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Preface

The purpose of this monograph is to show what roles the transversal
commutation relations play in many branches of mathematics  especially

in ergodic theory. Let Gl and 62 be ' *. two groups and let

{Tg} and {Zh} be the groups of transformations on a space X such that

ngh = ZTg(h)Tg g € Gl’ h ¢ G2
where 'ré is an isomorphism on 62 for each g-e,Gl. We call the
above commutation relation the transversal commutation relation and'{Zh}
is said to be the transversal group of'{Tg}. The space X 1s sometimes

taken as a Hilbert space, ‘the n-dimensional eucllidean space, or as

a probability space, It seems to me the terminologies of the transverse
and the transversal flow were firstly introduced by Ya. G. Sinai [ﬁl]

to prbve that a flow of a billiards model is ‘g K-flow, although the
idea of the transverse can be found ambiguously in E.Hopf [7] ; this‘
monograph is muchly inspired by them.

There are the three kinds of approaches to the transversal commutation

relation. Firstly the object of study is very the group {Tg} ’

and {Zh} is introduced as a tool of studying ’{Tg}.
This view-point is taken in the chapter IV to study the spectral type

of a l-parameter group of unitary operators '{Tg} on a Hilbert space

and in the chapter III to the isomorphy problem of group automorphisms
on the torus.

The second one is to regard the transversal commutation relation

e lw
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as a represenation

T
Gl® GQa g @h—-athTg

T
of a skew-product group Gl<$ G2 5 let Gl = 62 = R, the real axis,

and let G be the group of transformations; x—> ox + 8, B & R and

< .
o is a positive number. The we get G =G, ® G, , 1&(8) aB and

the problem of finding all the positive definite functions on G 1is
reduced to finding all the unitary represeﬁtations. This will
be done in §2.5. Refer also to G. Machey [13] .

The last one is a contrary viewpoint to the first one; the

main object is the group th} and a family of groups {Tg} satisfying

the transversal commutation relations is introduced as the dual object of

{Zh}. From this viewpoint, we deal with a measurable flow {Zh}

appealing to the structures of the orbit-preserving transformation group,

an extension of the group {Tg}, the chapter V.

We can find a transversal commutation relation in S. Lie's theory
of the ordinary differential equation in which an integral factor can
be constructed by making use of a transversal group. Although this
classical theory is described in an introductory text book of the

differential equations, we shall mention to it in §1 .
3555§-€Eghfhteresting topics to which I.have no room to mention in this
monograph, I cite Ya. G. Sinai [21] , H.A.Dye. [26], [27], W.Krieger .
(291, Y.Ito [30] and S.Ito [31] . It is a pleasure to acknowledge my
indebtedness to several members of Probability Seminair. Finally, -
Miss Reiko Asahina, Miss Hisae Wakayama, Miss Akiko Fujisawa typed the

original manuscript, I extend my thanks for the expert services.
Tokyo September, 1872. M, Kowada

:-2:-;
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I. The ordinary differential equations and the transversal groups.
In this § we take up the Lie's theory of the ordinary differential
equation in which it can be found out that the idea of é is originated.

About this % » refer to [25].

Let Tt be a transformation from R2 into R with parameter t & R

defined by

Tt(x,ny) = (xl, yl) : (1.1)

Xl =<f)(xs Ys t) %

7y =, v, )

,2where ﬁb and }L are real analytic functionms.

We dssume {T t% form a group ;

tl+‘t2 'tl t2 ,

Let

§ (x,y) i;f (%, v, 0)

yWw
(x,y) = —t (x, vy, 0)
)Z X,y 3T y

and then we get the infinitesimal transformation U of the group -f T tﬁ

df of : |
Uﬂxg)=§@sy)3x +7ﬁhy)3§f (1.2)

.

» where f is analytic. Conversely if U =§ an +"Z aay is

given, we may construct the transeformation group {Tt} which have

»

U as its infinitesimal transformation, .
X, = etUx
.]. - A
. Lt
yp = e vy (1.3)

¢ 3 =
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We say a functionfbn R2 is invariant under the group ‘%Ttk if
2
f(Tt(x,y)) = f(x,y) , (x,y) € R® . .
In other word, f is invariant, if f is constant on each orbit of
' T
ottl‘
The following theorem give a charavterization of invariant function by

appealing to the infinitesimal transformation U.

Theorem 1.1. A function f£(x,y) is invariant under the group { Ttk

if and only if Uf =0 .

proof. Since

k
t Uk .

]
k=1 ke o f

(Mg

f(Tt(x,y)) - f(x,y) =

f(Tt(x,y))E f(x,y) if and only if U$ = 0 .

Note that the invariant function is an integral of the characteristic

equation

dx _ dy
¥ (x,y) B Z(x,y)

of the partial differential equation

U:.)C =§(x,y) gi + }Z(X,y) §—y—= 0

and orbit of each point except invariant points under the group { Tt}

is given by
f(x,y) = ¢

, Wwhere f 1s an invariant function.

-4 -
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Now we shall state about a transversal .commutation relation which was
/
discussed by S. Lie (1874) concerning to his theory of differential
equations.
A differential equation

P(x,y)dx + Q(x,y)dy = 0 ' (1.4)

is said to be invariant under the group {Tt( if
P(Tt(x,y))dx + Q(Tt(x,y))dy =0
implies
P(x,y)dx + Q(x,y)dy = 0 ,

in other words if there exists a function K(x,y) such that

i

P(Tt(x,y)) K(x,y)P(X,y)

QT (x,y)) = K(x,y)Q(x,y) .

_ tu . 9 IR
Put T, =e" , where U -g(x,y) —§T+}Z(x,y) 5y

Theorem 1.2. If a differential equation
P(x,y)dx + Q(x,y)dy = 0

is invariant under the group %thi s it has ;

1/(5p + Q)

as an integrating factor.

proof. Let gi: /P = K(x,y) , where H(x,y) = ¢ be a solution of
. : : : . 9H _ OH
the given differential equation. Then by the relation ¥ H T
=P i Q it follows
9 H QH ‘
= KP —— = K (1.5)
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Since we may chose a solution H such that

_x o H 2H —
UH-%QX +79y =1 (1.6)
it follows from (1.5) and (1.6)

3 H 9H
S dx + 3y

dH = dy = (Pdx + Qdy)/(3P +7Q) .

The following theorem gives us a condition for a differential equation

to be invariant under the group appealing to its transwversal group.

Theorem 1.3. A differential equation
P(x,y)dx + Q(x,y)dy = 0

is invariant under the group { Tt } if and only if there exists )\ =)\(x,y)

such that
[U, V] = A(x,y)V (1.7)
t | |
., whepe V=Q,aax —Pagy , eU=’I't and [U, V1 =0V - VU .

proof. Let H = H(x,y) be a solution such that

¥ 2H JH
UH = + =1.
SBX °y
Then VH = Q- PH_= 0
X y

UVH - VUH = [U, VIH

and 0

]

U(QHx - PHy) - V( H o+ Hy)

(uQ - V§)Hx -~ (UP + V{)Hy-

Hence it follows
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UQ - Ve _ _UR+Vyp —
) > = 3 7)\(){9:)7)
and
[U, V] = (UQ - Vi) 2 ~ (UP + Vi) —2—
4 g ox )l 2y

= d _p_ 2.y
Conversely if VH = 0 ,
0 =AVH = [U, VIH = - VUH ,

so that UH is also a solution of the equation

Vf =0 .

4]

This implies the orbit H(x,y) = ¢ is invariant under the group

{Tt’ T, = éﬂj} ' This completes the proof, The equation
(1.7) implies a transversal commutation relation

TtZSfo,y) = Z N th(x,y) . a.e (x,y)

Sea;\

where Tt = e R ZS = and f G'L2 . Refer also to the

example in § 4.3 .
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ITI  Representations of the skew product group and the transversal
commutation relation.
In this § 5 Some examples of the skew product groups which appear
in many fields of mathematlics are given. -
The spectral analysis of the unitary represehtations of gome Sf the
skew product groups and their relationships to the theory of flow will
be given in the other 3 .

S 2.1. Skew product of groups

Definition of skew product. Let G, and G, be groups and A(6,)
be the group of automorphisms of 62 . Let C be a homomorphism of
Gl into A(GQ) . We define a group operation in the product

G = Gl>< G, as follows ;. for [gl, hl] . [g2, h2] €6

« 8
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(gys by Lgys by = [gy8,s hizgl(hz)]
with this operation is called a skew product

t
The group G = GlQD G2

group of G, and G, with respect to T .

It is easy to see the following proposition.

1

Proposition 2.1.1. Suppose G, and G, are (locally compact)

topological groups and introduce the product topology in the group

’Z~
G = G169 G, - Then if the mapping

Lg, hJ*%'Té(h)‘ v

is continuous, G becomes (locally compact) topological group.

T .
§ 2.2. Representation of G = Gl@§ G,

Suppose we are given a unitary representation

on a Hilbert space , Then the representations U and V
U H G — U =

.‘L9 g=> g T\[g,ezl

vV : 629 h- Vh =H[el,h]

are the unitary representations on of Gl and 62 » respectively,
where e, is the identity of G, (i=1,2).
In this case { Ug % and \\ﬁ1% satisfy the following commutation

relation;
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Proposition 2.2.1. U V.U =V , gel , hec. .(2.1)
ghe  rom) . 2
roof. T T ~1
£ T Lg.ey 2l ey h1 1l [ e,

=l| [g, ezl[el,h][g"l, e,]

Mg, e;dere™, 1, (e))]

= oot T ,
=\lgg™, eorg™7 =Tle> Ty
Conversely any representations Gl > g— Ug and 62 5 h ->Vh on a

Hilbert space satisfying the above commutation relation (2.1) arise

from the representation of Gl@ G, in the above way.

2

Proposition 2.2.2. Let there be given unitary representations of

the group Gl and G‘,2 on a Hilbert space }e/

U:vfﬁs g~>Ug

Vo G23h-—>Vh

satisfying the commutation relation

2

UVU =V '
g% " Vugn)  uGgm e,
If V is faithful, then there exists an isomorphism such that the

representations U and V are the restrictions of the representation

T
T of G = G,® G, defined by

Mg, ul = (AP

proof. Put u(g, h) = ‘[’g(h) . We get

,
w

3 %
uv, , U =UV U UV U
g hyhys "ghig ghye

= 10 =
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=V_ v
Cg(n)) ?g<h2>

) Vrg(hlhz)
and,since V 1is faithful, it follows
“cg(hlh2> =Tg<hl>”(g(h2) .
Suppose 'C'g(h) = €5, then Uth = Ug and hence there exists an element

£ ¢)¥ for which £ =%V f =f, unless h=e,, Then »

N

l’

Ugfo = UthfO = Ugfl ’

this is a contradiction and hence Tg c A(GQ) for any g © Gl .

From the equalities

%

U VhU U Vv U '

= VTg 2. (h) for any h & G2
1=2
it follows = .
. g182 ’Cg’(
N. B. When U and V are . . strongly continuous unitary
representations on [c[ of © . topological groups Gl and G2 respectively

and u = u(g,h) is continuous mapping of G, X 6, into G, » then
’”[9, n] = Vth is a strongly continuous unitary relﬁresentation of
E]
Gl%; G, - Moreover if both U and V are faithful, +then T is
also faithful.

3;2.3. Examples of the skew product groups

Some of the examples given in this % will be again taken up in the .

= 11 -
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following sections.

Example 1. Let Gl be the group generated by a continuous group

automorphism A on the n-~dimensional torus ™ , and let G, be

2
the torus group T . We define the mapping T from G, into A(GQ)
by
Tynn) = 4™, A"€Ge , hEg, .
Let U, V be unitary representations of Gl and G2 on the

Hilbert space Lz(Tn) with the normalized Harr measure defined by

U: Un £(x) = £(A%)
Vo Vhf(x) = f(x + h)

Then it follows UAnV U = V(An(h)

h

so that they induce a unitary representation

n
(A", hl~ v, U,n

T .
of GlQD G, on the space L2 .
Clearly V is faithful, and hence any unitary representation of

Glég G2 induces * &. unitary representation .of Gl

and G2 with the
transversal commutation relation. |

Since any continuous group automorphism on the torus can be associated
with a unimodular integral matrix, we regard A as a unimodular
integral matrix.

Let Y be an eigenvector of A with respect to a real eigenvalue

A (we assume their existence) and let {hs} be an l-parameter

subgroup of T  defined by -

2 12 =
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(%, hs) = exp{i <r, x>s %

o

Then the l-parameter subgroup \hS& of T" induces a l-dimensional

tpansversal group {Vs§ of U A by

st(x) = f(x + hs)

with the commutation relation

UAVS= V)\SUA .

The constructions of transversal flows of A and its applications to

isomorphy problem of group automorphisms on the torus will be given

P

in 1.

Example 2. We put

Gl : the multiplicative group of all positive numbers.
62 : the additive group of all real numbers.
C: ”{'g(h)=gh g€G, heg,.
Then G = Gl(g 62 is | § 2-dimensional affine group. To find all

the irreducible unitary representations of the group G is equivaient
to find all the positive definite functions on G and to decompose
them into elementary positive definite functions. The gene}"al form
of the irreducible unitary representations of the group G obtained by
I. Gelfand and M. Neumark will be given in § 2.5.

Let ( Q/@ /u'T‘l:) be a measurable flow on a probability space
(Q,a?,‘ /u) and ‘its transversal flow ﬂZS{ with expanding coefficient ) .
They induce unitary operators {U t%’ %VS% on a Hilbert space )“L .

