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Abbildung: Abstract



Overview

Plan:
1. Random Matrix theory.
2. Free probability theory.
3. Asymptotic freeness and strong asymptotic freeness.
4. Applications and perspectives.



Genesis of RMT 1: John Wishart (1898 - 1956)
First birth of Random Matrix theory: John Wishart, a Scottish
mathematician and agricultural statistician.

Abbildung: Wishart



Genesis of RMT 1: John Wishart

Statistical motivation: one ‘crash’ example:
I Consider N2 i.i.d. centered real bounded random variables

Xij , 1 6 i , j 6 N. Let X = (Xij). X is an N × N real random
variable. It is composed of N iid random vectors
X = (X1| . . . |XN).

I Consider the matrix B = X tX . Up to a multiple, B is the
empirical covariance, and E(B) is the covariance matrix of X1.
It is symmetric.

I Since events are assumed to be independent, on average, the
matrix should be close to diagonal (at least its expectation is
diagonal).
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Genesis of RMT 1: The Wishart distribution

I However, in practice, when “# rows” =“ # columns”, it is
never close to diagonal before taking the expectation.

Eigenvalues help us to check that! (← the birth of random
matrix theory)

I We consider the histogram of eigenvalues of B (i.e which
percentage of eigenvalues λi is in a given real interval). This is
encoded by the random probability measure N−1 ∑N

i=1 δλi .

Theorem (Wishart, 1928 / Marchenko Pastur)
The histogram of eigenvalues (properly rescaled) tends to the
Wishart distribution as the dimension N grows.
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Wishart distribution / Marchenko Pastur

Abbildung: Wishart



Genesis of RMT 2: Eugene Paul Wigner

Abbildung: Wigner



Genesis of RMT 2: Eugene Wigner

I E. P. Wigner (1902 – 1995), was a Hungarian American
theoretical physicist and mathematician. He received half of
the Nobel Prize in Physics in 1963 “for his contributions to
the theory of the atomic nucleus and the elementary particles,
particularly through the discovery and application of
fundamental symmetry principles”

I He worked with David Hilbert at the University of Göttingen.
Wigner and Hermann Weyl introduced group theory into
physics, particularly the theory of symmetry in physics.

I In 1930, Princeton University recruited Wigner, along with
John von Neumann, and he moved to the United States. von
Neumann was in the same school as Wigner, a year behind
him.
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Genesis of RMT 2: Eugene Wigner

I Wigner was interested in solving EΨ = HΨ.

I E (an eigenvalue) is needed with little knowledge of H (a
selfadjoint matrix), apart from symmetries.

I In addition, the dimension of H is big.
An very powerful old idea from statistical physics:
(1) What would happen if H was random? (symmetries would be a
source of randomness)
(2) Would it be a good approximation?
The answer to (2) seems to be YES. The answer to (1) is
mathematics and we draw our attention on it.
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Wigner’s semicircle distribution

I This idea happened to work

I We are interested in X (N) a symmetric N × N matrix whose
(upper triangular) entries are i.i.d. centered L2 variables.

I Consider, as above, the normalized eigenvalue counting
measure N−1 ∑N

i=1 δλi .

Theorem (Wigner, 1948)
The histogram of eigenvalues (properly rescaled—to variance =
N−1) tends to a semi-circle distribution as N →∞:

µ =
1

2π
√

4− x21[−2,2]dx
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Wigner’s semicircle distribution

Abbildung: semi-circle distribution



Random Matrix Theory: Subsequent developments

I Mehta, Pastur, Marchenko, Tracy, Widom, etc... : analysis
behind single matrix models. Relation to determinantal
formulas, etc.

I Dyson and Montgomery (Princeton tea, 1972): relation
between spacing of eigenvalues and spacing of zeroes of the
Riemann Zeta function.

I Theoretical physics: Matrix Integrals, 2D quantum gravity (’t
Hooft, Itzykson, Zuber, Parisi)

I Algebraic geometry, algebraic combinatorics (Harer Zagier) –
Representation Theory (Okounkov, Borodin...)

