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Integrable	Markov	process	
					Spectral	problem	of	the	Markov	matrix:		solvable	by	Bethe	ansatz	
				Exact	asympto?c	analysis:		connec?on	to	random	matrices,	etc	

Non-equilibrium		
sta?s?cal	mechanics		
								Stochas?c	dynamics,	
								Markov	process,	…		

	Integrable	systems	
									Quantum	groups,				
								Yang-Baxter	equa?on,	…		

Prototype	examples	
						Asymmetric	simple	exclusion	process	(ASEP)	
					Asymmetric	zero	range	process	(ZRP)	

Key	features	
Stochas?c	R	matrix	
Sta?onary	states:	matrix	product	structure		
Zamolodchikov-Faddeev	algebra	
Hidden	3D	structure	related	to	the	tetrahedron	equa?on	(no	detail	today)	
			



This	talk	is	mainly	based	on	

K,	Mangazeev,	Okado,		Stochas?c	R	matrix	for		Uq(A(1)
n),		Nucl.	Phys.	B913	(2016)	

K	and	Okado,				A	q-boson	representa?on	of	Zamolodchikov	–Faddeev	algebra	
																												for	stochas?c	R	matrix	of	Uq(A(1)

n),		Le_.	Math.	Phys.	50	(2017)	

K,	Maruyama,	Okado,				Mul?species	totally	asymmetric	zero	range	process:	
												II.		Hat	rela?on	and	tetrahedron	equa?on,		J.	Integrable	Syst.	1	(2015)	

Contents.	
I.  Quantum/stochas?c	R	matrices	
														Can	a	quantum	R	matrix	be	made	stochas4c?		
									Uq(A(1)

n),			symmetric	tenor	representa?on,			quantum	R	matrix,		
										stochas?c	gauge,			specializa?on	manifes?ng	nonnega?vity,	
										stochas?c	R	matrix	
																																												
II.				Integrable	Markov	process	
III.			Sta?onary	states	and	matrix	product	formula	



Preliminary	on	quantum	groups	



Symmetric	tensor	representa?on		



Quantum	R	matrix	



Stochas?c	gauge:	S(z)	



Specializa?on	manifes?ng	(ii)	Nonnega?vity	



Stochas?c	R	matrix	
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Commu?ng	Markov	transfer	matrices	



Discrete	?me	Markov	Process	



Con?nuous	?me	Markov	Process	(1)	
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Con?nuous	?me	Markov	Process	(2)	



Contains	many	integrable	stochas?c	models	known	earlier	(taken	from	Kuan	ArXiv:1701.04468)	
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Sta?onary	states	

Sta?onary	probability	



in	a	certain	normaliza?on.	



T	is	nonnega?ve	and	sa?sfies	Sum-to-1.	

Perron-Frobenius	 Sta?onary	states	are	algebraic.		

		 Operators	ac?ng	on	some	auxiliary	space		

Matrix	product	formula	

T	is	the	transfer	matrix	of	a	Yang-Baxter	integrable	lakce	model.	

Bethe	ansatz	
Sta?onary	states	are	transcendental	in	general.	



Zamolodchikov-Faddeev	algebra	(1)	

	Symbolically	

Originally	introduced	in	integrable	quantum	field	theories	in	(1+1)-dimension.	
Structure	func?on	in	that	context	=	Sca_ering	matrix	sa?sfying	Unitarity		

Present	context:		Local	form	of	the	sta?onary	condi?on	
	Structure	func?on	=	Stochas?c	R	sa?sfying	Sum-to-1	

It	is	a	part	of	so-called	RLL	rela3on	



(	 )	

(	 )	

Zamolodchikov-Faddeev	algebra	(2)	

	which	is	a	standard	maneuver	in	dealing	with		
quantum	Knizhnik-Zamolodchikov	type	equa4on.	

,	
	



q-Boson	realiza?on	(1)	



q-Boson	realiza?on	(2)	



	Final	Remark	(1)	

``Grand	canonical	par??on	func?on”	 ``Canonical	par??on	func?on”	

Symmetric	ra?onal	func?on	of	z1,…,	zL	

Similar	construc?ons	for	the	simplest	stochas?c	R	matrix	S1,1(z)	
with	boundary	twist	have	led	to	generaliza?ons	of	Macdonald	
polynomials	and	their	matrix	product	formulas.		
cf.	Can?ni-de	Gier-Wheeler,	Borodin-Petrov,	…	



Layer	transfer	matrix	 Tetrahedron	equa?on	

Bilinear	rela?on	of	Layer	transfer	matrices	

ZF	rela?on	at	q=0	

Leads	to	combinatorial	algorithm	for	sta?onary	probability	related	to	crystals.		
Rela?on	of	this	X(x)	at	q=0	and	the	previous	one	is	yet	to	be	clarified.	

	Final	Remark	(2)	