Ugflx) = £(T 4 X)

- —*)-\-— logO(.
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V £f(x) = £(Z_x)
S S
such that quSUd = V(Xs
Thus K, s1=> UV

is a unitary representation of G .

The spectral type of {U&f is uniform Lebesgue, and {VS§ is weakly
mixing;  these facts will be proved in§ 4.2, The geodesic flow
{T ‘c% on a compact manifold with negative constant curvature and the

horocycle flow { ZS% on it yield such an example.

Refer also to the flow of white noise in §L+.3.

- _ . ; . c
Example 3. Let G, = GL(R, n) , G, =R and '(‘A(h) =Ah, AG G, hEG,

We call the subgroup \:ﬁ{e,, h]% the n-dimensional transversal group of
the group %{T‘: [g, ezl} where ][ is a unitary representation of the
group G = Glé G2 .

The following two examples come from the relativistic quantum theory.

Example 4, Let Gl be the propér Lorentz group, 62 the space of

space-time and

= A €
'CA(x) Ax, AS€G , x€GC,.

The group G = Gl® G2 is the Poincaré group.

Example 5. Let

Gl = G , . the Poincaré group

G, =/Y(R4) , the Schwartz's _{ -space

((([A X](h))'(y) = he(A_l(y ~ %))  (the inner product)

x,yeR', [a,xl1€c , heo
- 14 =

2
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and put
1

-1.% -
- = t
T [A,x] ( [A,x] ), thesdual of T[A %]

Put Gla [A, x]— U[A,X]

2

where U[A,fo(y) = f(A—l(y - %))

and then it is a unitary representation of Gl on the Hilbert space

2@, a ).
Let 6,3 f — ‘f(f) be the representation by the field operator.

Then G = Gl® G, 2 (LA, x]1 , f) — y(f)U[A,x]

is a unitary representation and

U[A,x] P£) = <)O(tl:A,:a(]f)t'][A,x] )

- 15 ~
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$ 2.4, The uniquencess of U with respect to V .

Let U and V be . unitary represehtations of - . group G,',

and (32 on the Hilbert space /‘I{- respectively such that

uv

g'h = Vtg(h)Ug . Denote by /\(/ a  von Neumann,algebra generated

by { Vh; h € (32 'g and denote W® an automorphism of /.\f obtained
G/

by extending}continuously and linearly 'a. mapping

Vh-«—-)UthU: .
Then <{ Wg; g & Gl } is a group of automorphisms of ‘V Our
problem, now, is to classify th? set of all gutomorphismsof {//
into the equivalent classes. |
In the followirgs, we assume Gl and G2 are locally compact

abelian groups.

Proposition 2.4.1. Suppose V is maximal abelian and let U and U

be . .. unitary representations of Gl“ such that Uth = Vfg(h)ug and

t

uv

1
2'h = V'Tg(h)ug . Then

'
- :
U, = O\(g)Ug > g €6

where ol = o{(g) is a character of G -

' -1
Proof. (UU "W

v r
g h = 1 \' UUl=V_UUlfor'any

1 -
U v U=
-1(h) ~1(h) h
& g g Zee g8 g8

h & G2 )and since 1\/ is maximal abelian,
' -1
UgUg = {(g)I , I 1is the identity.

-~ 16 =
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Since Ug is unitary, )(f(g) =1, Moreover
U o (8,200, |
= g.8
8185 12" g, 8,
1 1
=U U = Al )pl(g,)U_U
g1 85 1720 gy
and hence &/ E‘Gl/\ , the character group of G, . More generally,
we have
!
Proposition 2.4.1. Let V and V be . unitary representation of

G, on a Hilbert space ## , and we assume ‘Q/h is maximal abelian.

1 . .
Let U and U Dbe - unitary representations of Gl on ﬁ¥ such that

2

UVvVuU =V
ghg . (h)
g
1T
g% = V7 )
g
t
Suppose V and V  are equivalent, say
£ i
WW =V

by '‘a unitary operatorW . Then

t % A
WUgw“ = oi(g)ug . od€e,

Lemma 2,4.1.  Suppose lv/’ is maximal abelian and let fO be the w¢yclic

vector of V . Then there exists uniquely a unitary representation.
W such that

-1
1) WVW =V
h (h)
g ng Tg

2) ngb = fo

o 17 =
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Proof. Define g transformation Wg by
WV =V , h &6
g hf, ’Tg(h)fo 2

and we denote by the same letter Wg the continuous linear extension
of Wg on the space ﬁi . Plainly Wg is a unitary operator for any
g e Gl . The condition 2) is clear to see and 1) is deduced from

the followings,

Wg(Z:/Lthk’}o ) : Z ;\kvf(g(hk )Wg fo

and then
Wg‘fhwg-ﬁz/\k"hkl&a ) = Z'M"qgm ,Zg_lmknwg o
= Ve i) TN T, )
g .k
Theorem 2.4.1. Let U and V are - unitary representations of

Gl and G2 on ﬁi respectively such that

&%
. \ =V
Ug hUg (Zg(h)

for some ‘C , and suppose L// is maximal abelian. Then there exists

1-1 correspondence between the unitary representations U's of ’Gl

on }4 and the characters C%U G via the equation

U = (giw_ .

g = Fulel,

Proof, It follows from the proposition 2.4.1 and the lemma 2.4.1
¢2.5. Unitary representations of the transversal commutation relation.

- 18 -
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- In this §> ', we shall give determine all the irreducible unitary
vrepresentations of.the transversal commutation relation R+é§ R in a
separable Hilbert space. The results and proofs in this § were
obtained by I. Gelfand and M. Naimark [24] . They considered a

group G of linear transformations
y = ofx +@

of the real axis, where,‘i runs over all positive numbers and é

runs over all real numbers. The group G contains two subgroups Gl
and G, generated by the transformations. Ty x—=T) ¢ = A x
and ZP D Zﬁ X = x + F , respectively. They dlearly satisfy

the commutation relatioms.

T, T =T (2.5.1)
A"k, Tolpd,
Zn Z = Z (2.5.2)
BoR, B1tf,
=T,% ' 2.5.3
Z!gT()( 'ro( 04{6 ( )
When we puﬁ T -t = St for some non zero A , then the two
(<] .
relations (2.5.1) and (2.5.3) become
S. 8§ =28 . (2.5.4)
T, #l+t2
S, =87 2.5.5
z/a " + (Be"\t | ( )

respectively.

--19- -



Sem. on Probab.
Vol.36 1972
P1-89

In the followings we prove the toeorem .,

Theorem 2.5.1. Every irreducible unitary representation of G 1is

egivalent to one of the following types :
(q is l-dimensional; VOZ I, U 1 is the character of the multipli-
cative group of positive numbers.

II. (q, consists of all square summable functions £(x) , =~ »x< bo

which are boundary values on the real axis of functions analytic in the

upper half-plane: -3».

Vg £G=EGer §) 5 Uy £ L4 S (EGo=e? KoM )

III. {CL consists of all square summable functions £(x) , - jxXx{ b0
which are the boundary values on the real axis of functions analytic
in the lower half plane; ..i:t

Vﬁf(x)zf(x-rl@ ) s UO(_f(x)— \/o( f(g(x)(w f(x)=e ’\’t
Now suppose we are given a unitary representation f)\[,' of G in a
separable Hilbert space {d— and denote Uo(. and V§ the unitary operators
7T (Ty ) and T(_'(Z {3) respectively.
Denote by N the set of all invariant elements .of IQ{_ under Vﬁ , 1.e.

={.h6{q// [ Vﬁh=h}

Since Vﬁ U N = N=Uy,N, it follows UyN =N so that we

o(o(ﬁ

may reduce the representation 7T onto the subspace M = N -+ , the orth-
ogonal complement of N . Hereafter we confine ourselves to the space M
Let teo
Vg = S1AP dE )\ (2.5.6)
- b

be the Stone decomposition of the l-parameter group of unitary operators

-.20..~
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% V{_:f, } , and by Hellinger-Hahn decomposition, the space M can
be represented as the direct sum of the subspaces Mk which afe
spaned by the sets { E,\ hk; -0 < AL+ 3‘ where {hkz‘g is an
orthonormal system of M . The probability measure o k(l a)

defined by

dcrk(x) = d (Exhy, B ) (2.5.7)

k
is absolutely continuous with respect to Q/k-l( D IR g-'l( s ).

The subspace M is equivalent to the space Lz(c"k) via the mapping

Lz(crk)saf — ff(x)dE h & M

) A By K " Let Pk be the projection
operator on the subspace Mk . Put Pkf = fk and we regard fk
as the function fk( r) o€ Lz(o'k) by the above mapping. We shall
ia )3
write £ ~§ £.() | Then we can see easily V), f ~ ie £ .(a ) |
Put P, Uy Pj = Ukj(c( ) . Then Ukj(o( ) is a bounded operator

from - Mj onto Mk » such that

Uaf A S U (500 ]
3 3

" Denote by W K (d3 A ) the funciton in LQ(O‘k) corresponding

to the element P

kU'i Pjhj € Mk i.e.
, o
P, Uy Pjhj =\ kj(m; X )Ey by

%
Then, since UE, Uy =E }‘/'d s We get

+ 08
P Uy ByE = B S_ij( X)E, by

« 21 -
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o0 4o
= j—wfj(x ME , 4, By by = j_ £, (3 /u )ij(o\ t A)E, b
Loty AIE (X)) . 5.
N'ﬂi_’(d, }\.)fj( /o) (2.5.8)

From the unitary condition of U, , it follows

+00 2 + o N ‘ 5 .
% g_w,fku)i dos (3 = % ngkﬂ““ A )fj(/\/«)\ dvku)
«2.5.9)
Putting in (2.5.9)
' o (k% 1)
fk(ﬂ ) = % QCA (A)(k=1), the characteristic function of a set A

we get

o (a) = >

. 2
kgom [ (%520 |2 da ()

and hence

L ' 1 2
o (ka) = Zk SAITL“M(Q 5 A )'l do—k()u) .

Thus o“l(o( A ) 1is absolutely continuous with respect to O"’l(A)

because every o~ is absolutely continuous with respect to o~ ]

k
It follows that there exist the density functions « k( 2) of Sy

with respect to the Lebesgue measure (k=1, 2, ...) ;
O'k(.a.) = Lwi(a)i:xl"l;m (k=1, 2, ...) (2.5.10)
Put Ek = £ a wk('?c) =’0 4, then E.CE and, since o

runs over all positive numbers, El is one of the sets (0) ,

(0, +&) , (=82, 0) . Now we define the mapping LQ(G‘k) 2 £,(1)
A A

— ?k( A) = (A)k( ﬁ)fk( A) e M, . where M is the space of functions

« 22 -
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¥(CA) with finite norm i @i* = f/?C‘hll 21217 d A and with
the property ¢ (A) =0 on E. . Then.it is an isometric onto

0
A A
mapping of Lz(a-k) onto Mk . We put M = Z @ Mk » Wwhere n

r=1l 0

A
and let 8§ () be the operator on M corre-

J
(o) Then we get

is the number of the Mk

sponding to Up
i

Ukj(oc)fj N“'/’T‘kj(d 5 A )fj.(?c/o()

=

, , -1 1Y W
o (%5 A IR )T o ()8 (/08 O /)

e € ‘ -
=/rkj<oc;z )P (A/&) for A/yE E,

. ey, o
skj(a()f;’j(n) Yij(«,A)S"jc)\/«) for M« € Ey

We don't define 7‘2‘{( for A/« & Bj

¥} we write f A (a) = f?k(l) § » then

+ o
ieli?= S0 1g,0] 2 1A17d A
kK "=w
'._1. U’, v 1
=2 y [ 27 (&, ax) T 2 TATAA
= 3 7] ]
Vﬁf ~ o) PCAY 3 Ugf~r (ks x)P(A/u)
where A3 A)f () = 170 ¢.(4) 5 (2.5.11)
i3
For a.e. My EUEk , A(o ;3 X ) 1is an isometric operator
A

with domain M , and for a.e. A /Jo & Ek with the domain

k 4 . ~ . P
z @Mj . The range of A(d; Xx) 1is M for a.e A/y & E.
i=1 ‘

AN
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and @ M for a.e, A€ Ek
=1
k
- ~ A
Let A_ & Ek N ( U_,O(Ej )C , then M is transformd onto /_, @Mj
i=1
isome‘trically by A(Xj; A) . This is impossible, since
. N .
2‘, @ M is the finite dimensional subspace of M . Therefore, -
j=1 o ‘

for }\e:UO’ﬁEk s A must not belong to UBk and hence UEk

is one of the sets (0), (-p, 0), (0, +®) .. Similarly we see the

same 1s also true for each Ek .

Since %lk%f - 5"‘1 Sde,mA(o(l; M A% My VPN 1)

Aot s MG k)
AL 0ls N ave (00,00, N

W

ACGH 5 7IAC,; 7\/3( )

~(2.5.12)
Put B(gf, §) = A(O(/p 3 00) . Then the operator ﬁ (A, (;) is
isometric and defined for a.e (X/ (3 ,*) and hence, by Fubini's
theorem, also for a.e (X ,(”) . The equation (2..5..12) is

turned into the form

B, BB B0 =Bl 3 for ae (/s b 1) (2.5.19)
Then there exists a { = @ , Such that
Beot, B OB =B, I for ae (o, V) .
B, £ =B, BF, MH=Cl; thenby (2.5.19)
B (Mo BV NC (ot o)
= B MADB s Mg k)

o 24 o
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= B en, Motot) = P CMCO i m )
Hence C (7\)5(7\) =1 for a.e. /\ so that
A, N o= BOVNCN o0 = BBy m .
”'Now put “‘\/\(/\) =B Hl(h)(f(ﬂ) and write f »/\ft‘( S Then
| P o ST MOk
| ell? j Ifemi? a2 0 SRSy
- M. n [N
iafy NS
.Vﬁf/“e kf(%)= {e ﬁ’k(ﬂ)}

R IUZOERE SN

Now we suppose the representation is irreducible; then M or N

is (0) . In the first case, Uy 1is the character of the multi-
plicative group of positive numbers. In the second case, M is
one-dimensional so that \}j (N must be a scalar valued functior.