I ...Until Free probability (see next slides)...
I ...and a wealth of applications: Quantum Information Thoery,

wireless transmission, statistics, finance, AI...
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Free probability

I Dan V. Voiculescu (1949 –): A mathematician of Romanian
origin with very strong early career achievements in operator
algebras.

I In the early 80’s he was interested in the free group factor
isomorphism problem: are L(F2) and L(F3) isomorphic?

I Group factors have a canonical (unique) tracial state therefore
it is natural to see them as a (non-commutative) probability
space.
He decided to try an approach where L(Fd) is a
(non-commutative) space of bounded measurable random
variables, and the trace is their expectation.



Free probability

I This is a particular case of non-commutative probability
theory. A non-commutative probability space is (A, τ), where
A is a unital algebra and τ a state. It was motivated by
quantum mechanics and was exotic in the 80’s. The main
notion was the notion of tensor independence.

I Voiculescu introduced free independence and it boosted (and
temporarily overthrew?) non-commutative probability.

I Lately, NC probability also used for quantum information
(quantum games, etc).



Free probability: definition of free independence

I Let 1 ∈ Ai ⊂ A be a family of unital subalgebras of A. Let τ
be a state on A. They are freely independent w.r.t τ iff

τ(a1 . . . al) = 0

as soon as a1 ∈ Ai1 , . . . , al ∈ Ail with i1 6= i2, . . . , il−1 6= il and
τ(ai) = 0.

I If a group G is a free product ?iGi , then the group
subalgebras are free in the group algebra w.r.t the l.r. state.

I With this property, the value of τ on all Ai determines
uniquely the data of τ on the algebra generated by all Ai .



Free probability: the free CLT

I An early discovery of Voiculescu with free probability:
There exists limit theorems, and the limit of the free central
limit theorem is the semi-circle distribution.
Is it a coincidence that semi-circle distribution appears both in
the free CLT and Wigner?

I No, because GUE is a stable NC distribution
(l−1/2(X1 + . . .+ Xl) has the same distribution as X) when
they are all iid GUE.

I GUE(N) is defined as the probability measure on the N × N
selfadjoint complex matrices whose density is proportional to
exp[−N/2Tr(X2)]dX
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Free probability: convergence in NC distribution

I Step (1): Consider a d-tuple of (random) matrices as
non-commutative random variables X (N)

1 , . . . ,X (N)
d ∈ MN(C).

The NC expectation is N−1Tr = tr .
I Step (2): If, for any i1, . . . , il ∈ {1, . . . , d} we can establish

the existence of the limit

lim
N

tr(X (N)
i1 . . .X (N)

il )

I Step (3): ... and we can identify the limit object, namely
(A, τ) and x1, . . . , xd ∈ A such that the above limit is
τ(xi1 . . . xil ), then one has convergence in NC distribution
(def, Voiculescu). .

I If xi belong to different algebras that are free in Voiculescu’s
sense, this is asymptotic freeness.



Free probability: asymptotic freeness

The Haar case:
I Consider U(N)

1 , . . . ,U(N)
d iid Haar unitaries and w a

non-reduced word in formal unitaries (or free group elements)
u1, . . . , ud and their inverses.
Consider W (N) to be the random unitary obtained by
replacing ui by U(N)

i in the word w .

Then, limN tr(W (N)) = 0 a.s. as N →∞ (Voiculescu 1992,
1998)

I The limiting object is L(Fd) with its canonical tracial state. It
is a free product. Therefore we speak of asymptotic freeness

I We can replace one U(N)
i by a constant traceless word, and it

doesn’t change the result. Therefore, we can add any constant
matrix after some arithmetic computations.
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Free probability: asymptotic freeness

I The calculations behind that are called free probability
calculus, it was developed by many people (revolving around
Voiculescu and Speicher).

I The GUE case.
Consider X (N)

1 , . . . ,X (N)
d iid GUE

Then, limN tr(W (N)) = #K a.s. as N →∞ where K is the
number of admissible non-crossing partitions

I Example:

lim
N

tr(X (N)
1 X (N)

2 X (N)
2 X (N)

1 X (N)
1 X (N)

1 ) = 2,

lim
N

tr(X (N)
2 X (N)

1 X (N)
2 X (N)

1 X (N)
1 X (N)

1 ) = 0.



