日本数学会企画特別講演 2015年9月16日

マルチスケールで見るコンクリート中性化問題

愛木 豊彦(日本女子大学理学部) 共同研究者

A. Muntean (TU Eindhoven, the Netherlands), 熊崎耕太(苫小牧高専) 佐藤直紀(長岡高専), 村瀬勇介(名城大学), 白川健(千葉大学)

コンクリート特集号: Networks and Heterogeneous Media (NHM), Vol. 9, 2014, "Special issue on the mathematics of concrete"

- 1.1次元領域におけるコンクリート中性化問題(自由境界問題)
- 2.3次元領域におけるコンクリート中性化問題(偏微分方程式系)
- 3. マルチスケールモデル
- 4. 水分吸着過程を記述する自由境界問題
- 5. 今後の課題

1.1次元領域におけるコンクリート中性化問題

錆,腐食

http://www.kknewtech.co.jp/con_check/pick_up9.html

Muntean, Böhm, 2007, 2009 1次元自由境界問題:モデリング 解の存在, 一意性

Aiki, Muntean, 2009-2011 モデルの単純化 $c\sqrt{t} \leq s(t) \leq C\sqrt{t}$ ($t \geq 1$)

2. 3次元領域におけるコンクリート中性化問題

Maekawa-Chaube-Kishi(1999,本), Maekawa-Ishida-Kishi(1999)

モデル:水分移動の方程式と二酸化炭素の拡散方程式

2.1. 水分移動の方程式

*ρ*w: 水の密度

φ: 空隙率(正定数)
 (空隙の体積)

$$\phi = \frac{(20004]}{(400]}$$

s: 飽和度

 $s = \frac{(水分領域の体積)}{(空隙の体積)}$

- v:二酸化炭素の水分中濃度
 h:相対湿度
 s = S(h)
- w:水酸化カルシウムの水分中濃度

q1, q2: 化学反応速度で決まる定数 (≥ 1)
 Cl: 正定数

$$\rho_w \frac{\partial}{\partial t} (\phi s) - \operatorname{div} \left[\left(K(h) \phi^2 + C_l \phi (1-s) \right) \nabla h \right] = \phi s([v]^+)^{q_1} ([w]^+)^{q_2}$$

(水の圧力 + 毛管圧(Capillary pressure)) $K: (0,1] \rightarrow \mathbb{R}$: 連続関数, $\lim_{h \downarrow 0} K(h) = \infty$.

2.2 飽和度について

Maekawa-Chaube-Kishi (1999, p.79) s = S(h):反時計回りの向きをもったヒステ リシス

2.3 Play operator

 $s = S(h) \mathcal{O}$ 近似: Play operator $s_t + \partial I(h; s) \ni 0$

2.4 水分移動の方程式の単純化

$$\rho_w \frac{\partial}{\partial t} (\phi S) - \operatorname{div} \left[\left(K(h) \phi^2 + C_l \phi (1-s) \right) \nabla h \right] = \phi s([v]^+)^{q_1} ([w]^+)^{q_2}.$$

単純化: $\phi =$ 定数, $s \propto h$, $g(h) = K(h)\phi^2 + C_l\phi([1 - Ch]^+)$, div $(g(h)\nabla h) = \Delta G(u)$

$$\rho_w h_t - \Delta G(h) = sf$$

2.5 水分移動の方程式に対する結果 以下の問題を考える。

$$\rho_w h_t - \Delta G(h) = sf \text{ in } Q(T),$$

$$s_t + \partial I(h; s) \ni 0 \text{ in } Q(T),$$

$$h = h_b \text{ on } S(T) := (0, T) \times \partial \Omega,$$

$$h(0) = h_0, s(0) = s_0 \text{ on } \Omega,$$

 $Q(T) = (0,T) \times \Omega, \Omega \subset \mathbb{R}^3$:有界領域 $G(r) = \int_1^r g(s) ds$ for r > 0, h_b :境界関数, h_0 and s_0 :初期関数, 境界 $\partial \Omega$ は滑らか。 A.-Kumazaki(2011, 2014) 存在と一意性 仮定: $0 \le h_b \le M$, $0 \le h_0 \le M$; 滑らか 解の定義: L^2 の強解 存在:通常の不動点定理 一意性: ∇h の最大値評価が本質的 Ladyzenskaja-Solonnikov-Ural'ceva(1967) quasi-linear parabolic 方程式に対する手法 を適用した。