In this case the representation is irreducible if and only if

~

M consists of functions ‘f ('N\) vanishe on positive or on negative -

part of the real axis. Passing to the Fourier-transform

o
£lx) = L ﬁ T AN
00 / l .

we obtain the theorem by the Paley-Wlener theorem.
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M The isomorphy problem for the group automorphisms

and the transversal flows

$ 3.1. Outline of this chapter

In ergodic theory, there is an isomorphy problem which asks when
two metrical automorphisms on a Lebesgue space are metrically iscmorphic.
This problem for automorphisms has been discussed by introducing several
kinds of metric invariants. . Since A. Kolmogorov, by using an invar-
iant, entropy, has shown that spectral type is not necessarily a
complete metric invariant for general automorphisms, it was conjectured
that entropy is a complete metric invariant for K-automorphisms. Rec~-
ently D. Ormstein has obtained the gesults that entropy is generaliy&nét
complete invariant for K-automorphisms but it is a complete invariant for
very weak Bernoulli automorphisms.

In this section, we sha;l show that the multi-dimensional transve-
rsal flows for a group automorphism on the finite diminsional torus play
also a role of a complete metric invariant for group automorphisms dﬁ ;he
torus. Our method gives us some informations 'how two group automor-
phisms are isomorphic' as can be seen later.

Let Mn be the n-dimensional torus and let A be a contiouous group
automorphism on Mn . This mapping A becomes a metrical automorphism
on the measure space with which the Haar measure and topological Borel
fieid are assoclated. )

We are concerned with the two types of equivalences, metrical and

algebraic ones ; we say two group automorphisms Al and A2 are

- 26 -
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metrically equivalent if there exists a measure preserving, 1-1 mapping
¢ such that (y_lAlGY%? = A2ou for a.e. oué.Mn . Group automorph-

isms Al and A2 are said to be algebraically equivalent if there exists
a continuous group automorphism € on M such that €9°1A153 = A, .

Algebraic equivalence implies metrical one, but the converse
implication is false, and so entropy is not complete invariant'among
algebraic equivalent classes 3 our invariant, ergodic transversal flow
with discrete spectrum may serve to the above two types of equivalence
problems.

The notion of l-parameter transversal flow was already introduced by
yva. G. Sinai [5] and he showed a sufficient condition for the existence
of it. In general, there does not always exist ergodic l-parameter
transversal flow of translation type and.we,ﬁ therefore, proceed to
extend the notion of l-parameter transversal flow into multi-dimentional
one to ensure the existence of ergodic one.

For given two group automorphisms A. and A2 on 'Mn‘ we caﬁ easily

1

construct ergodic transversal flows with discrete spectrum, { Z;l) }

\
and { Zé2) ? , but it should be noted that it is difficult to construct

i

them in such a way that

k) _ (k) -
aZT = LA, k=l 2,
that is, the matrix T is common for two flows. On the while, in

the case of algebraic equivalence, it is sufficient to seek such pair
of transversal fillows among the class of transversal flows of translation
type, and eigenvalues of Al and A2 give us much informations to™

construct them. - 27 -
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3.2, Definitions and Notations

W

In this &, we shall give, mainly, the definition of multi-
dimensional transversal filow for metric automorphism on a probability

space.

Definition 3.2.1 Let (S2,B ,y ) be a probability space.

Let { ZS} be a family of metric automorphisms on §2, with parameter
s which runs over m-dimensional Euclidean space R™ . Then we call

{ ZS} is an m-parameter flow, if it satisfies the group property,

- m
1) Zs+'t = ZsZt (mod 0) , s, t € R

and the measurability condition,

2) the mapping, (s, w) —> Z_e , 1is measurable.

ExS

Definition 3.2.2 Denote by V.3 the unitary operator on LQ(Q,V)

induced by Zs H

st(W) = f(st) . fe L2<Q,v) .

The m-parameter flow { ZSE is said to be ergodic, if any invar-
iant function of {VS} is a constant function only. If there exists

a complete orthonormal system { fnx and a set { §n\ in R™ such that

- . m .
VE = ol s,§n £ sER |,

then we say the m-parameter flow { ZS\ has the discrete spectrum {gn} s

where < - > means the inner product in R .

« 28 =
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Definition 3.2.3 Let A be a metrical automorphism on 2.

exists a regular mX m matrix T such that

Although we defined an multi-dimensional transversal flgw on a
general probability space G2, in the following through, we' consider
only the case where $2 is the n-dimensional torus Mn . The general
cases are commented shortly in £ 3.6.

Let Mn be the n-dimensional torus and ¥ be the normalized Haar
measure of Mn,' Then a continuous group automorphism on Mn can be
considered as a metrical automorphism on the probability space (Mn, v) .
It is well known that a group automorphism A on the torus Mn = Rn/Nn

is associated with a unimodular matrix which we also dehote by the same

letter A , if no confusion occurs. - Let MQ‘ be the characeter group
of Mn . The elementasof Mn and that of M;"are denoted by g,'h; oo
and g) H, ... , vrespectively. |

We cite the well known theorems of P. Halmos and von Neumann [5 ]

which are concerned with the ordinary l-parameter ergodic flow with

discrete spectrum. - These theorems still hold in case of ergodic
m-parameter flow. We proceed, without the proof, . to the followings.
Theorem A. Every proper value of an ergodic m-parameter flow is

simple, and the set of all proper values forms an additive group.
Moreover the family of all eigenfunctions multiplied by suitable constants
forms a group under the multiplication as function.

« 29 o
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are metrically equivalent if and only if they are spectrally equivalent.

We use the above two theorems in the following.

& 3.3. The existence of a transversal flow.

The following is an extension of Ya. G. 'Sinai's result [5;87] .

Lemma 3.3.1 Let A Dbe a group automorphism on Mn' and suppose
that there exist a reqular mx m matrix T and ¥ , a homomorphic

imbedding of MI/;‘ into R™ such that
©a'g™ = TP, gle ], (3.3.1)

where A and T denote the transposes of matrices A and T ,
respectively. Then there exists an m-parameter transversal flow { ZSE
of A with discrete spectrum. If, in particular, ¢ is an isomor-

phism, then {ZS} is ergodic.

ol 1 .
Ppoof, We define { gs’s by
(g > &™) = exp [i<s, 9@ k . (3.3.2)
then { g } forms an m-parameter subgroup of Mn . Define Z;:;, by
Zg=gtg, gel, (3.3.3)
then ZS 1, is an m-parameter flow. Moreover we have
J .

(g, & = (g, AgV = exp |1, WEND]

exp{i {s, T*f?(g )‘7} = exp {i-( s, Y(g )>}

:(g 'g/\)
Ts?'. - 30 -
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A a - . - L -
for any g’ e Mn' l.e. , Ags rgr which implies that AZS ZTsA .

The fact that { ZS} has discrete spectrum is deduced from the

following ;
. — - > l K . o~ .
veNe) = (2 g) = Ngre) =exp{i s, P(g)>r- g (e);
thids shows that the spectrum of { Zs} is just the set { g’ch)~; gﬁz:Mn }u
Suppose that ¢ be an isomorphism. Then the relation,

(gs,g’\) = exP{ ids, E?(g'\)>} = 1

for any g, implies g™ = 0, therefore, the subgroup { gs]j is dense

in M. Let f= >, ghe 1w C(g™)g™ be the Fourier expansion of
L ,
£ e Lz(Mn) . Suppose f be an invariant function of { VS} , then

£=Vf = C(g’\)ei<s’ ¢ (gA)>-/g\

=2, Cl(g g
This implies C(g™) =0, unless g™=0 . Hence f 1is a constant
function, i.e. , { ZS} is ergodic.

Thus a triple { m, ¥, T } yields a transversal flow of A .

b
For convenience, . we shall agree to say that a triple { m, ¥, T } is

a solution of (3.3.1) , if it satisfies (3.3.1) . If, in partic-

ular, the flow f Z } defined by (3.3.2) and (3.3.3) is ergodic,

{ m, ¥, T } is saild to be an efgodic solution of (3.3.1)

Lemma '3.8.2 Any group automorphism A has an ergodic solution
of (8.3.1) .

e 31 =
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Proof, Let eé\ = (0, O, ..k, 0, 1, 0, .. , 0)& Mo, jp(e;7 -
= el e R* , (k=1, .. ,n) and A=T . Then (3.1) has the ergodic
solution { n, ¥, Ak

Now we obtain the following existence theorem, which is an easy

concequence from the previous two lemmas.

Theorem 3.3.1 For a group automorphism on Mn' there exist

ergodic transversal flows with discrete spectrum.

93]
N

We shall agree to say that the m-parameter flow g ZS; ng = gtg

defined in (3.3) is of translation type.

Remark. . There exist, in fact, group automorphisms which have
no ergodic l-parameter transversal flow of translation type, but havé
ergodic transversal flows with higher dimensional parameter.' For.
example, the group automorphism associated with the unimodular

/

1 3 4
matrix & 0 -1 -3 is such one.
0 1 2)

Once eigenvalues of a matrix A are known, it is easy to form a
tranaversal flow of A with discrete spectrum. To clearify this :’

situation, we shall list several examples in the following.

Example 1. Suppose that the matrix A has a real eigenvalue X\

and let » = (rl, Py soe 3 rn) be an eigenvector corresponding to ‘A .

29

Define a homomorphism ¥ from M;\ into RT by
Lf(eQ)=rk’ k=1, «v. , 0 .

Then, by Lemma 3.1, the triple { 1, ¥, K} is a solution of (3.1)
- 32 -
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and it determines a transversal flow { Zs\f of A . Since ¥ is a
homomorphism, { Zs E is of the following form as was shown in the proof

of Lemma 3.1 ,

2.8 =gt g

(refer to Ya. G..Sinai [21D .

Example 2. Suppose that the matrix A has an eigenvalue

A= At i[:} and let v = (rl, Pos vov s r'n) be a corresponding eigen-

vector. We set u = (Rerl, cer s Rern) ~and Vv = (;Lmrl, . ‘;Impn) .
Then we have the relations, Au = d u —@;r » and Av = (Fu +8v. .
Let @ (g™ = < u, g’;> and Y™ = < v, g">. Then
T(g™ = (Y(g™, ¥(g™)) is a homomorphism from MI:\ into R2
Denote by T the matrix (_oé g ) . Then we obtain

Ty =T TEY, ghe m

Therefore the triple { 2, C, T } is a solution of (3.1) so that it

determines a 2-parameter transversal flow Z(s £) (s,t) & R2 } of &
H
Example 3. Consider an ergodic solution 1 m, ¢, Tl} of (3.1).
Set T, = STlS—l , where S is an mX m pegular real matrix.
Let ¥ (g™ =8¢ (g™, ge¢ MnA. Then { m, ¥, T2} is also an
ergodic solution of (3.1) . Hence, if all eigenvalues of the matrix

' R ST
A 1is real and if we can find S such that SAS ™ = » then
0 A
n

A, O R C
we have an ergodic solution ( n, '}0,( l\ § ,»» Where V»(e]’:) = Se}?
o A
n

- 33 =
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k=1, .., n . In this case, the ergodic transversal flow | Z

constructed by the solution has the following form ;

Z =g+
(5.5 +vs s )8 BT 8, .., 8)
where g = g(%£n+ g(n? and .g(k) is defined by the same way
: (Sl, LAY Sn) Sl ’,.‘Sn Sk .

as in Example 1 with respect to /\k » k=1, .., n .

In the proof of Lemma 3.2 , wevhave constructed a n-parameter
ergodic transversal flow for group automorphism A on Mn . On the
other hand, group automorphism may have another ergodic transversal,,
flow with discrete spectrum of lower dimensional parameter than n .

To get such transversal flow, we may well construct subgroups

Y
|

51
<> ;\k’ Crppe **» Cpo respectively, where i\l, .oy Rk’ are reals,
Cpy1® > ©p are complexes and. k+2(m-k) ¢ n . Let 5 be 1 or 2

dimensional parameters according to 1l g j gk or ktl g gm.

Then k+2(m-k) dimensional flow

(1) (m
s )BT BT g FT &g )
" m 1 m

Z

(sl, .

satisfies the relation
AZ = A
(sl, ces sm)g »ZT(sl, ces sm) €.

where Al”
Recj Ime

-Imc. Rec.
' J

lg(l) g, ..,{gén)& (m ¢ n) corresponding to eigenvalues of A, ?\l, ..
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i = k+tl, .., m. It is easy to see that there exists some positive

integer k+2(m-k) (£ n) such that the above transversal flow is ergodic.

& 3.4, A metrical equivalence theorem for group automorphisms on Mn .

In this & , we give a theorem which asserts that a group automor-
phism on the torus is completely determined by its ergodic transversal

flow with discrete spectrum.

Lemma 3.4.1. Let A Dbe a group automorphism on Mn and { ZSS

be an ergodic m-parpmeter transversal flow of A with discrete spectrum

r 3

7= i /u [ such that AZ_ = Zn A . Then there exists a complete

orthonormal system { fﬂ‘; in L2(Mn) with the following properties;
. - . { . } .
(1) fu is an eigenfunction of 2 V_ | corresponding to m e
=f,f £ 3 M € r,
(8) U fu = £ f}A ,

where st(g) = f(Z‘sg) and UAf(g) = f(Ag) .