Knowing the moments imply knowing the distribution of
any NC polynomial

A remarkable example: in M2N(C), take uniformly two
independent random selfadjoint projections of rank N, P(N) and
Q(N). (P(N),Q(N)) has the same distribution as (P(N),UQ(N)U∗)
for any unitary U.

Theorem
As the dimension grows, with high probability, the histogram (i.e.
the NC distribution) of P(N)Q(N)P(N) and of P(N) + Q(N) has the
same shape (up to trivial eigenvalues and with a factor two).
Proof: For any k, as N →∞, 2tr [(2PQP)k ] ∼ tr [(P + Q)k ].
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Free probability: Strong convergence?
I Other types of convergence: since the limiting object is a

C∗-algebra, do the norms of NC polynomials converge, too?

I When a d-tuple of random matrices converges to a limiting
object, then its Lp norms converge to the Lp norm of the
limiting object with respect to its trace (at least if p is even).

I Let P be a non-commutative polynomial in d formal variables.
Assume that (X (N)

1 , . . . ,X (N)
d ) converge in distribution to

(x1, . . . , xd).
Then, the above observation implies that

lim inf
N
||P(X (N)

1 , . . . ,X (N)
d )|| ≥ ||P(x1, . . . , xd)||

Important question (strong convergence): when is this
inequality saturated (in the sense that, for any P ,
lim supN ||P(X (N)

1 , . . . ,X (N)
d )|| ≤ ||P(x1, . . . , xd)||?
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Strong Asymptotic freeness

I The first series of examples of strong asymptotic freeness were
obtained by Haagerup-Thorbjørnsen: iid GUE (2005). This was
extended in many directions (Capitaine, Donati, Male, ....).

I The second class of examples was obtained by C & Male: iid
Haar random unitary matrices (2012).

I Both in the GUE and in the unitary case, quantitative
estimates were obtained by F. Parraud with free stochastic
calculus (KU& Lyon Ph.D.)
Very strong results by Bandeira, Boedijardjo, van Handel

I Bordenave & C obtained strong convergence for very general
models with moment methods [see later]
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Strong Asymptotic freeness vs asymptotic freeness

I There exists many examples of non-random matrix models
(Biane, C, Novak, Śniady, etc) that are asymptotically free.

I However there exists no non-random example that is strongly
asymptotically free (specifically, all the above counterexamples
fail).

I As far as I can tell, there is only one credible non-random
candidate (LPS). Having non-random examples would have
really important applications (e.g. in Quantum Information
Theory).

I Part of our leitmotiv with Bordenave consisted in reducing the
amount of randomness in our strongly convergent models.
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The tensor case: setup

We are interested in the following specific problem:
I Consider an n × n block matrix Z = (Zij)i,j∈{1,...n}
I Each block Zij is an N × N matrix.
I We assume given U(N)

1 , . . . ,U(N)
d unitaries in N × N (they will

be random i.i.d later)
I Each Zij is a (NC) polynomial in U(N)

1 , . . . ,U(N)
d and their

inverses (we possibly allow constant matrices in addition).



The tensor case: the problem

I Example, n = 3 (let’s focus on selfadjoint)
ZN =(

U(N)2
1 + (U(N)

1 )−2 U(N)
2 0 (U(N)

2 )−1 3IN U(N)
1 + (U(N)

3 )−1 0 (U(N)
1 )−1 + U(N)

3 U(N)
3 + (U(N)

3 )−1
)

I What is the operator norm of such a matrix?
I We are particularly interested in the case U(N)

i random and N
large.



Reduction: the linearization trick

I We may assume that the entries are affine functions in Ui ,U∗
i

I Example:

||3 · 1N + U2 + U−2|| = ||U + U−1||2 + 1

||2·1N+U2U∗
1+U1U∗

2 || = ||
(
0 U1 U2 U∗

1 0 0 U∗
2 0 0

)
||2

I Similar recipes work for multiple matrices and matrix
coefficients.



