangement given by Q = (x + z)(2x + z)(3x + z)(y + z)(2y + z)(3y + z).

The two triple points determine the line in \mathbb{P}^2 given by z = 0. This line is in $\overline{\Sigma}_{\lambda}$ for all master functions

$$\Phi_{\lambda(b_1,b_2)} = \left(\frac{(x+z)(3x+z)^3}{(2x+z)^{-4}}\right)^{b_1} \left(\frac{(y+z)(3y+z)^3}{(2y+z)^{-4}}\right)^{b_2}$$

Example

Let \mathcal{A} be the projective arrangement given by Q = (x + z)(2x + z)(3x + z)(y + z)(2y + z)(3y + z).

The two triple points determine the line in \mathbb{P}^2 given by z = 0. This line is in $\overline{\Sigma}_{\lambda}$ for all master functions

0 --- 0

$$\Phi_{\lambda(b_1,b_2)} = \left(\frac{(x+z)(3x+z)^3}{(2x+z)^{-4}}\right)^{b_1} \left(\frac{(y+z)(3y+z)^3}{(2y+z)^{-4}}\right)^{b_2}$$

Example

Let \mathcal{A} be the projective arrangement given by Q = (x + z)(2x + z)(3x + z)(y + z)(2y + z)(3y + z).

Х

The two triple points determine the line in \mathbb{P}^2 given by z = 0. This line is in $\overline{\Sigma}_{\lambda}$ for all master functions

o — o — o

$$\Phi_{\lambda(b_1,b_2)} = \left(\frac{(x+z)(3x+z)^3}{(2x+z)^{-4}}\right)^{b_1} \left(\frac{(y+z)(3y+z)^3}{(2y+z)^{-4}}\right)^{b_2}$$

Example

Let \mathcal{A} be the projective arrangement given by Q = (x + z)(2x + z)(3x + z)(y + z)(2y + z)(3y + z).

X

The two triple points determine the line in \mathbb{P}^2 given by z = 0. This line is in $\overline{\Sigma}_{\lambda}$ for all master functions

o — o — o

$$\Phi_{\lambda(b_1,b_2)} = \left(\frac{(x+z)(3x+z)^3}{(2x+z)^{-4}}\right)^{b_1} \left(\frac{(y+z)(3y+z)^3}{(2y+z)^{-4}}\right)^{b_2}$$

some explanation

• Consider the map $\phi \colon \mathbb{R}^n \to \Omega^1(\mathcal{A})$ given extending

 $\lambda \mapsto \omega_{\lambda}$

R-linearly. Dual $\phi^* \colon D(\mathcal{A}) \to R^n$ by

$$\theta \mapsto (\theta(f_1)/f_1,\ldots,\theta(f_n)/f_n).$$

- Σ is the graph of $\widetilde{\ker \phi}$.
- Pick basis for linear space of relations amongst f_i 's: say $\sum_{i=1}^{n} c_{ij} f_i = 0$ for $1 \le j \le n \ell$.
- Let *B* be the $n \times (n \ell)$ matrix with $B_{ij} = c_{ij}f_i$.
- Get exact sequences

$$0 \longrightarrow R^{n-\ell} \xrightarrow{B} R^n \xrightarrow{\phi} \Omega^1(\mathcal{A}) \longrightarrow \operatorname{coker} \phi \longrightarrow 0,$$
$$0 \longrightarrow D(\mathcal{A}) \xrightarrow{\phi^*} R^n \xrightarrow{B^*} R^{n-\ell} \longrightarrow \operatorname{coker} B^* \longrightarrow 0.$$

some explanation

• Consider the map $\phi \colon \mathbb{R}^n \to \Omega^1(\mathcal{A})$ given extending

 $\lambda \mapsto \omega_{\lambda}$

R-linearly. Dual $\phi^* \colon D(\mathcal{A}) \to R^n$ by

$$\theta \mapsto (\theta(f_1)/f_1,\ldots,\theta(f_n)/f_n).$$

- Σ is the graph of $\widetilde{\ker \phi}$.
- Pick basis for linear space of relations amongst f_i 's: say $\sum_{i=1}^{n} c_{ij} f_i = 0$ for $1 \le j \le n \ell$.
- Let *B* be the $n \times (n \ell)$ matrix with $B_{ij} = c_{ij}f_i$.
- Get exact sequences

$$0 \longrightarrow R^{n-\ell} \xrightarrow{B} R^n \xrightarrow{\phi} \Omega^1(\mathcal{A}) \longrightarrow \operatorname{coker} \phi \longrightarrow 0,$$
$$0 \longrightarrow D(\mathcal{A}) \xrightarrow{\phi^*} R^n \xrightarrow{B^*} R^{n-\ell} \longrightarrow \operatorname{coker} B^* \longrightarrow 0.$$

some explanation

• Consider the map $\phi \colon \mathbb{R}^n \to \Omega^1(\mathcal{A})$ given extending