Proof. Let { h/;A H /Aérl} be a basis of L2(Mn) each of which
is an eigenfunction of g Vg é . Since { ZS} is ergodic, the

absolute value of hu is a constant function, so we may assume {h/u} =1.
By the relation, Vsh,u hg = ei< S’/“+§> hy he and the simplicity of
spectrum of { Vs } s, we get h/th = c(/,,,g)h/“+§ , whevre

C(/J,;B) ‘ =1, Put f/, = _;A—Tﬁ-)h/u , where F/-;—(-O—) is the
complex conjugate of the value of h/,\ at the eidentity 0 of M‘n .
It is trivial to seé (1) . The relation (2) is deduced from the following;
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£afg = hu (0)hg (0)h, he =C(/M,>)h/ +‘_(O)C(/f/ 9)/M¢
=f/“_€ .
To obtain (3) , note that UpVog = VU and

n

-1 B3
L s, > < T 78,Tw) =V -
UAVSf/M MU AEu I Upfu = Vpml U,y

Hence

UAf/M (0) = CfT‘/"M(O) = f/v\ (A(O)) = f/u (0) =1 5
and we get, c=1,

be group automorphisms on Mn .

Theorem 3.4.1. Let Al and A2

Then they are metrically eqivalent if and only if there exist ergodic tran-
{

sversal flows ( Zél) } and { Zéz)} with discrete spectrum of Al and

A respectively, which satisfy

2 b
(a) they are spectrally equivalent

), 00,

(5) A = Zpg A s KL, 2.
Proof. Necesssity: Let 0 be a metrical automorphism on Mn

such that Gf-lAlG\ = A2 . By Theorem 3.1 , there exists an ergodic

. \ .
transversal flow . t Z;l) k with discrete spectrum such that A.Z (l) Z<l)

1l's Ts
Let Zm‘) c lZ(l)O‘ , then we get
(2) _ -1 (J_) - (2)
A,Z (¢~ AO)(@ ZG*)-G“ s A0 = ZpTAy

{
It is easy to see that i 222)} has the required properties.

Sufficiency: Denote the common discrete spectrum of . i Z;l) } and
L (21 _ . - .
i zZ 5 by f7 = {/Vj’ j=1, 2, ... Then | forms a discrete

| ——
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sdditive group, and so the character group G of is a compact abelian
- . . . NGB RN
7POoup . Let {.fM 5 e[7| be a family of eigenfunctions of Vs i
shich satisfies the conditions of (1)~ (3) in Lemma 4.1 . For conve-

iience, W& rewrite yZ by h%AIWhen A is regarded as a function in
P(G); h (w) = (MJ,/M ) , wé G . The mapping £u—>hu can be

;xtended to a unitary operator W. from L2(Mn) to L2(G) . By - Theorem

1
. , we see that Wl is multiplicative, and therefore there exists a

etrical isomorphism (T'l from G into M such that -

h/u(w) = Wlf/u(‘w) = f/&‘(ﬁf', w), we 6, j=1,2, ... .

et
A =6 1) _ ~-1,(1) : _ .
Al-é‘lAlO\l s g —¢l ZS Gy and (u)s,/u) —exp{l\s,/u)’é.
'hen we get
~ (1) _ (1) '
R
(1), \ = -1, (1) e (o(1)
(Zs v),‘/A) = h/M(@l;zS 1 “? = £ (Zs N )
- e, (5 ) = Cwos ) (s i) = Go_bew, o)
= e - O?lao = ng/u » /M) = "OS"' 3./’ s
amely, %il) = 50+Lus ' -(4.1)

oreover we have

~ _ -1 . - . )
(AW M) = Bu (G "4 6 W ) = £, (4, 6 W) = fTiM (0] wy)

ol

o ;. ,T* _ ilTs, M ,
(W’T/M)=el<s /M>-el<s/u>- (WTS’/J)‘

s
3 N(A) = W - '
ence we obtain - AW s (4.2)
e shall show that ﬁi is a group automorphism on G . We have
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L

(0‘ A (W+ w'))

h/,,‘@.’l(w+ W) £, (8,6 (0t w'))

1
1

L + ! ® + W'
r, (Tl wh) = hpk ot

= f B3 (W)h % <~’/{?') = fTﬁ'Q( ({E;;, (78 )f * (é‘;’ W')

T/,i / ;/‘L’ /
= (A o W)f/M(A Ow"lw ) = //x( v‘-’)h/u (A W)
= /M (A u->+A w') , forany uE e,

By the same way as (§” we can definean: isomorphism O 5 from G

l 3
P

into Mn , and using ¢ 5 » W define a group automorphism A2 on

r
G and its transversal flow i Zéz) 1{ . Then we obtain the similar
5(2) "
« A = w = 2 = w2
formulas to (4.1) and (4.2) ; Zs w+ws. and A2 A s Al s
So we conclude, /XJ. =.f§2 . Let ¢ =0 lG ;l , then we get c“nlAlG“= A

This completes the proof.

& 3.5. An algebraic equivalence for group automorphisms on M

As an application of the previous discussions, we shall give a

necessary and sufficient cdndition of algebraic equivalence for group auto-

morphisms on Mn .

Theorem 3.5.1. Let A, and A, be group automorphisms on Mn .

1l 2

Then they are algebraically equivalent if and only if there exist ergodic

solutions { m, (?k’ T } (k=1, 2) of
¢ (Akg") = TY, (g -(3.5.1)

such that ‘j’l(MI:‘) = 5°2(M1;\)

- 38 =
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Proof. Let ( Zék) S “be ergodic transversal flow of Ak which
is defined in the same way as in (3.3.3) . Since Zék) } is of

translation type, all characters g”\e M; are eigenvectors of { Zék) } 5
and moreover the spectrum of it is just the set Efk(Mn) ; we denote the

Ny o ~ 4 a s .
set EPl(Mn ) 3>2(Mn ) by |7 Let G‘l and ©', be isomorphisms

-/ . )

from G = | onto Mn which are defined in the proof of Theorem 4,1.
N

Since G\k is character preserving, namely, the function 'g(CTkuJ)

in w € G is a character of G , we sde that O"]< is a continuous group

isomorphism from G onto Mn . Thus we get the continuous group auto-
. -~ _ -1 - . T m
morphisms Ak = d‘k AkO‘k (k=1, 2) such that Alt&g = A2<&g., s& R .

P

Since the subgroup i 2R }C. G is dense in G , we conclude Al = 7(2 .

-1,-1 -1, _ -1
namely, (G ,6,7) "A,(G07,7) = A, . Clearly C7;G,” is a continuous

group automorphism on Mn ..
‘As illustrated in Examples 1l.~.3 , a solution { m, £, T } can
be constructed from the eigenvalues and eigenvectors of A . Note that

it may happen that only one eigenvalue with eigenvector corresponding to

it yields us an ergodic solution. We shall state about this case as =
corollary.

Corollary. Group automorphisms Al and A2 are algebraically
equivalent‘if the unimodular integral matrices associated with them have
eigenvectors ', = (ril), rél), cees rx(ll)) and r, =‘(r§_'2)-, réQ), ""rr(12)>

' ' 3
corresponding to an eigenvalue A in common such that { rgl)j are integ-

rally independent, and r, = Brl » Where B is an unimodular integral

matrix.

= 39 -
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g 3.6. Some remarks

As was shown in & 3.2 , our invariant can be defined for not only
group automorphisms on the torus but also a general class of metrical auto-
morphisms on a probability space. It is still open when it exists for

metrical automorphisms; a partial answer to this problem can be given as

follows.

1. If a metrical automorphism A on a Lebesgue space has an
ergodic m-parameter transversal flow with discrete spectrum, A 1is isomorphic
to an automorphism (not necessarilly group automorphism) on a compact abelian

group with which the Haar measure is associated.

2. Let G be a compact abelian group with the Haar measure and
let G be its character group, Let A Dbe a group automorphism on G

and suppose that there exists ¢ , an isomorphic imbedding of G into

R® such that
@) =TPEY , gled,
where T is an mX m regular matrix. Then we can constructan ergodic

m-parameter transversal flow of A in a similar way as in & 3.3,

; 4O =
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Iv. Spectral type of lwparameter group of unitary operators

with transversal group.

It is an important problem to determine the spectral type of
automorphisms or flows on a probability measure space, We shall
deal with a unitary operator U aﬁd a l~parameter group of unitary- .
operators {Utg on a separable Hilbert space H , and @iscuss
their spectral types, appealing to the transversal commitation relation.

For our purpose, a transversal group, if it exists, plays
an important role. A l~paramet¢r group { Vsk of unitary operators is

said to be a transversal group for U , if it satisfies ou

Uv_=U_ U for some X # 0 .

s NS
Similarly, g A } is a transversal group for fUtk , if it satisfies
UtVs = Vsexp(m.t)Ut for some A f 0 .

Ya. G. Sinai in [4] has -already proposed the idea of a transversal
field which is useful to see whether a given flow { Tts (an éutomorphiém
A) on a probability space SU is Kolmogorov flow (Kolmogorovﬂautoméww
rphism) or not, |
For a flow { Ttﬁ (an automorphism A) on: (S, P) , if there exists

an another flow f ng» on (Gl, P) such that

T,Z

t% ° Zu(s,t)T% <AZs = Su(s)A) ?

then the transversal field can be constructed as the measurable

partition of the measure space (G2, P) along the orbits of f Zsj
in finite time intervals, Such a flow'{ ZS} induces a l~parameter

= 4l =
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group of unitary operatros f'VS} on the space LQ(QZD in a usual manner.
The group % Vs} satisfies the commutation relation mentioned above
with i Uts induced by { T, 3 (with U induced by A) . In our
approach, although the structure of measure space never contributes,/
the transversal commutation relation gives us many informations
about the spectral type of U or { Utﬁ .

There are many important examples of unitary operatdrs or l-
parameter groups of unitary operators with transversal groups such as
flow of Brownian motion, geodesic flow on manifold of constant
negative curvature and group, automorphisms on < ~dimensional torus.

These examples can be investigated by our method as will be ssen later.

§ 4,1. Definitions.

We are informed rather poor knowledge about the property of
l-parameter group of unitary operators {Utﬁ (a unitary operator U)
if we regard ?Utk (U)\ only to be a strongly continuéus unitary
representation of the additive group of real numbers (integers) .
We shall therefore introduce another l-parameter group of unitary
operators % Vs} which transforms every orbit of fUtj (U) onto another.

Let H be a separable Hilbert space.

DEFINITION 4.1.1. A l-parameter group of unitary operators

{ Vsﬁ on H is a transversal group with AN for a unitary operator
U on H if they satisfy the commutation relation

(4.1.1) UVS = V:’\SU , ={s<+ A

for a nonzero real A .

= U2



Sem. on Probab.
Vol.36 1972
P1-89

DEFINITION 4.1.2, A leparameter group of unitary operators { Vsﬁ

on H is a transversal group with 7\ for a l-parameter group ﬁ Utl) ’

if they satisfy the relation

(4.1.2) UV, = vsexp(q,t)ut, -

so<s,t < + o0
for a nonzero real A .
The relations (4.1.1) and (4.1.2) are the special cases of the

followings

]
(4,1,1) UvS = yu(s)u
and

t
(4.1.2) , u.v

t's Vu(s,t)Ut >

respectively.

Observing the relation that Vs transforms'Ut—orbits into themselves,
(4.1.1)' and (4;1.2)' seem to be more reasonable. However the
following propositions 4.1.1 .and 4.1.2 enable us to make use of

(4.1.1) and (4.1.2) to define a transversal group.

PROPOSITION 4.1.1. Let u = u(s) be a -nonzero aperiodic measura-

ble function. Then the relation
UVS = Vu(s)U
implies that

u(s)

NS
for some N#¥ 0 . .

The proof follows from the assumptions and the following equalities

Wiser)® W't ® Vue)™We ® Vus)uce)? = Veucs)ruce))® = Vueset)l

o 43 =
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PROPOSITION 4.1.2,  Suppose that Y dIs aperiodic and u = ult,s)

is a nonzero measurable function with respect to both t and s .
Then the relation
= U
UeVs Vu(‘c ,8) t
implies that
u(t,s) = psexp(t)

for some nonzero f& and A .

Proof. From the similar calculation to the previous proposition,

sv(t) , for some function w(t) . We have

we see that u(t,s)

U Vv =U_V U =V U
t +t.'s t) u(tz,s) t, u(tl,u(tz,s)) t+E,

= Vot +t,8)%

11t 11t

and concequently

u(tl + tz,s) sv(tl + t2)

it

u(tl,u(t2,s)) = u(tQ,s)v(tl) = sv(tl)v(tQ) .

It follows that v(t) = wexp(at) for some A §0 and A§ 0.
This completes the proof.
Throughout this section, we assume that
(4) H is a separable Hilﬁert space,
and

(B) " N={¢ € H:V ¢ =g forall s} = 03

In the case where (B) is not fulfilled, the simultaneous reduction
of {Ut} (U) and ?ng- onto HO N leads to our situation.

T
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5 4,2, Spectral type of a unitary operator with transversal

L g

group.