今後, $\rho_w h_t - \text{div} ((g(h)\phi^2 + \phi(1 - s))\nabla h) = sf$ のような方程式を考えたい。 Play operatorによる近似では, $\nabla s = \nabla S(h)$ を評価できない。 二酸化炭素の拡散方程式 (Kumazaki) **3.** マルチスケールモデル

マクロ領域: $\xi \in \Omega$

マクロ変数

 $h = h(t, \xi)$: 相対湿度 $s = s(t,\xi)$: 飽和度 = $\frac{(水分領域の体積)}{(空隙の体積)}$

ミクロ領域: $x \in (0, 1)$ マクロ変数 $u = u(t, \xi, x)$: 相対湿度 4. 水分吸着過程を記述する自由境界問題 目標:自由境界問題を用いて実験結果を再現 する

- 引力について (壁と水分間の引力) > (水分同士の引力)
- 相対湿度が高いと空気中の水分が水滴に衝突 する確率が上がり、水滴になりやすくなる。

湿度	乾燥	低い	高い
距離	0	短い	長い
引力	強い	弱い	無視
傾き	急	緩やか	急

シナリオ

[0,1]:多孔質媒体の一つの穴
[0,s(t)]:水滴領域
[s(t),1]:空間領域
x = 0;壁

x = 1: マクロ領域と接続 u = u(t, x): 相対湿度

自由境界の成長度に対する仮定

(仮定1) 成長度 $s'(t) = r_1 - r_2$ r_1 : 空気中の水分が水滴に衝突して水滴になる確率 r_2 : 水滴が空気中の水分に戻る確率 (仮定2) $r_1 \propto u, r_1 = au$,

aは正定数

(仮定3) $f_1 = cs^{-k}$: 壁と水分間の引力, ex. k = 2 $r_2 \ge f_1$ の関係:

*r*₂は*f*₁に関して単調減少(引力が弱いほど空気中の 水分に戻りやすい)

• $r_2 \rightarrow 0$ as $f_1 \rightarrow \infty$ (引力が強ければ、戻らない) (仮定4) $r_2 = \frac{a}{c_1 f_1 + c_2} = \frac{a}{c_1 s^{-k} + c_2} = a\varphi(s)$ 自由境界の成長度の仮定

 $s' = r_1 - r_2 = a(u - \varphi(s))$ $\varphi(s) = \frac{a}{c_1 s^{-k} + c_2}$

u: 空間領域で拡散方程式 $\rho_v u_t - \kappa u_x = 0 \text{ on } (s(t), 1)$ ρ_v :空気中の水分の密度 κ : 拡散係数 境界条件 $u(t,1) = h(t), t \in [0,T]$:外気 自由境界上の質量保存則 時間: $t \rightarrow t + \Delta t, s'(t) > 0$ とする。 水の質量変化

$$\rho_w(s(t + \Delta t) - s(t)) - \int_{s(t)}^{s(t + \Delta t)} \rho_v u(t, x) dx$$
$$= \kappa u_x(t, s(t + \Delta t)) \Delta t$$
$$(\rho_w - \rho_v u(t, s(t))) s'(t) = \kappa u_x(t, s(t))$$

4.1. 自由境界問題 FBP

$$\rho_{v}u_{t} - \kappa u_{xx} = 0 \text{ on } (s(t), 1),$$

$$u(t, 1) = h(t) \text{ for } t > 0,$$

$$\kappa u_{x}(t, s(t)) = (\rho_{w} - \rho_{v}u(t, s(t)))s'(t) + 0,$$

for $t > 0,$

$$s'(t) = a(u(t, s(t)) - \varphi(s(t))) + 0,$$

for $t > 0,$

 $s(0) = s_0$

$$u(0,x) = u_0(x)$$
 for $s_0 \le x \le L$,

 s_0 はsの初期値, u_0 は湿度uの初期値 S(h) = sとする。

これまでの結果

Sato, A, Murase, Shirakawa(2013): モデリング Sato, A, Murase, Shirakawa(2014): $\rho_w \gg \rho_v$ という仮定のもと,時間局所解の存 在,一意性

A, Murase(2014):

(t) $\rho_w \gg \rho_v \& \varphi$ に関する仮定のもと、時間大域解の存在、及び数値結果

A, Murase(2014):

境界値hが $\xi \in (0,1)$ に依存するものとする。 つまり, $h = h(t,\xi)$ for $\xi \in (0,1)$.