 $\lambda \mapsto \omega_{\lambda}$

R-linearly. Dual $\phi^* \colon D(\mathcal{A}) \to R^n$ by

$$\theta \mapsto (\theta(f_1)/f_1,\ldots,\theta(f_n)/f_n).$$

- Σ is the graph of $\widetilde{\ker \phi}$.
- Pick basis for linear space of relations amongst f_i 's: say $\sum_{i=1}^{n} c_{ij} f_i = 0$ for $1 \le j \le n \ell$.
- Let *B* be the $n \times (n \ell)$ matrix with $B_{ij} = c_{ij}f_i$.
- Get exact sequences

$$0 \longrightarrow \mathbb{R}^{n-\ell} \xrightarrow{\mathbb{B}} \mathbb{R}^n \xrightarrow{\phi} \Omega^1(\mathcal{A}) \longrightarrow \operatorname{coker} \phi \longrightarrow 0,$$

 $0 \longrightarrow D(\mathcal{A}) \xrightarrow{\phi^*} R^n \xrightarrow{B^*} R^{n-\ell} \longrightarrow \operatorname{coker} B^* \longrightarrow 0.$
some explanation

• Consider the map $\phi \colon \mathbb{R}^n \to \Omega^1(\mathcal{A})$ given extending

 $\lambda \mapsto \omega_{\lambda}$

R-linearly. Dual $\phi^* \colon D(\mathcal{A}) \to R^n$ by

$$\theta \mapsto (\theta(f_1)/f_1,\ldots,\theta(f_n)/f_n).$$

- Σ is the graph of $\widetilde{\ker \phi}$.
- Pick basis for linear space of relations amongst f_i 's: say $\sum_{i=1}^{n} c_{ij} f_i = 0$ for $1 \le j \le n \ell$.
- Let *B* be the $n \times (n \ell)$ matrix with $B_{ij} = c_{ij}f_i$.
- Get exact sequences

$$0 \longrightarrow R^{n-\ell} \xrightarrow{B} R^n \xrightarrow{\phi} \Omega^1(\mathcal{A}) \longrightarrow \operatorname{coker} \phi \longrightarrow 0,$$
$$0 \longrightarrow D(\mathcal{A}) \xrightarrow{\phi^*} R^n \xrightarrow{B^*} R^{n-\ell} \longrightarrow \operatorname{coker} B^* \longrightarrow 0.$$

Example ((x + z)(2x + z)(3x + z)(y + z)(2y + z)(3y + z))Here,

$$B = \left(\begin{array}{ccccc} x + z & -2(2x + z) & 3x + z & 0 & 0 & 0 \\ 0 & 0 & 0 & y + z & -2(2y + z) & 3y + z \\ * & * & \cdots & * \end{array}\right)^{t}$$

Consider this mod z:

$$\overline{B} = \left(\begin{array}{ccccc} x & -4x & 3x & 0 & 0 & 0\\ 0 & 0 & 0 & y & -4y & 3y\\ * & * & \cdots & * \end{array}\right)$$

Kernels are saturated, so for any λ in span of $\lambda_1 = (1, -4, 3, 0, 0, 0)$, $\lambda_2 = (0, 0, 0, 1, -4, 3)$, zero locus of ω_{λ} contains line z = 0.

Observation: unlike resonance, equations defining \mathcal{S}^1 depend on choice of matroid realization.

Example ((x + z)(2x + z)(3x + z)(y + z)(2y + z)(3y + z))Here,

$$B = \begin{pmatrix} x+z & -2(2x+z) & 3x+z & 0 & 0 & 0 \\ 0 & 0 & 0 & y+z & -2(2y+z) & 3y+z \\ * & * & \cdots & * \end{pmatrix}^{t}$$

Consider this mod z:

$$\overline{B} = \left(\begin{array}{cccccc} x & -4x & 3x & 0 & 0 & 0 \\ 0 & 0 & 0 & y & -4y & 3y \\ * & * & \cdots & * \end{array}\right)^{\frac{1}{2}}$$

Kernels are saturated, so for any λ in span of $\lambda_1 = (1, -4, 3, 0, 0, 0)$, $\lambda_2 = (0, 0, 0, 1, -4, 3)$, zero locus of ω_{λ} contains line z = 0.

Observation: unlike resonance, equations defining S^1 depend on choice of matroid realization.

Example ((x + z)(2x + z)(3x + z)(y + z)(2y + z)(3y + z))Here,

$$B = \begin{pmatrix} x+z & -2(2x+z) & 3x+z & 0 & 0 & 0 \\ 0 & 0 & 0 & y+z & -2(2y+z) & 3y+z \\ * & * & \cdots & * \end{pmatrix}^{t}$$

Consider this mod z:

$$\overline{B} = \left(\begin{array}{cccccc} x & -4x & 3x & 0 & 0 & 0 \\ 0 & 0 & 0 & y & -4y & 3y \\ * & * & \cdots & * \end{array}\right)^{\frac{1}{2}}$$

Kernels are saturated, so for any λ in span of $\lambda_1 = (1, -4, 3, 0, 0, 0)$, $\lambda_2 = (0, 0, 0, 1, -4, 3)$, zero locus of ω_{λ} contains line z = 0.