P

In this section, we assume that U has a transversal group 3 VS}

with /A% 1. The proof will be given only in the case where
2] >1, In case U has a transversal group § VS} with JA|> 1,
similar discussions lead us to the same results.
Let | be the set of all proper values of § Vs} , and for
A + m ML
some positive M, , put I_= [,U-o/ Ial™ P«O/ JATT] and

-

I = -I; (m=0,%1, x2, ...) . Then we get a partition of |°

r

+ o
O fprup- g

m== oa
where
'F;=l”n1;
Fm=rr) L

LEMMA 4.2.1. We have

(4.2.1) r’;= ATTI ) if A>0, or if A < 0 and m is even,

[== AP

o+ ol+

, if A<0 and m is odd.

Proof. Suppose V. = exp(isp)§ for any s . Then,

from (4.1.1) we get

_ .M o . My,
Vskfnso =UV 9= exp(ispp A HU° ¢,
| s A ‘
that is, P m=0,r1, 2, ...), and it is easy to get
i Me P« t 2, ...) d

= 45 =



Sem. on Probab.
Vol.36 1972
P1-89

the conclusion.

Denote the proper ' =ctors by 3’§ corresponding to ftk‘e T’g v

P "(k=1,2, oo, n= 1,2, vuu, n_, vhere n_ is the multiplicity

0
of F’k) . Then, for all s ,
mepk omlop k'y M, kK m', k'
(4.2.2) ¢, F )= v )
_ ,.m k .m' !
= (UV _mson, vy o)
s A S

. - -m' k m'p k'
explis( py A T Hr A m )3(Um5°n,Um § o0
and

e ko mek oy k ok
(ng)nau 50n|) - (?ns n') .
These equalities imply
mpk m' k!
S A RV AN
unless b, = ka, » m=m' and n =n' hold simultaneously.

Consequently, denoting Hi = Gﬁ%Umj’i tm=0,%1, ... $, we have
(4.2.3) B L B (k # k" or n3in'")
n n'
LEMMA 4.2.2 The operator U has simple Lebesgue spectrum on

each cyclic subspace Hi .

Proof. Denoting
(5.2.4) u" = §e1m§dEU(§) .
and noticing (4.2.2) , we have
im3? U kp2 _ ,muk gky _
| 5e FallEreng il = W 5,95 = 0
for any n,k and m ¥ 0 . Paley~Wiener's tehorem, therefore,

- Uup -
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implies the conclusion.

THEOREM 4,2,1. Suppose that for a unitary operator U on a

separable Hilbert space 'H , there exists a transversal group
{Vsa' with I Al $ 1 which has purely point spectrum. Then U

has ( E:nk)ﬂmultiple Lebesgue spectrum.

Proof. Denote by M;(M;) the subspace of H spanned by all
proper vectors corresponding to [’ ;( Tx;) . Then, from (3.1) ,
we get

- i + =
H=2 QM @ M) .

While the equality U™ = u (Uth“= M ) ,1~ and the construction of
n n+m n n+m ‘ .

Hi shows that

(4.2.5) Umm‘g(UmMa) ¢ Se H]; CH
for m=0,X1, .... Thié leads us to the conclusion
(4.2.6) b @H];:H.'

n,k

Hence, combining (8.6) with the lemma 3.2 , we see that the
spectral measure of U does not have singular component with respect

to Lebesgue measure, and that Hi appears in the direct sum as many

times as 3. n o This completes the proof.
EXAMPLE 4.1. - A group autbmorphism on the torus. Let T°

be the n-dimensional torus and A be a group automorphism on T .
It is known that A can be written in a matrix form. Suppose - -

that A, ©regarded as a transformation on n-dimensional vector space

o 47 -



Sem. on Probab.
Vol.36 1972
P1-89

R" » has a real proper value A such that M1 # 1 and has a proper

vector 1 corresponding to A . Let { gs} be a l-parameter

subgroup of 7% defined by

» 4 I N
(g ,e”) = exp is{r,g > ;g € (M),

where (T™)” is the dual group of 7"  and <r,g ) is the inner

v

product in R" . Then A and the flow e Z } which is defined by

- n
28=gtg,» 8CT

induce a unitary operator U and l-parameter group of unitary opérators
g Vs } on LQ(Tn) in a usual manner. It can be easily seen that

{ Vs } is a transversal group for U and that { Vsj’ has the purelyp®
point spectrum. Consequently? according to the theorgm 4.,2,1 ,

U has uniform Lebesgue spectrum. Noticing that a unitary operator
which has a uniform Lebesgue spectrum is ergodic, we can show that
the unitary operator U has exactly b -Lebesgue spectrum.

Next we shall deal with a unitary operator U which has a transversal

group { v } with continuous spectrum. Let
w0 ,
TC.
(4.2.7) v_ = f e? lS}5‘;dEV(_§T) .
—z,o
and
A"
(4.2.8) H, = E(&)H .
£ 13

LEMMA 4.,2.3, For any S and m=0,%1, £2, ..., weget

 Hp o AF A0, op N md ;
Hg»;\,,m AL 7\') Py W ané m is even
(+.2.9) UmH? = |
, ‘ H%j\r-m if A< 0 and m is odd ,

o 48 -
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where HC means the opthogongl complement of H§ .

§

Proof. Suppose that A 0, or A< 0 and m is even,

Then we have

i

+0 :
g ez:ulsiEd(EV(? )E,2)

n(;O

(4,2.10) Cvsf,g}

n

(Umst, U"s)

u

. m m
(V,)\.mSU £, Ug)

+ 10 . :
2% \ -
= j 2198 42T AT, 0Tg)
mpo o
Clearly { U—mEV(§ N, - p< § < +W is a resolution of the
identity and hence the uniqueness of a resolution implies
u"EV (3 = BVC ST .

Consequently we get

m
UH = H .
§ 7 g
Next we suppose that A< 0 and m is odd. Put F(7) = ‘
I -~ BV( K-mQ—) , where I is the identity operator. Clearly
{ F(7) } is the resolution of the identity. We get
o
+ - . m
J
(v f,g) = ( e2m18§“\ d(BV(§' )Umf,Umg)
s , :
-0
+¥

. 5 T
2T 4 ((r  pO™ E )M U

+  +
=

-0 .
- S 2N (1 - r( My, 0%)
j 2T g ep o7y, 0

1
B

= B9 o
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From these we get U o EV(7\nm N = ' (7]) and hence

UmHE =

¢
This completes the proof.
] _%‘ . .
Put chn = EV(I;)H . We can easily see that g UmMn :

m, n=0, * 1, ... } is an orthogonal family of subspaces, and

moreover, from (4.2.9) , we have

. Mo if AY 0, or if XAL0 and m is even
(4.2.11) UmMn =-2

LMn+m if A0 and m | is odd.

Let { (59 ;} ({%];}) be a basis of M; (MB) and let H;; (H]-;)
be the cyclic subspace spanned by {Umﬁ"; tm=0,11, ... ?}
( ?Um_‘f}; tmo= 0,1, val §) . Then the equalities (4.2.11) imply

that for k =1, .2, ...
fe2win3 4y B PEI? = W9 0=0 mXo0

Paley-Wiener's theoren, therefbre, implies that' U has simple

i

Lebesgue spectrum on each cyclic subspace Hk .

Clearly

(4%.2.12) H= S @3(»4;'1 @u) =L B (UmM;@ u™y)

i

+ o~
ZOH @H) .

The subspaces M; and MB are invariant under the group {VSS— .
and i v 87) does not have prbper value in Mg and MB . Consequently
the dimension of Mg (MB) must be infinite. This means that the

components H; (H;) appear infinitely many times in the decomposition

= 50 =
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(4.2.12).

Summing up the above discussion we get

THEOREM 4.2.2. Aunitary operator U on a separable Hilbert space

H has ¢ ~Lebesgue spectrum, if there exists a transvérsal group

% VS‘E on H with ixi £ 1 the spectrum of which is continuous.
For a unitary operator U , if there exists a transversal group

{Vs % with (Al % 1 whose spectrum is not necessarily purely

discrete nor purely continuous, we méy reduce U and 'H to those

appeared in the previous two particular cases. Let us denote by Hd

and HC the subspaces spanned by all of the proper vectors of % ng

!

and its orthogonal subspace, respectively. We shall now discuss

the case where both Hd and HC are nontrivial.

THEOREM 4.2.3. If a unitary operator U on a separable

Hilbert space H has a transversal group {VSS with jA] §1
on H , and if both Hd and Hc are nontrivial, then U has

o -Lebesgue spectrum.

be the projection operator on H, , and put

Proof. Let Pd
PV = V: and P U = vd . Clearly P, commutes with Vs(~oo < s
< +080) From Lemma 4.2.1 we get, for any f € H., Uf é-Hd
and U*f (& Hy - Thus U réduces the subspace Hy - This
means that U commutes with Pd , so we have
(4.2.13) v = pup v =p.uv =P, U

s d"d's d s d’ As
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o = ald
FUERN

Thus Ud_ has & transversal group ‘{Vi } with the same A .

4
PdV7\s QU )

e - v o= S . c o s
Put (I - Pd)U = U and (I - Pd)Vs Avs . Then { Vs )’, likewise
the above (4.2.13) constitutes the transversal group of u© , and
according to Theorem 4.2.1 and 4.2.2, - we see that U has Lebesgue

spectrum on H = H, + Hc » and moreover, at least on Hc » U has

d
(Q~ -Lebesgue spectrum. This completes the proof.

£ 4.3, Spectral type of a i—parameter group of unitary operators

with a transversal group. Even in case of a l-parameter group of

unitary operators, ‘the analogous discussiéns to the previous section
goes on with a few modifications.

A typical differénce between the case of a single unitary operator
and that of a l-parameter group of unitary operators is the fact that
only the latter has no transversal group whose spectral measure

contains discrete component except point measure concentrating at 0 .

THEOREM 4.8.1. The transversal group { Vs } of‘{ U, } has purely

continuous spectrum on a separable Hilbert space H .

Proof.  Suppose there exists = 0 such that
. is |
V.9 =e quD

for all s . Then we get

= 52 =



Sem. on Probab.

Vol.36 1972
P1-89
&.3.1) W, U ) s@u. NU )

tl t2 s tl S t2

C’tlnt2}. .
= exp(ds e ‘ ICUt WUy ).
1 2

This implies that U is orthogongl to U , 1f t. = t,. .

‘tl 1:2 1 2

In other words, i Ut(j’ r -0t <+ DO} is an orthogonal system

in H. This contradicts the separablility of H .

For conveniénce, we shall discusls a group { U’c k which has a
transversal group { Vsk with negative N\ . Because, if X\ > 0,
we can proceed to the same conclusion with slight modification.

We shall omit the proof of the following proposition which is

similar to the proof of (4.2.9) .

LEMMA 4.3.1. For any g and t , we get

(4.3.2) L. U H, =H o
ts el
Put M(‘t,‘g) = ng—/\t @ H§ . Then, for suitable

- — + . o s s . .
t=t, and § = ? 0 >0, M = M(to, %O) is an infinite dimensional

subspace, because e-)\‘t is strictly increasing. Let i‘j’ng be

a basis of M@ . If \t\ > ty >
U € UH _ . © UH_ CH @ H, .
£ f1 t goe AEg thg, | EOQ—)\(‘HtO) 3, e—/\to

Consequently we get, if [t] = ty s

U F 9 =0.
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This shows us that %U,& has simple Lebesgue spectrum on the cyclic

+ ‘. ' b
subspace H; spanned by {Ut Cj}l* c0<t < + OO§ R Let Pl
. 2T
be the projection operator on Hl . If ‘)0 5 c.Pl (5’2 , we proceed
' +
to 4, . i 2 7 P, 692 ,  we shall denote by H, the cyclic

subspace spanned by {Ut(cj’z = Pl(fg) s, m<t << +00 ‘K‘
From the equalities

(4.3.3) W (Fy -2, P05 (§, -2 N

w. %, F) - WE P, P

- (UtPl%‘z, Plcj’2) » Lt >,

u

we see that {UJJ also has simple Lebesgue specturm on H; .
Continuing such a procedure, we obtain a sequence of cyclic subspaces,

+ +
Hy 5 Hy boeen s

Noticing that Cfn € H'; @ - ® H; for any n , we get

on each of which & U‘tk has simple Lebesgue spectrum,.

+ +
(%.3.4) M C Z@ H C H.

Starting from M = M(tl, gl) where 'tl and S | ave suitable

negative real numbers, the similar construction of the cyclic

subspaces H;(n =1, 2, ...) yilelds
(4.3.5) | < J@H CH.
Evidently, J @ H:; is orthogonal to J, @ H; . We finally show

thé.t H can be expressed as the direct sum of them.

We obtain

w 54 =
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(4.3.6) (U H, YQH =1U__ (H_ H\ DU, H .
. t3, © 0" ety g, @M A g oAt © go P
ot +
=U_ M @®U M@ -,
tety =2t
4.8.7) UH, =U_(H, , . H, XPU H H
( ) U 5 ¢ §1¢')\t1@ 51)® t+tl( gle_/\tl@ §l)

v @ U, W @ .- .

n

1
Theses imply

+
(4.3.8) UtHgo C (2O ) ® H,
and '
(4.3.9) UtHgl c 29K CH .

While the continuity of BV( § ) and the equation

\ -At
UH, =H =E(-% e
t =%, —§Oe—/\t o
imply
Ho=E(OE= 2 @ H.
0 n
Consequently we have
(4.3.10) UH, CA® W @ H) .
t §0 n n
Now the concluding result
(4.3.11) Z® W@ K-

can be deduced from the followings

- oV - At
UtHgo ...H?oe_)\t E (%Oe' OH

= 55 o
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\'s At .- L.
E( goe )—> T (the identity operator) as t—>+&

Remark that, contrasting to 3 .2 , we have no information
about the number of components in the direct sum zi &) CH: &) H;) .