Reduction: the linearization trick

I This is called the unitary linearization trick.
I It was discovered by Gilles Pisier in the 90’s for unitaries. His

statement was a theoretical global equivalence in the context
of operator spaces.
“Understand the norm for all Z with affine matrix coefficients
(for all n)” is equivalent to
“Understand the norm for all Z in general (for all degree, for
all n)”



Reduction: the linearization trick

I An explicit version of the trick (given a Z , find a linearized Z ′

whose norm allows us to deduce the norm of Z) was found by
Lehner in the free case.

I Bordenave, C, 2023: we did the general case (without freeness
assumption, as in Pisier’s original result).

I It relies heavily on the fact that UU∗ = U∗U = 1 (but how to
use this trick for RMT questions if we don’t know how to
make analysis on unitaries?)



Reduction: the linearization trick (The selfadjoint case and
RMT)

I A version of the linearization problem was also found in
Haagerup-Thorbjørnsen in 2005 for the selfadjoint case.
(10 years after Pisier)
They needed it to understand the norm of polynomials in
GUE .

I The first linearization trick that was useful for RMT was
historically the one discovered later. The Pisier trick started
becoming useful for Random Matrix Theory only with
Bordenave & C (after understanding how to do analysis on
random unitaries)
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Why does the tensor setup matter? One concrete example
with graphs and permutations.

I What is the operator norm of
U(N)

1 + U(N)∗
1 + . . .+ U(N)

d + U(N)∗
d ?

I If U(N)
i of permutations: This is the adjacency matrix of a

2d-regular (random) graph. The norm is 2d (Perron
Frobenius).

I On the orthogonal of the PF eigenvector The norm is at least

2
√

2d − 1− f (N)

with f (N) = oN(1) (Alon-Boppana).
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One concrete example: more comments

I Note: Tr(w) is a number of fixed points if U(N)
i are

permutations. Asymptotic freeness is easy to derive (Nica)
and it can be used to rederive the Alon-Boppana bound (the
Kesten McKay distribution can be rederived from free
probability).

I Friedman, Bordenave: What is the second largest eigenvalue
(norm on the orthogonal of the PF space) is at most
2
√

2d − 1 + f (N) (strong convergence on the orthogonal).
I Important for mixing times of RW’s (in random environment).

If the second largest e.v. is 2
√

2d − 1 then this is the
adjacency matrix of a Ramanujan graph.

I Marcus Spielman Srivastava: such graphs exist with
probability > 0 (relation to the paving problem /
Kadison-Singer problem).
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One concrete example: the relation with tensors

I Similar lower and upper bound hold for other random unitaries
(e.g. the Haar measure on the unitary group, orthogonal
group). The lower bounds are achieved with Weingarten
calculus.

I Remark: if we replaced U(N)
i by vi ⊗ Ui ∈ UnN with vi

completely arbitrary unitaries in Un, the free probability result
would give the same lower bound for n very large.

I There seems to be no constraint on n for a lower bound on
the operator norm (we show that this is the case later). Is it
the case for the upper bound?
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One concrete example: predictable constraints on n for the
upper bound

I Is it the case for the upper bound? YES
I Exercise:

d∑
i=1

Ui ⊗ Ui

has operator norm d

I Pick an epsilon net of Ud
N , of cardinal L. It yields

vi ∈ MN(C)L such that

||
d∑

i=1
vi ⊗ Ui || ≥ d − ε

I The upper bound can be much larger than Alon Boppana (in
this example, this can happen if we have n >> expO(N2)
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Tensor setup: General result

I We aim at comparing the operator norm of ZN,n with the
operator norm of Z̃n, where Z̃n is an operator of B(l2(Fd)

n),
and the matrix unitaries Ui are replaced by abstract unitaries
Ũi with

I (1) The Ũi ’s act by left multiplication on l2(Fd).
(2) B(l2(Fd)

n) = Mn(l2(Fd)).