Observation: unlike resonance, equations defining \mathcal{S}^1 depend on choice of matroid realization.

Nevertheless, $\mathbb{P}\mathcal{S}^1\cong\mathbb{P}^1$ for each realization of the previous arrangement.

Consider arrangements of 9 lines in \mathbb{P}^2 with six triple points:

Nevertheless, $\mathbb{P}\mathcal{S}^1\cong\mathbb{P}^1$ for each realization of the previous arrangement.

Example ("Ziegler arrangements")

Consider arrangements of 9 lines in \mathbb{P}^2 with six triple points:

Nevertheless, $\mathbb{P}\mathcal{S}^1\cong\mathbb{P}^1$ for each realization of the previous arrangement.

Example ("Ziegler arrangements")

Consider arrangements of 9 lines in \mathbb{P}^2 with six triple points:

Nevertheless, $\mathbb{P}\mathcal{S}^1\cong\mathbb{P}^1$ for each realization of the previous arrangement.

Example ("Ziegler arrangements")

Consider arrangements of 9 lines in \mathbb{P}^2 with six triple points:

As before, \mathcal{S}^1 contains some \mathbb{P}^1 's coming from $\overline{\Sigma}_\lambda$'s which are projective lines.

More interesting: If \mathcal{A} is a special Ziegler arrangement, then there is a $\lambda \in \mathbb{C}^n$, unique up to a scalar, for which $\overline{\Sigma}_{\lambda}$ is determined by the conic through the six triple points.

Conclusion: components of S^1 depend on choice of matroid realization.

As before, S^1 contains some \mathbb{P}^1 's coming from $\overline{\Sigma}_{\lambda}$'s which are projective lines.

More interesting: If \mathcal{A} is a special Ziegler arrangement, then there is a $\lambda \in \mathbb{C}^n$, unique up to a scalar, for which $\overline{\Sigma}_{\lambda}$ is determined by the conic through the six triple points.

Conclusion: components of S^1 depend on choice of matroid realization.

As before, S^1 contains some \mathbb{P}^1 's coming from $\overline{\Sigma}_{\lambda}$'s which are projective lines.

More interesting: If \mathcal{A} is a special Ziegler arrangement, then there is a $\lambda \in \mathbb{C}^n$, unique up to a scalar, for which $\overline{\Sigma}_{\lambda}$ is determined by the conic through the six triple points.

Conclusion: components of S^1 depend on choice of matroid realization.

As before, S^1 contains some \mathbb{P}^1 's coming from $\overline{\Sigma}_{\lambda}$'s which are projective lines.

More interesting: If \mathcal{A} is a special Ziegler arrangement, then there is a $\lambda \in \mathbb{C}^n$, unique up to a scalar, for which $\overline{\Sigma}_{\lambda}$ is determined by the conic through the six triple points.

Conclusion: components of \mathcal{S}^1 depend on choice of matroid realization.

Explicitly?

The Ziegler matroid realization is given by

$$Q = xyz(x + y + z)(s_1x + z)(x + s_2y + z)f_7(s_3x + s_3y + z)(s_4x + y),$$

where

$$f_7 = (s_1s_3 - s_3 + s_1s_2s_4 + s_3s_4 - s_1s_3s_4)x + s_2(s_1 - s_3 + s_3s_4)y + (s_1 + s_2s_4 - 1)z,$$

together with some open conditions. The six multiple points lie on a conic iff $s_1(1 - s_3) = (s_2 - 1)s_3s_4$. In that case, let λ be any nonzero multiple of

$$(s_1(s_3-1), -s_1s_3, -s_3s_4, s_3, s_1-s_1s_3+s_3s_4, s_3(s_1-1), s_3-s_1-s_3s_4, s_3(s_4-1), s_1).$$

The critical set of the corresponding master function Φ_{λ} consists of the conic,

$$(s_3 - 1)yz + s_3s_4(x^2 + xy + xz).$$

1

Explicitly?

The Ziegler matroid realization is given by

$$Q = xyz(x + y + z)(s_1x + z)(x + s_2y + z)f_7(s_3x + s_3y + z)(s_4x + y),$$

where

$$f_7 = (s_1s_3 - s_3 + s_1s_2s_4 + s_3s_4 - s_1s_3s_4)x + s_2(s_1 - s_3 + s_3s_4)y + (s_1 + s_2s_4 - 1)z,$$

together with some open conditions. The six multiple points lie on a conic iff $s_1(1 - s_3) = (s_2 - 1)s_3s_4$. In that case, let λ be any nonzero multiple of

$$(s_1(s_3-1), -s_1s_3, -s_3s_4, s_3, s_1-s_1s_3+s_3s_4, s_3(s_1-1), s_3-s_1-s_3s_4, s_3(s_4-1), s_1).$$

The critical set of the corresponding master function Φ_{λ} consists of the conic,

$$(s_3 - 1)yz + s_3s_4(x^2 + xy + xz).$$