Summing up, we get

THEOREM 4.3.1. A l-parameter group of unitary operators { Ut }

on a separable Hilbert space H has uniform Lebesgue spectrum, 1if

there exists a transversal group { Vs% with X\ ﬁ 0 for {.Ut§

{

EXAMPLE 4.2, A geodesic flow on a manifold of constant negative

curvature. ° Let us denote the Lie group SL(2,R) by G and
denote by D some discrete subgroup of G such that the measure /f
on the homogenuous space M = G/D induced from a left invariant
measure on G 1is finite. Then a l-parameter subgroup ‘i gt} of

G induces a group of left transformations on M defined by
ghe M ——>gth e M.

The dynamical system (M, MV, {gt} ) has a realization as a geodesic
flow on a manifold of constant negative curvature (refer to [3]) .

Let g Dbe the generator of ¢{ gt} and h be a solution of
the equation

[g, g] = AR

for some A ¥ 0 . Put ‘hs = eSh . Then it is straightforward

to see that the relation (4.1.2) is satisfied by l-parameter groups
of unitary operators < Ut} and VS} which are induced in a
usual manner on L2(M) by ¢ gt} and 1 hSB respectively.

2‘560
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Concequently, from Theorem 4.3,1 , we see that {,Ut } has uniform
Lebesgue spectrum. In [1] Gelfand and Fomin hawve shown that
ﬂ,Ut k has exactly ¢ -Lebesgue spectrum, appealing to the automorphic

function theory.

EXAMPLE 4.3, A flow of the generalized white noise. Let S
%
be Schwartz's space and S be its conjugate space. Consider the

3

probability space P = (Sh, B,//&) , where B 1is the Borel field
generated by cylindrical sets in s" and /%4 is a white onise.

The characteristic functional of /}L is given by

C, (§) = exp {—g—cs \g(t)‘lddt§

Let ?Ts be the shift operator in § defined by

ng(‘c)=\§(‘t-s) , §es,

and we shall introduce the transformation Tt on S defined by

‘ At

| Ttg(s) =e” g(eAts) >
where A)K\ is a nonzero real. Then, on the Hilbert space H with
the reproducing kernel Cgy (“%-Q ) ,. we get l-parameter groups of

unitary operators {Ut l and { Vg } induced by Utf(g) = f('I‘,L_g)

and Vs‘f(g ) = f<'Ts§) , respectively. They satisfy the rela‘tiog

(4.1.2) , and hena¢ from the Theorem 4.3.1 , we see that { Ut }

has uniform Lebesgue spectrum.
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V. A measurable flow and the orbit-preserving transformation groups

The main purpose of this section is to study of a measurable
flow T on a standard space with.a probability measure, appealing
40 the group G of bimeasuraﬁle transformations which transform the
orbits of the flow T onto ‘other orbits ; we‘call such a transfor~
mation in G an orbit-preserving transformation. Suchigroup:and
its subgroups, as will be shown later, related with many problems
in the theory of flow.

The problem that will concern us firstly is that of determining
the family of time change@ flows of T which are metrically isomorphic
to the flow T ; the group G yields such family of time changed

flows. The notion of time change of flow was introduced by E. Hopf

[7] and is extensively studied by G. Maruyama [14] H. Totoki [22]
= 58 =
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and R. V., Chacon [28] . Our approach is diffenent from them in
the point of view of globa. analysis. Our method is worked by

appealing to a cohomologous class of (one) cocycles of the group G ;
the notion of additive functionals of a flow which was introduced by

G. Maruyama is just cocycle of the group G with respect to the additive
group R of real numbers, and a timeqhangéfUnctioﬁ of flow is an
inverse function in time variable of an additive functional, although
our defénition of time change functions is slightly different from his.

These notions are defined in the sections 5.1.

The group G contains important subgroups. As one of them

we are concerned with the subgroup GS in the section 5.4. The
group GS consists of all transformations which transform each orbit
of U onto itself. This group GS is related with, for example,

the time change of an analytic flow defined by a differential équation
on the 2-dimensional torus which was treated by I. Arnold [2] amd
A. Kolmogorov [9] . In the section 5.5, we extend their results
by our method.

The group G also contains a subgroup 14 . A transformation
¢ G Dbelongs to ,A, ) if & 1is an automorphism and the function

Ty= Z(t, w) defined by

-1 g?
£187w = T, ) ©F

satisfies an admissible condition ;
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= has a positive derivative at t = 0

In terminology of Ya. G. Sinai [21] , the flow T 1is a transversal
flow of & , which was successfully introduced by him to investigate
an automorphism © (or flow) . On the while,  our object of N
study is not ¢ but the very flow J . Thus, 1in this sence,
our approach is dual to that of Ya. G. Sinai.

The structures of groups A is related with the value of the
entropy of the flow J .
In the section 5.6 , we show that if the entropy of 7 , h(J) is

positive finite, the group A consist of orbit-preserving automor-

phisms which commute with all Tt s, t € (-w,m) . In the section

5.7, we study the ergodicity and spectrum of ¢J  appealing to the

structure of the grougs ({; and /4 .

§ 5.1. Notation and Definition

Throughout this section, (}Q,&B , P) is a standard space with a
probability measure P , Namely (@, &3 ) is a Hausdorff space
With ~a. topelogical Borel field @ such that there exist a completely

/

metrisable topological space Q with II-axiom, and f a 1-1 ,

n /
onto continuous mapping of Q onto LQ with Borel measurable inverse
£, Note that if g8 is the completion of the topological Borel
field of :Q , (Q,Z@,P) is a Lebesque space,

QO | 2o o . -
Two spaces (87,03, P) and (Q,B, P) are isomorphic if there
¢

exists.a bimeasurable mapping @ from 1{2 onto Q such that P°(PE) = P(E) ,

E<B.  An automorphism on Q is an 1l~1 bimeasurable and measure-~

preserving transformation on Q . We mean by a flow an l-parameter
- 60 -
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group of automorphisms on Q .

A flow ‘{ T ‘c% is said to be measurable if the following condition is

satisfied ;

{(t,W) 5 Ttwe:-B?&S}é;BR" 3

) whereﬁ R is the topological Borel field in R , the real ling,:

Throughout thisrsection, by a flow, we mean a measurable flow

and we denote it by j = (IQ,,%, P, Tt) .
Two flow 3. = (&,33, P, Tt) and jvoz (ﬁ, ﬂa, P2, Tta) are

said to be (metrically) isomorphic, if there exists an isomorphism

Q from [L onto LQ; such that Q-lT;0w= Ttw, a. e.w (dP) for

all 1€ R,  where the abbrebiation a. e.w(dP) means that an
assertion foregoing to it hold for almost every (W with respect to

the measure B . A flow 7 = (‘Q,ﬁ , P, Tt) is said to be ergodic,

if an invariant Jg-eet E, 1. e s, ,TtB‘;': E for all t € R, has

measure 0 or 1 .
Periodic point W of the flow j is an element of AQ, such that

T tw = (uJ for some nonzero t € R . Throughout this section, we

assume that the set of all periodic points is a null set.
It is well known that an ergodic measurable flow 7 can be

represented by the special flow j’“ = ( 4Q::o 38:', PN,' T:) 3 the special

]
flow 7 can be constructed as follows.

Q, .
Let (QO, %) be a standared space with measure m , bé ‘a.positive
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real valued Borel function on gQ;Dand let T be an automorphism on
(05 m) . Let /b( be the Lebesgue measure on R . Let ),
the set of all pairs of points (p, t) with 0=t < b(p) and %

be the restriction of % ﬁR 1:04(2 . Put P = m%/N , where

&%
N 1is a normalizer, and define the l-parameter group {T ”c§ by

Tt (p, u) = ((Tnp, t +u —Zgnle(Tkp))

for n>0 anng"l e(Tkp) <t+u <Zg@(‘1’kp)

= | (p, t +u) for 0% u+t-<@(p)

(T, t + v +Z§ DX

\ for n >0 and -2, ?9(T7Akp)<. t + u-s,Zf;"l@(r‘“k
Thenj* = (IQ_:",%*, P*, sz) is a measurable flow.

Put F(p, u) = @ (p)’ and G(p, u) =u, and then F and G are
measurable function on &“ .

It is known that a measurable flow j = (Q,%, P, T,.)

is ,
de , ’ o ) o )
isomorphic to a special flowj = (Q_T,ﬁ“, P“,\ ‘T_:) . " Refer to '[17] .

§' 5.2, The orbit-preserving transformation group G and time change

of flow.

P

Suppose we are given a measurable flow j = (Q,JS, P, T‘c) on. &

standard space (L} R B ) with a probability measure P . Concerning

this flow 7 s we wish to introduce a
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group of bimeasurable transformations on (Q_ ,%’7) , which make the

T
flow  invariant in the following sense.

Definition 5.2.1. Let (9@ be the orbit of w under the flow 7,

Ow = {Ttw; ~oo<t<~r°°3’.

Let © be a bimeasurable point transformation on {1 which transforms

every orbit onto another orbit ;

o (Cuw) =02 . (5.2.1)

We say such mapping O 1is orbit-preserving transformation and we

denote by G the set of all orbit-preserving transformations on .
Clearly, G forms a group under the ordinary multiplication.

We identify o, with crl &€ Gmn i:'Lf the measure of the set
R e 3TaW w%—o—‘zw}is Zero. This identification 4s an equivalence

relation which is compatible with respect to the group operation.
If no confusion is likely to occur, we use the notation G for

the quatient group of G with respect to the above equivalence relation.

The group G contains some subgroups which play : important roles

in the study of the flow ./ . We shall give the definitions of them.

Definition 5.2.2. A transformation "¢ G 1is said to be

strictly orbit-preserving , if ¢ transforms every orbit onto itself;

v (G = Oy We denote by .G_ the set of all strictly orbit-preserving

transformations on ) . The set GS is a subgroup of G .
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By C we mean the set of all commuting transformations with every

T, . The set C also forms a subgroup of G .
Let UL and.OLS be the intersection of G and GS with the set

of all automorphisms on /2, respectively.
They also form subgroups of G . We use sometimes the notion :7 for

the group { Tt} .

We can easily see that all the groups introduced above are metrical

invariants of the flow .J 3 Suppose that a flow 7° = (2585 P, TE)

is isomorphic to the flow~jr with respect to an isomorphism &

Then tﬁe group c° is isomorphic to the group G  with respect to the
isomorphism # , where G 1is the orbit-preserving group assoclated
with the flow\7‘9. This situation is same to any other groups

introduced above.

Proposition 5.2.1. The groups G , GS,CU,Cﬁé, and C are

metrical invariants of the flow [/ .

The group G is closely related with the time chage functions
of the flow J . The notion of time change function of a flow was
introduced by G. Maruyama [14], from which ours is slightly different

(refer also to H. Totoki [22]).

Definition 5.2.3. A time change function T =7 (t,w) of the

flow 7 is a real valued function defined on R which satisfies the
followings
(L) 7(t,«) is a finite valued and 1-1 mapping from R onto

itself for a.e.w.
n B4 «
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(2) Tt +s,w) =7(t,w) +7(s, T?(tm)w) for a.e.w
(3) T(O,w) =0 a.e..

Thé set of all time change functions of the flow J is denoted by Fi.
When a time chage function T(t,w ) is Borel measurable in (t,w)
we say T is a measurable time chage function.

Now we shall consider the relation between G and 7 .
Since any transformation ¢ & G is orbit-preserving, there corresponds

to ¢ a flunction Ty(t,« ) by the relation

y

-1 _
(o8 TtO— w = T._(a(_t’u){,d . : (5.2.2)

To prove the measurability of Te ,0¢G, we identify the flow
with the special flow J ¥ (Jf:,d?)*, P*, Tj:) of J and we regard
the group G and the functions T = T(t,w) as ones associated with
the flow \7* . Let {ls be the basic space, & Dbe the ceiling
function and T be the basic éutomorphism. Let G(p, X) = %
and F(p, x) =4 (p) , then G and F are Borel measurable.

Let - & G . We define the mappings (p, t)-» R[(p, t);o ] and

o % . . %
(p, t)~ L[(p, t)3o-] from L2 into 42, and from 0" into R ,

respectively by
o’(p, t) = (RI[(p, t); o], LL(p, t);9o)

When & is strictly orbit preserving, for each (p, t), there coﬁresponds '

an integer k such that R[(p, t);o] = Tkp . We define

K[ (p, l't);ﬁ"] =k
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- Lemma 5.2.1, The functions R[ ; ] and L[ ;] are measurable

for any 6 € G , and K[-;3] is also measurable for any ¢ & GS .

Proof. Since the set { (p, t); R[(p, t);o] € M5= :Tnl

(")
is measurable for any measurable set MC{ly R[ - ; -] is measurable.
The measurability of L[+ ;o] is deduced form the equation

Ll(p, t); o] = Lo (p, t)) . Let {Zn} be the sequence of measurable

partitions of 1, which satisfies the followings
1) 2 o

2) for any different points p, q ¢ {1,, there exists a partition

:Zn which separates p and q , namely there exists M € 311 such
that p&M and q€M . Llet se(q,

We denote the set 3 (p, t); KEP,"C);J]: k?} by E Suppose (p, “c)C,»-.Ek

k .
Then for any n there exists Mné-gn such that ,Tkp = R[(p, t); 0] ¢ M

k%
and hence (p, t)é& (T an)" . Thus

E C {R[(p, t);ole MIA(T M "

n Mc?h

Conversely, let (p, t)& (YURI(p, t);ole M A (T - an”.
Then there exists a set Mn € ;'n such that R[(p, t);o] & M and
-k % ' _ . k .
(p, t) € (T Mn) for any n . _Hence R[(p, t);o] =Tp; if not,

there exists a partition J 0 which separates R[(p, t); 5] and Tkp.