I ZN,n is in general, a random matrix.
Z̃n is a non-random concrete operator (albeit of infinite
dimension). It is the candidate for the limit given by all
previous developments in free probability.
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Tensor setup: General result

Theorem (Bordenave, C)
With high probability (as N grows), the operator norm of ZN,n and
Z̃n are close as long as n << expO(Nα).
[α > 0, explicit, depends on d]

Theorem (Bordenave, C)
With high probability (as N grows), the operator norm of ZN,n is
bigger than ||Z̃n|| − ε INDEPENDENTLY on n. This is true with
probability one if U(N)

i are permutations and the coefficients are
positive (generalized Alon-Boppana)



Elements of proof: the Moment method

I Our proof relies on the moment method.
I For N dimensional matrices, the Lp norm and the L∞

(operator) norm are close as soon as p >> logN (the
multiplicative error term is N1/p).

I We need to compute moments of order at least
log(dimension) (here, dimension = nN)

I We don’t know how to do it directly. Previous proofs for norm
of random matrix (in the multimatrix case) all involved
complex analysis. We need to transform the problem first.
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Elements of proof: Operator valued non-backtracking
theory

I We consider (b1, . . . , bl) elements in B(H) where H is a
Hilbert space. We assume that the index set is endowed with
an involution i 7→ i∗ (and i∗∗ = i for all i).

I Typically: l = 2d + 1 with the notation i∗ = −i and
U(N)
−i = U(N)∗

i

I The non-backtracking operator associated to the `-tuple of
matrices (b1, . . . , bl) is the operator on B(H⊗ Cl) defined by

B =
∑
j 6=i∗

bj ⊗ Eij , (1)
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Elements of proof: Operator valued non-backtracking
theory

Theorem (Bordenave, C)
Let λ ∈ C satisfy λ2 /∈ {spec(bibi∗) : i ∈ {1, . . . , l}}. Define the
operator Aλ on H through

Aλ = b0(λ) +
∑̀
i=1

bi(λ) , bi(λ) = λbi(λ
2 − bi∗bi)

−1

and

b0(λ) = −1−
∑̀
i=1

bi(λ
2 − bi∗bi)

−1bi∗ .

Then λ ∈ σ(B) if and only if 0 ∈ σ(Aλ).



Putting the proof together

I In practice we have to understand the spectral radius of the
operator and therefore, evaluate Tr(BT B∗T ) with T growing
with the matrix dimension.

I The non backtracking structure makes calculations tractable...
through Weingarten calculus.

I Weingarten calculus is a systematic method relying on
representation theory and algebraic combinatorics to compute
integrals of type∫

U∈G
ui1j1 . . . uik jk ui ′1j′1 . . . ui ′k j′k dU,

Where U = (uij) is an element of a matrix compact group G,
and dU is the Haar measure.



Concluding remarks: more motivations and perspectives

I Letting both n and N grow to infinity was not natural
originally in free probability theory (n fix was natural).

I There was a very strong sense that n ≥ N would be very hard.

I Ben Hayes proved that n = N is enough to solve the
Peterson-Thom conjecture. It says that “any diffuse, amenable
subalgebra of the free group factor L(F2) is contained in a
unique maximal amenable subalgebra”.
In particular, our result implies the Peterson Thom conjecture
(a different, more tailored proof was proposed a bit earlier by
Belinschi and Capitaine)
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Concluding remarks: more motivations and perspectives

I The proof techniques we developed have important
applications in Random geometry (Hide, Magee – maximal
spectral gap for a Laplacian on random surfaces of high
genus)...

I ...and for other representations of random groups (Magee,
Thomas – mapping class groups, right-angled Artin groups)
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Thank you!

I arXiv:1801.00876 Eigenvalues of random lifts and polynomials
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I arXiv:2012.08759 Strong asymptotic freeness for independent
uniform variables on compact groups associated to non-trivial
representations C Bordenave, B Collins

I arXiv:2304.05714 Norm of matrix-valued polynomials in
random unitaries and permutations C Bordenave, B Collins
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