このとき、下記極限がW^{1,2}(0,T)で、一意に 存在する。

$$\lim_{\Delta\xi\to 0} \frac{\mathcal{S}(h(\xi + \Delta\xi)) - \mathcal{S}(h(\xi))}{\Delta\xi}$$

Sato, A(2015):

境界値が時間に関して周期的ならば、自由境界 問題が周期解をもつ。 **4.2. マルチスケールモデル**(現在,検討中) Find h on Q(T), s on Q(T), $u = u(t, \xi, x)$ on $\Sigma_s(T)$: $\Sigma_s(T) = \{(t, \xi, x) | 0 < t < T, \xi \in \Omega, s(t, \xi) < x < 1\};$

$$\begin{split} \rho_w h_t - \Delta G(h) &= sf & \text{in } Q(T), \\ h &= h_b & \text{on } (0,T) \times \partial \Omega, \quad h(0) = h_0 & \text{on } \Omega, \\ \rho_v u_t - \kappa u_{xx} &= 0 & \text{on } (s(t,\xi),1), \\ u(t,\xi,1) &= h(t,\xi) & \text{for } (t,\xi) \in Q(T), \\ (\rho_w - \rho_v u(t,\xi,s(t,\xi)))s'(t,\xi) &= \kappa u_x(t,\xi,s(t)) & \text{for } t > 0, \\ s'(t,\xi) &= a(u(t,\xi,s(t,\xi)) - \varphi(s(t,\xi))) & \text{for } (t,\xi) \in Q(T), \\ s(0,\xi) &= s_0(\xi), u(0,\xi,x) = u_0(\xi,x) & \text{for } s_0 \leq x \leq 1, \xi \in \Omega \end{split}$$

境界条件を2.5倍の速度で動かすと,

数値実験結果の考察1.

- ヒステリシスのような挙動を描くことができた。
- ループの幅が, 真ん中は狭く, 両端で広い。
- 単調性が崩れているところがある。ここは、
 見直しが必要。

実験日数

石田, 前川, 岸, 磐田, 楠原(2005):

「相対湿度が30%と60%のケースでは,湿潤 曲線上で平衡状態に達しているが,相対湿度 90%では,60日の乾燥後においても依然,乾 湿の経路差が存在する」は,実現できた。 我々の予想:

「かなり時間が経過しても,湿度が低い場合は, 乾湿の経路差が存在するのでは」

4.4 自由境界問題の解の一意存在定理. 収束定理 仮定: (A1) $\varphi \in C^1(\mathbb{R}), \varphi' > 0$ on (0,1],定理A. (A1) ~ (A4) を仮定すれば,FBP $\varphi = 0$ on $(-\infty, 0]$. は $[0,\infty)$ 上の解 $\{s,u\}$ をもち、それは以下を C_{φ} : Lipschitz constant of φ 満たす。 (A2) $\rho_w > 2\rho_v, \ \rho_w a \ge \rho_v (C_{\varphi} + a),$ $\int_0^\infty \int_0^1 |u_t|^2 dx dt < \infty,$ $\rho_w > 4a\rho_w^2$. (A3) $h' \in L^1(0,\infty) \cap L^2(0,\infty)$, $\lim_{t\to\infty}h(t)=h_{\infty},\ h-h_{\infty}\in L^2(0,\infty).$ $\int_{s(t)}^{1} |u_x(t)|^2 dx \le C_* \text{ for } t \ge 0,$ $0 \leq h \leq h_* < \varphi(1)$ on $[0,\infty)$ $0 \le s \le \max\{s_0, s_*\}$ on $[0, \infty)$, (A4) $0 < s_0 < 1, u_0 \in W^{1,2}(s_0, 1)$ $s(t) \rightarrow s_{\infty}$ as $t \rightarrow \infty$. $u_0(1) = g(0), \ 0 \le u_0 \le 1 \ \text{on} \ [s_0, 1].$ $u(t,x)
ightarrow h_{\infty}$ as $t
ightarrow \infty$, \sub \circlearrowright , $s_* = 1 - \left(\frac{\varphi(1) - h_*}{2(C_*^{1/2} + C_*)}\right)^2$ $\varphi(1)$ h_* $s_{\infty} = \varphi^{-1}(h_{\infty}).$ $\{s_{\infty}, h_{\infty}\}$ は、FBPの定常問題の一意解であ S. る。