It follows

Ey = Q e IR[(p, t)3o] & My (T” ¥,
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and therfore Ek is the measurable set.

Theorem 5.2.1. 1) T/S. = td"(t’w) is the measurable time change

ofj for any § & G .

~ -1
2) tﬁi%(t’w) =‘[}1(T52(t, 6lw),w) a.e.w (dP).

Proof.  Since the flow 3‘“ is measurable, the mappings

(> ©); ) =>RL(p, ©; T:] and ((p, t), s)=>LL(p, t); T:J ave

measurable.

Putting g, (p, t) = L[(p, t); 8§+ s B, LGk, ©); &1, Litp, t); 5D

we get ‘I‘; G:l(p, t) =
TG, t18 LG, 11 + 8 <@ GLG, t16™D) (e} )
SUTRL(, t138T,LLG, thie ] # 8 B (p, tlye 1),LICp.t);

= U SR, DO S
CR[CTKRICP,'t);dfl],ngp; t));é],LCCTkRI(p,‘t);crlj,gk(p, )01

—
I~

- . "‘l
when @k(REP, )6 1,10, -‘L‘);O’vl]) Ll(p, t);0 ~ + s
< @, &G, ;1L 08D

On the while,

% -1 _ %
§ T, 6 (ps ‘t)‘— T..Colp,_t)(p, t)

(p, £ +T sy @, 1) -0
when ®3S' € 'bt“_(s, (p, 't)‘)<@j_hl ' ‘ -
It follows
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ij

RIERLG, )5 &1 g e, €343

£ 4T, (5,00, ©) -8

L[(rkR[(p, t); 5-"13, g, (p, 1)), o]
Put K(p, t, s) = K[(p, t); T¥] and E_= ((p, t), s); K(p, t, s) € M)

for a measurable set M . The similar considerations to the above

lemma lead us to the equality

-l (%
E, = Méj’{((P’ t), s); R[(p, t); T ]C M} N (T,
and hence K(p, t) s) is measurable. Put Jp, t), s) = 3j if
@p, t) s) satisfies (3.1.2). Then

{ J((p, t)a s) =3, Klp, t): s) =k !

- {xtp, 9, &) = x /\f‘\MéS {5, 95 67, g6, 0 D1 gAEI0
and therefore the set {J((p,'t),s) = j} = HZ) {J((p,t),s) =5, K((P?t),s):k}
is a measurable set. On the set {‘J((p,t),s) = j} N {sz} > (4 has the form .

Tls,(p,t)) = LITRL(p,1); g d + @, (TR (p,t); ¢ - T

and hence . is measurable.

The other properties of (6’ are easy to see and we omit them.

Thus we have the mapping :6—> 'Cg. from G 1into g . Moreover the

formula (3.1) gives us a time changed flow Se ='(Q',\@ , Q, St) of

the flow 7j , where S W= Tt(tw) and Q(E) = P(¢1E) , Ee@

Lemma 5.2.2. S = 6s] ,{Q)&,Q, St> is a measurable flow which is

metrically isomorphic to the flow U .

Conversely let T =T(t,w)é€ 3—( be a measurable time. change function

-~ 68 =
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. : N = w
and define an automorphism SJc by Stw T*g(t,i»:))’ wéﬂ. Then we

can easily see that ‘{ St } is a group of bimeasurable transformations

Suppose that there exists a bimeasurable transformation & on -

sych that

ST 0w = sw, Vel

.

Then, . with respect to the probability measure Q(E) = P( is:lB) , EE 8?‘.@,

S = (zﬂ,(% . St’ Q) becomes a measurable flow which is isomorphic to

[y 4 ‘
the. flow J , with respect to § ., Clearly such transformation G~
must be orbit-preserving and T (t,@) =_Co.,(‘t,w) a.ew.(dpP) . We

denote by 3(7(G) the family of all Uy =t€,(t,w) ,0 € 6.

Note that the mapping : 6 —> T is not bij ec’cibn._

We say that two transformations ¢, and g 2 (€G) are equivalent if
626116 C and denote 6’l~ 6"»2 . It is trivial to see that the

relation <~V 1s an equivalence relation.
Denote by G/., the quotient space of G with respect to the above
relation ~/ , and by [6"] the equivalence class with representative

L : i} W
6§ &G, From the relation § ,v¢, , it follows "Cd_l —Cﬁiz a.e.W,

because of the followings;

} R SR |
1:‘3« (t0) =91l W = 68,0 T8 @
1

) Jl A1 -1
0TSy € B =TT T,y w
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Thus we see that the mapping : G/ D [§] -ﬁto‘eg(G) is a bijection.
In the section 5.4, we shall give some results about the characterization

of time chage function ing(Gs) .

Summing up the above discussions, we obtain

Proposition 5.2.2. The element [¢] € G/o, induces the time

changed flow SEG’J = (‘Q[ ,@ ., Q, St) which i1s isomorphic to the flo,wj

via the time change function T—@- C‘-\;(G) . Moreover the mapping

6/n 9 61T €H(6) is a bijection.

There exists a Flow j such thatj%t contains a time change
function which does: not come from the group G . For example, let
j be a flow with discrete spectrum. Then there exists always a
time changed flow ,X with continuous spectrum [28] so that ,8 is
not visomorvphic to j and the time change function does mnot belong to

F@ .

5.3. The cohomology Hl(j, R) and time change functions.

In this dection, we discuss time change functions of the »flowj

and cocycles of the group { T‘t} . At first, we shall give

definitions of cocycles and cohomology‘ of a general dynamical system.
Let (X, B, {4\) be a measure space and Gat be a transformation
group on X such that }J\(gE) =0 if ‘%(E) =0, E&B, gc—d}-‘
We say that a mapping Cj? from O&X X into a group z is a 'cocycle
of the dynamical system (X, B,r ,%) with respect to the groupz,

if Ey satisfies the equation

w 70 «
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97 (gle,Lﬂ) :?(gl,a} )q(gg, glw) a.e. w and for any gy gzé%.L.
(5.3.1)
We denote by ,ﬁl(% ,2) the set of all cocycles of CEL .
Two cocycles 30 and ‘L%C‘.’ ﬁl(%l ,2 ) are said to be homologéus with
respect to a coboundary h = h(p) if there exists a function h =h(w)

on X with values in Z such that
P (o0 m) =Y @ h(gw)  aed. (5.3.2)

As can be easily seen, the homologous relation is an equivalence
relation. The group of homologous classes of cocycles is called

the cohomology of 0} with respect to z and is denoted by Hl(%l,z ) .

Now we consider the dynamical system j = (gl,fg 0.2 P, T 1:) -and its

cohomology Hl(j, R) . To each time change function T}ésll »
we can construct an additive functional in the following way.
Let U =_(t,W0) be a time change function, we define 5& =50(u,‘*) )

the inverse function in u of T =T (t,wW) by

97(11,@) =t, ifT (t,W) =u.

By Definition 3.1, ? is well defined on Rx,(} .

Lemma 5.3.1. The functional ﬁﬂ satisfies
a) ? =60(u,w ) is a finite valued 1 -~ 1 mapping from R
onto itself for a.eX (dp)

b) jp(u + v,w) =?(u1",w ) +§9(v, Tuw) for a.e).w(dP)

c) ?(o,w) =0 for a.e¥(ap) .

Proof. It is trivial to see a) and ¢) . We shall show
only b). Put CT(t,w) =u , ‘C(é, T'z:(t w)"‘)) =v, and C(t +s,w) =b)
. 2
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Then it follows
¥+ v,w ) =@, w) =t +s =%u,w) + ¥, T, @) -

We shall agree to say that the fuctional 4 defined above is an

additive functional corresponding to a time change function T

(ef. G. Maruyama [14]) .

By the above lemma, an additive functional of the flow J 1is just

a cocycle in Hl(j » R) corresponding to a time change function, TEF
The additive functional corresponding to a time change function T ¢ F@@)
enjoys special properties ; one of which is the following lemma and

it will be used in the section 5.4.
Lemma 5.3.2. Let Ty ¢ $#(G) and let = (u,w) be the
boms 5.0.0. Lot Ty< gy = 0
additive functional corresponding to TG‘ 15T l(u,u)) .
- U_-:
Then

T(t, Tw) ='590~-l(t’u>) a.e.w,
so that Ty is measurable if and only if ¢ 1 is measurable.
-
Proof. Let 'z-nml('t,uo) = u and thencJoU_l(u,uJ) =t .

It follows, G‘—thD‘w = Tuu).' This implies, .-

_ w
- T‘,P g—nl(’t ;W)

~1
= = F Tw = R
v Tuw )vw o) Tu ) Tw

T 1 (u T (u,00

This gives us the conclusion.

We shall give a sufficient condition for two cocycles ¢ and Y

are mutially homologous.
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Theorem 5.3.1.  Suppose that two measurable cocycles & and '}&

of the flow J satisfy the condition

.S :
- < lim "'sLj [P(t,w) - P(t,w)ldt< v  a.e.w.
S 0 '

Then ¢ and % are homologous.

Proof. Put

s
é S [9(t,w) ~YP(t,w )t

h(w) = lim ——
Syia 0 .
hm '

and | B ={W;YE(W)< W} .

Then it follows for every W & B

h(Ttu))

S
.1 ;
éir:avs—- SO [?(s,TtU)) —'%(S,T_tﬂ)),]ds

]

Sy e 8

S
Lim = g [60(1: +s,w) - §lt,w) ~Ylt + s,0) +P(t, &) lds
0 : co

BW) - Glt,w) + Yit, W)

n

and 'I‘tBC. B .

Let h = h(w) be a measurable extension .of ,1\:1 = h(w) . Then
Pt,w) + BITw) =Y(t,w) + h(w)  a.e.w,
The following is related‘ to the coﬁverse problem of the previous
theorem.

Theorem 5.3.2. Suppose that a measurable cocycle ¥ (t,w) is

homologous to “f’(t,u)) :

§ (£,w) + h(TW) =Y(£,w) + hw)  a.e.w.

If h = h(w) is integrable, we get
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S
ég [@(s,wW) «Y(s,w)Ids L0 a.e.W.

=00 lim =
S0 0

S S
Proof. Since g g Ih(T W) | dwdt = g g [ (T, )] dtdw oo,
S 0 Ve t o J 0 t -

S
S |h(TtLO)'|dt<oc a.e. W, It follows
0

S S
5 -Sl— g [P (W) - Bw)lds S [h(T W) ~ h(w)]ds
0 0 i '
S .
g h(T- Wds - (W) .
0 S

i
=

By the Birkhoff's ergodic theorem, we get

S

S A . ~ .
lim L S ‘ [90—’2/,]ds = h(w) - h(W) , (W) 1is a Jg-invariant:
S9yee 0

function. This completes the proof.

S.4, A characterization of time changel functions T d "jﬂf(‘Gs) .

In this section, we shall give genometrical interpretations of
the previous discussions in' 5.8 . |

We shall agree to say that a real valued measuréble function
£ on L is admissible if the function Fy,(t) = f(TtBJ) - f(w) + t -

is 1-1 mapping on R for a.e.W.

Let f . be an admissible function and define a‘transformation on

L by

oW = Tf(w)w. | . _(5..4'.‘1‘)”'

- T4 -
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Theorem 5.4.1. Let f be a real valued function on _Q, .

Then the transformation « defined by
o = we
TwW = To, )u) s w &

is a -strictly orbit preserving transformation, namely O & GS

if and only f is admissible.

Proof. We shall show that <~ is the onto mapping. Let f € L
be an arbitary element. Then, for some element w &« (9% and some
s € R, the element § has a form § = T~S’w . We can find the time

t € R such that
s = f(Ttw) +t .

It follows

= w = = '
3 Tf(Ttw )+t Tf(T_tﬁz\) yew = e Tow .

To show that ¢ is 1-1 , suppose G W = ‘T’S . This implies
Tf(w )b() = Tf(f )3 . Hence, - by putting t = f(w) - f.(?) > We
obtain } = Tti,u . It follows

From this, it follows f(T_tw) -fw)+t=0. Since f 1is adpiss-
ible, we get t =0 , namely, “5’ = w .
To prove the measurability of d° , we identify the flow '/ with the

%

specisl represintation 7* = (Q_*, QB*, P, sz)' of j and we regard the |
group Gs and the admissible function f as ones associated woth 7.* .
Let G , be the basic space, B be the ceiling function and T be the basic
automorphism. Let G(p, x) = x and F(p, x) = H(p) . ~ Then
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G(p, x) and F(p, x) are Borel measurable.

Put
M = {(p, t) ; pe M ﬁ » M is measurable set in Q.
& *
M (a, b) = { (p, t) ;age(p,t><b‘5(\M»
and
75 ¥y Kz 1
@k= K i
S - J
: —Z_l (T'p) k<€ -1
0 k=0
We get

]

ot pn = Yie, 05 ok 56, 0 - O, e ¥(a, b)),
B gt e, 0< B, @]
= LkJ[(T'kM)* N \(p, t) 3 a4 6(p, t) + £(p, t) - @k(P, )< b>
N 05 Bes © g v+ e 02 Bk f T

) ' &
Since the right term is the measurable set, and the family {'M ta, b) 3

M 60330 , (a, D)CR j generates (3

rabllity of G~ -1 is deduced from that of the function g .

£ . ‘ .

,» O 'ls measurable. The measu-
Conversely we suppose (= ¢ Gs . Recall the notations

RO(p, t) ;1 , LI(p, t) 39 ] and K[(p, t) ;0 ] defined in the lemma.

5.1.1. As shown in the lemma 5.1.1 , ‘the set Bk = {(p, t) 3 K(p, 't)=kj

is measurable and S,?_,“ = Lﬁ E . Since the function £ has the form
£p, ©) = LI(p, ©) 31+ BLe, ©) v, 1), (o, ©) €

f is measurable,

- 76 =



Sem. on Probab.

Vol.36 1972
P1-89
This completes the proof.
Let o°¢ G . Since O°W is in (964» we can find a time
t € R such that T W= T W - Denote t by fg\(w) . Moreover,

to each © ¢ Gs ., as was shown in 3.1 , there corresponds a time

change function ’C’vé—?(Gs) .

Theorem 5.4.2. A time change function ftwe B?(GS) has. the form ;
Tolt, w) = fQ.(Ttw) -fo(w)+t, ae.w.

We denote by 600 the ordinary time, namely, 600 = fo(“c, w) =t
for any y €<Q) - Note that QDO is also a cocycle in Hl( Ts R) .
We, mnow, can give a condition for a time change function T = T(t,W )

of the flow 7 to be induced from a transformation (- & GS .

Theorem 5.4.3. Let T ¢ } and 99 be the additive functional
corresponding to T . Then T =T (t, W) is induced from a transfor-
mation ¢ ¢ Gs , if Lf = 99,(11, W ) is homologous to the ‘ordinary' ‘time
96 = Soo(t, W ) =t with respect to an admissible coboundary function

£ , namely

()0(1:, w) = £(T w) - flw) +t ae.w R

Proof, Suppose y(t,w ) = f(T%w) - f(w) +t, where f Iis
admissible. Then £ yields a transformation W= in Gs and a time
change function Te- . By Theorem 5.4.2 and Lemma 5.3.2 , we get

f(t,w); Telt, CwW) = yﬁl(t,w> a.e. W,
o o

where 500\__1 is the additive functional corresponding to the time change
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function T -1
'
is, T ¢ ?(GS) .

Combining the above theorem with Theorem 3.2.2 , we get a suffidien’t ,

Hence it follows T (t, W ) = 'Cq\_l(t,w ) , that

condition for T = T (t,W ) to be induced from @~ & G, -

Corollary 5.4.1. If the additive functional 50 of a time.change

function T is measurable and satisfies

. S

-vo < lim——é——g [50(":, W) - tldterw a.e.ld ,
S 0 : ' :

then T = T(t,w ) is induced from a transformation ¢ ¢ G, and more-’

over the time changed flow of 7 by T is metrically isomorphic to the

flow J .

$ 5.5, Time change of an analytic flow on the torus.

As an appliction of the previous discussions, ' we shall conside_r the
flow whi‘ch was studied by A . Kolmogorov and I. Arnold , and we shall
give an extension of their result.

Let us consider the ergodic flow j = (Mz, R, dxdy, Tt) on the .
2-dimensional torus M, with the normalized Lebesgue measure dxdy ,

where (3 is the topological Borel. field and 'I‘t is defined by

dx dy  _ . . .
% =1, —gr = ¢ ([} is an irrational number) .

Let K(x, y) Dbe a real valued periodic function on RZ\ with period I
1 such that

0< Kx, y) & ¢

(k EVS) ‘
and
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1 1
K(x, y)dxdy = 1 .
0 0

Define the additive functional 59 = 50(1:, X, y) by
t
50(1:, X, y) = K(x+s, y+¥s)ds .
0

Then we get the time changed flow § = (M2, B, Q, St) where S is

defined by

dx - 1 dy  _ ¥
dt K(x, y) dt K(x, y)

and
dQ(x, y) = K(x, y)dxdy .
Now our problem reads as follows ;

Are two flow [/ and S isomorphic?

Suppose that 7Y satisfies an arithmatic condition such that there

exist positive numbers L and H (G« k-2) for which

. L .'
jm + nj - ~ (5.5.1)
7 (m + m])?

holds for any integers m and n .

Let
S 2R 1i(mx+ny)
K(x, y) = Z,cm,ne
be a Fourier expansion of K(x, y) . Then we get
So(t X,y) = t + e ele(m—m)/)t -1 eQT(,i(mx+ny)
T (m,n)#(00) ™R 2i(min)
H
and
1 g S "’-Z °n,n 21i(mx+ny )
lime— [ - tldt = — 2 e 0)
Sra’ 0 SD (m,n)#(0,0) 2t (mny
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we shall show that the right term of the above equation is an absolutely

convergent series.

We get the following estimation of the Fourier coefficients ¢

k k
2k—17[k(}m} + \n))k e |« Maxi Max%l—E-Kl, Ma K j
m,n QX y

Denoting the right term by M , we get

m,n °

| °m,n | k. k+l k-H

Let N(j) be a number of the lattice points.(m,n) for which |[m} + |n) = j

Then

N3 & 2%(5e1) € 2%
It follows

: .
(m,n)#(0,0) 22'1!:2-;%\ < 2}(1_‘:}(?1,__ (mg:)#—éo'o) (ng + (n}"k«-H ,
’ ’ : 2 >
< W%l sHkrl

Since 0< H < k-2 , the right term converges. By Corollary 3,3_1;

we conclude that the two flow / and S are isomorphic with respect to

a strictly orbit-preserving transformation.

Theorem 5.5.1. Let :7 be the flow on the 2-dimensional torus M2

defined by

ax/dt = 1 dy/dt = ¥
with the Lebesgue measure dxdy , and lef S be the time éhanged flow
of J defined by

dx/dt = 1/K(x, y) dy/dt =‘I/i K(x,‘y5  1 .
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(X

with the measure dQ(x, y) = K(x, y)dxdy . Suppose 0< K& C and
Sngxdy =1, and let x Dbe an irrational number for which there
exist positive numbers L and  H(H< k-2) such that
L
; H
(lm\ + (n}|)

for any integers m and n .

im +ny \)
Then the time changed flow S is isomorphic to the flow j .

5.6. The dynamical system (), &, P,‘,dv) and the

entropy of the flow “3’ .

Let g; ()4) be the set of all time change functions Ty = T.(t,w ) ,

o¢ff) » each of which has the pésitive derivative at t = 0 for a.e.w .

A'/ =”{O‘éUL ; o S% A /k

If 0-1’0"26?4 ) weget.

Let

. -1 -1
(t,w) (Q‘U_(t,c" w ) e (o w )
& { 1 w g V1
1im (”32 = lim - Ly 7 — 1im —2 -
t> 0 q;o_;, 0 Ty (t,6,w) =~ 0
o A
Since t = Tp-1( T, (t,ow),w ) ,
(s, ) |
lim Tot 11 t 4
e lm‘—-f-—z————-—y L R a.€.(p »
oo 50 GUEs ow)

So that the set ﬁ.(z forms a subgroup of (], .
Since '&Tt\( Cqu the dynamical system )A( = (Q, % . P,#z) is an
extension of the dynamical system U’ = (). B,>P, T) -

We shall show the structure of A is related to the entropy of the

flow S . In the following, we assume the flow is ergodic,
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Lemma 5.6.1. (Ya. G. Sinai [21]) Let g be an ergodic flow
and let /T, be a measurable time change function of 3’ with & & /4 .
Then we get

Tty W) =N\t Cale.w » wrhere Ag >0 -

Using the above lemma we get

Theorem 5.6.1. Suppose the entropy of the ergodic fléw rg is p‘o'

positive finite. Then

4 =0~ c.

~ Proof. Let S = (ﬂ s @ » P, St) be a time changed flow of the
flow 3’ by T, o€ /A( . Since St is P-measure ‘invariant, we get

h(Ty) = h(8;) = h(Tx ) = A B(T)) .

This implies A =1 . Hence it follows
cTod =s = T
W@ £ t -
namely, §& C . Clearly ADG”LA c . This completes the proof.

The following is a restatement of the above result. -

Corollary 5.6.1. Suppose that the flow 3‘ is ergodic. If

there exists an automorphism o~ }4; which does not commute with some

Tto < { Tt"‘ , then the entropy h(j ). of the flow j is zero or infi-,

nite.
\

It seems to me very interesting to show the converse assertion of the -

theorem 5.6.1 , Dbut it is still open. As to the gnm‘)up/ém G, we

S
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get
Theorem 5.6.2. Let fj be an ergodic flow. Then
() =6 A0tnC.
Proof. . Let Gs,n.q,,e.Then XNg=1 ol
’Eét,c» ) = s (Ttu>) -f () +t=t, a.e.w . Since fT' is

ergodic, f_  must be a constant, say fq,(w )=c¢ a.e.w.
This implies <7, = Tcud a.e. w .

There exist, in fact, .ergodic flows such that \/4 is not included

in C .
Example 1. . Let A be an ergodic continuous group automorphism
on the 2-dimensional torus M, . Then the eigenvalues of A are the

2

irrational algebraic numbers of degree 2 ; we ldentify the group automo-
phism A with the unimodular integral matrix.associated with it. We
denote one of them by A and let (1, i )} be the eigenvector of A with
respect to X . Put g, = (t, v t) (mod i) . Then the family

{gt} is the l-parameter subgroup of M2 5 ‘and then the flow defined by

T.ge=gteg  gel,,

is ergodic and ATtA-l =T Thus A.€/4 and A does not commute

At T
with the flow.

Remark, . Until now we have discussed a flow with continuous
time parameter. The notions of orbit-preserving transformation groups

and other concepts introduced previously are avairable also to a flow with

discrete parameter, i.e. , .an automorphism.
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In this vemark, concerning to Theorem 4.1.1 , we wish to mention
to Bernoulll shift. This is an example of the dynamical system with

positive finite entropy for which {Tt} =0l A0 .

Let X = { X5 Koy eees xn'k be a set with a measure

P> 0 andek=l.

Let :}’ = ({2 ,83, P, T) be a two sided Bernoulli shift defined in an
usual manner, where

oo

()=H®X , X = X
i i

A ~00
and

(Tw)i=<w @ =(.qwu_l,wo,a)l,.d ;

i+l ?

Let L be a permutation of X , and define a transformation QO L by

CT’L(.., &)-l’ W, OJl, vee) = (ouy Le_gs wakLL“l3‘f")

For convenience, we call G’L a permutation of K:).

‘G.A. Hedlund, M.L. Curtis, and R.C. Lyndon have.détermined a
class of the continuous transformations commuting with shift on a symbolic
dynamical system [6] . By using their results,: we can determiﬁe
the group AAK associated with the Bernoulll shift, = where K is the
group of all continuous transformations on dﬁL . ‘We define the equiva-

lence relation ., by

X; ns xj ,» if p; = Pj .

Let {;Xl, Xps +ovs X} Dbe the partition of X ‘into the‘équiﬁalent
classes, and let L(X, P) be the set of all permutations which preserve
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each X. .
J
Theoremn 5.6.3 The group Ei/\ Y(_ is generated by T and
{rL ; L € L(X, P) ,} . Moreover, if pj’s are all different,

the group A,\ /( coincides with the group j =4 ’I'mi'.

§ 5.7. Ergodicity and spectrum of the flow fT and the groups

0L, =2 4

We shall give a condition of ergodicity of the flow ZT appealing

to O'ZS.

Theorem 5.7.1. ' The dynamical system CR% =‘(J2 ,&3, P,Cﬁn) is

ergodic,
. * ) 'l ' o - °

Proof. Since % Tt% C:élé . if part' is trivial to see.
Suppose CTLP is ergodic., Let E be a Xg—set which is invariant
under {_Ttx . It is enough to show that E is invariant under any
c€ O?-;A . - Let € E . Then ow = Tfj’ CO‘;(-O)“)GL ;  namelyy

B CE . Put Yz = T"'f'(r (& -lE )2 . Then Y &€ E and moreover
-1 . .
£ =00 =5 T -1 =5n . This shows « E = E .
-f
13 5o he)E T

From the above theorem, ~ we get the following criterion for the flow
to be ergodic.

Corollary. If 07, J contains an ergodic element, then the flow
is ergodic. |

Now we shall give a characterization of the spectrum of the flow ﬁ’ ‘

appealing to the structure of the group A/ .
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Theorem 5.7.2. Suppose that the flow :7’ is ergodic. If /QL

contains an l-parameter subgroup % 6—‘8,; s&€ R % such that 618_6‘0

for any s& R . Then the flowj is weakly mixing.
Proof. Let 4 Ut} and 4 Vt}- be the unitary operators induced

from 4G f and [T } 3 UF(®) = F(6Lw) and VF(w) = F(T,W) ,
Fe L;Z(QI ., P) . Suppose that the flow \_7 has an eigenvalue /{ # 0

and eigenfunction F["" 3 Vo Fu o= exp(QTtifkt)F{‘ s, TER. Since
6;@ C and (;"SQ/Q_ , there exists a function A_(s) such that

- -1
&6 sT'td s = Tn(s)r DY Lemma &.1.1. Then we see that for any t,s ,

Als) #1, AG)IAN(E) = Als+t) and
'—C(g(t,w ) = A(s)t . It follows

VtUS? (w)

P p

= Usvl(s)tf‘r (w) = exp(ZWil(s)r&t)UsF (W) .

((sTtaJ) = P,“-(Tx_(s)tc)’su )

Thus { Ust* 3 ~6o <s (m}is a fémily of eigenfunctions corresppnding to
the eigenvalues A_(s) . - This contradicts to the separability of
12(Q,, ®) . |

Appealing to the above theorem, we can see the horocycle flow on
the manifold with a constant negative curvature and the flow induced from

the Brownian motion are weakly mixing [10] .
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