定理の証明の概略 1. $s' \in L^2(0,\infty), \int_0^{\infty} \int_s^1 |u_x|^2 dx dt < \infty.$ 方程式 $\times u \ge (s' = a(u(t,s) - \varphi(s))) \times s' \ge 0, \quad \mathbb{C}$ の評価を得る。 2. $\int_0^{\infty} \int_s^1 |u_t|^2 dx dt < \infty, \int_{s(t)}^1 |u_x(t)|^2 dx \le C_* \text{ for } t \ge 0.$ 方程式 $\times u_t$ で、この評価を得られる。 3. $s(t) \ge s_*$ ならば、 $s'(t) < 0, \ s_* = 1 - \left(\frac{1-h_*}{2(C_*^{1/2} + C_*)}\right)^2, \ d_0 = \varphi(1) - h_*.$

$$\begin{aligned} (\overline{a}\overline{b}\overline{b}) \ s'(t) &= a(u(t,s(t)) - \varphi(s(t))) \\ &= a(u(t,s(t)) - h(t) + h(t) - h_* + h_* - \varphi(1) + \varphi(1) - \varphi(s(t)))) \\ &\leq a(\sqrt{1 - s(t)} (\int_{s(t)}^1 |u_x(t)|^2 dx)^{1/2} - d_0 + C_{\varphi}(1 - s(t)))) \\ &\leq a(\sqrt{1 - s_*} (C_*^{1/2} + C_{\varphi}) - d_0) \\ &\leq a \times (-\frac{d_0}{2}). \end{aligned}$$

4. $s(t) \leq \max\{s_0, s_*\}$. あとは,容易である。

これまでの設定では、この予想は正しかった。。。

t

 $|s(t_n) - s(t_{n+1})| < \varepsilon$ となる時間を調べると,

h(t)	10 ⁻⁹	10^{-10}	10^{-11}	10^{-12}
0.1	11.79471	16.17018	20.54540	24.92067
0.2	12.72095	16.86609	21.01100	25.15597
0.3	12.94079	16.85564	20.77026	24.68487
0.4	12.86763	16.55218	20.23646	23.92075
0.5	12.62697	16.08118	19.53517	22.98914
0.6	12.27443	15.49833	18.72203	21.94565
0.7	11.83970	14.83330	17.82671	20.82004
0.8	11.34049			
0.9	10.78811	13.32115	15.85401	18.38681

結果s = φ⁻¹(h)のグラフの傾きが急なほど、
 収束が速い。
 予想とは逆の結果

$$\varphi(s) = \frac{10.7}{s^{-4} + 10}$$

結果

- 収束条件が緩いとき、予想は正しい。
- 収束条件が厳しいとき、予想とは逆の結果。

数値結果に対する考察

- 初期値の設定が原因か?
- ・収束条件が厳しいとき、数値が信用できる
 のか?
- 予想は正しいと考えている。 $u(t) \rightarrow h \text{ as } t \rightarrow \infty \text{ なので},$ $s'(t) = a(u(t, s(t)) - \varphi(s(t))) \&$ $s'(t) = a(h - \varphi(s(t))) \& \Rightarrow \tau,$ $s''(t) = -a\varphi'(s(t))s'(t)$ $s'(t) \approx s'(t_1) \exp(-a\varphi'(s_\infty)t) \& x \circ \sigma \tau,$ $\lceil \varphi'(s_\infty) \& x \land y \land y \land z \land y, \varphi^{-1}(h_\infty) \circ \sigma$ グラフの傾きが緩やかなほど、収束が速い。」 **今後の課題**
 - 予想が正しいか?
 - 数値計算の結果がなぜこうなったのか?原
 因の究明

5.1 今後の展開: 拡散方程式:

$$\rho_w h_t - \operatorname{div} \left((g(h) + \phi(1-s)) \nabla h \right) = sf$$

abla S(h), s = S(h) を考える必要がある。定理 B.

 $(A1^*)(t,\xi) \in (0,T) \times (0,1)$ で、 $h(t,\xi)$ は ξ に関して微分可能で、

$$\frac{\partial h}{\partial \xi} (:= h_{\xi}), \frac{\partial^2 h}{\partial t \partial \xi} (:= h_{\xi t}) \in L^2(0, T).$$

(A1) ~ (A4), (A1*)ならば、 $\xi \in (0,1)$ に対し、 $\lim_{\Delta \xi \to 0} \frac{S(h(\cdot, \xi + \Delta \xi)) - S(h(\cdot, \xi))}{\Delta \xi} = \hat{s} \quad \text{in } W^{1,2}(0,T),$ $|\frac{\partial S(h)}{\partial \xi}|_{W^{1,2}(0,T)} = |\hat{s}|_{W^{1,2}(0,T)} \leq C(1 + |h_{\xi}|_{L^{2}(0,T)} + |h_{\xi t}|_{L^{2}(0,T)}),$ ただし、Cは初期値、 φ , h_{*} , $\sup_{\Delta \xi > 0} |h(\cdot, \xi + \Delta \xi)|_{W^{1,2}(0,T)}$ に依存する正の定数である。 定理B(続き) さらに、 *ŝ*は弱解の意味で、以下を満たす。

$$\begin{split} \rho_{v}\hat{u}_{t} &- \frac{\kappa}{L-s(\cdot;\xi)}\hat{u}_{yy} \\ &= 2\kappa \frac{\hat{s}}{L-s(\cdot;\xi)}\bar{u}_{yy} + \rho_{v}(1-y)\frac{\bar{u}_{y}}{L-s(\cdot;\xi)}\hat{s}' + \rho_{v}(1-y)\frac{s'(\cdot;\xi)}{L-s(\cdot;\xi)}\hat{u}_{y} \\ &+ \rho_{v}\frac{s'(\cdot;\xi)}{(L-s(\cdot;\xi))^{2}}\hat{u}_{y}\hat{s} \quad \text{in } Q(T) := (0,T) \times (0,1), \\ \hat{u}(t,1) &= h_{\xi}(t,\xi) \quad \text{for } t \in [0,T], \\ \frac{\kappa}{L-s(t,\xi)}\hat{u}_{y}(t,0) &= -\frac{\kappa}{L-s(t,\xi)}\hat{s}(t)\bar{u}_{y}(t,0) + \rho_{v}\hat{s}'(t) \\ &+ \rho_{v}s'(t;\xi)\hat{u}(t,0) + \rho_{v}\bar{u}(t,0)\hat{s}'(t) \quad \text{for } t \in [0,T], \\ \hat{u}(0,x) &= 0 \quad \text{for } x \in (0,1), \quad \hat{s}(0) = 0, \\ \hat{s}' &= a\left(\hat{u}(\cdot,0) - \varphi'(s(t;\xi))\hat{s}\right) \quad \text{on } [0,T]. \end{split}$$

ここで、 $\{u, s(\cdot; \xi)\}$ は、問題FBP $(h(\cdot, \xi))$ の解 \overline{u} は、uを柱状領域Q(T)上の関数として変換したもの $\overline{u} \in L^2(0, T; H^2(0, 1)) \cap L^\infty(0, T; H^1(0, 1)) \cap W^{1,2}(0, T; L^2(0, 1))$ $\widehat{u} \in L^2(0, T; H^1(0, 1)) \cap C([0, T]; L^2(0, 1))$ である。

5.2 今後の課題

- 1. 問題 FBP(h)の数値実験から得た解の収束速度に関する予想の証明
- 2. 数値計算結果に対する考察
- 3. 3次元コンクリート中性化問題:水分移動の方程式と二酸化炭素の拡散方程式のシステム
- 4. porous media equationのマルチスケールを用いた再検討

最後に

• 二酸化炭素の拡散方程式

K. Kumazaki: "A mathematical model of carbon dioxide transport in concrete carbonation process". DCDS. Ser. S, 7(2014),113-125.
K. Kumazaki: "Large time behavior of a solution of carbon dioxide transport model in concrete carbonation process". J. Differential Equations 257 (2014), 2136-2158.