FROBENIUS SUMMANDS OF GRADED RINGS

NOBUO HARA

We are motivated by a question arising from commutative algebra, asking what kind of graded rings in characteristic p have finite F-representation type (FFRT). In geometric setting, this is related to the problem of looking out for Frobenius summands. Namely, given a line bundle L on a projective variety X, we want to know how many and what kind of indecomposable direct summands appear in the direct sum decomposition of the iterated Frobenius push-forwards $F_*^e(L^i)$, where e, iare non-negative integers with $0 \le i \le p^e - 1$. We will consider the problem in the following two cases.

- (1) two-dimensional normal graded rings (a joint work with Ryo Ohkawa [HO])
- (2) the anti-canonical ring of a quintic del Pezzo surface

After reviewing the preliminary results in Section 1, we will take a look at the result obtained in [HO] in Section 2. Our description here is based on the Pinkham– Demazure construction: A two-dimensional normal graded ring R is isomorphic to the graded ring $R(C, D) = \bigoplus_{n\geq 0} H^0(C, \mathcal{O}_C(\lfloor nD \rfloor))$, where D is an ample Q-divisor on the smooth curve $C = \operatorname{Proj} R$. We introduce the invariant $\delta = \deg(K_C + D')$, the degree of the canonical divisor of C plus the "fractional part" D' of D. It is known that Spec R has a log terminal singularity if and only if $\delta < 0$, and in this case, R has FFRT (Proposition 2.2). On the other hand, we will see in Theorem 2.3 that if $\delta \geq 0$, then R has FFRT only in the exceptional cases where the characteristic p divides a denominator of the fractional coefficient of D.

In Section 3, we introduce an attempt to looking out for Frobenius summands on a quintic del Pezzo surface X and its anti-canonical ring $R(X, -K_X)$. Unlike case (1) above, the present situation in this case (2) is far from satisfactory, and we have not yet come to a conclusion whether the anti-canonical ring has FFRT or not. We give partial results and examples on the Frobenius summands of $F_*^e(\omega_X^{-i})$ mainly in the cases i = 0 and $i = \frac{p^e - 1}{2}$.

1. Preliminaries

Throughout this note, we work over an algebraically closed field k of characteristic p > 0. For a noetherian commutative ring R over k, the Frobenius ring homomorphism sending $a \in R$ to $a^p \in R$ will be denoted by $F: R \to R$. For a k-scheme X, we denote the (absolute) Frobenius morphism $(\mathrm{id}_X, F): (X, \mathcal{O}_X) \to (X, \mathcal{O}_X)$ by $F: X \to X$ and its associated ring homomorphism by $F: \mathcal{O}_X \to F_*\mathcal{O}_X$ as well.

From now on, We always assume that R is an F-finite (i.e., $F: R \to R$ is modulefinite) integral domain. In this case, we can identify the *e*-times iterated Frobenius ring homomorphism $F^e: R \to R$ and the inclusion map $R \hookrightarrow R^{1/p^e}$ into the ring R^{1/p^e} of p^e -th roots of R, for all e = 0, 1, 2, ...

When R is an N-graded ring $R = \bigoplus_{n\geq 0} R_n$ over $R_0 = k$, the ring R^{1/p^e} has a natural Q-grading (actually, a $\frac{1}{p^e}\mathbb{Z}$ -grading) and the inclusion map $R \hookrightarrow R^{1/p^e}$ preserves the grading. Note that the category of finitely generated Q-graded R-modules is a Krull–Schmidt category. For each $e = 0, 1, 2, \ldots$, we have a decomposition

(*)
$$R^{1/p^e} = M_1^{(e)} \oplus \dots \oplus M_{m_e}^{(e)}$$

in the category of finitely generated \mathbb{Q} -graded R-modules with each $M_i^{(e)}$ indecomposable.

Definition 1.1 (Smith–Van den Bergh [SVdB]). Let R be an N-graded ring over $R_0 = k$ such that each R^{1/p^e} has a decomposition as (*). We say that R has finite F-representation type (FFRT) if the set

$$\{M_i^{(e)} | e = 0, 1, 2, \dots; i = 1, 2, \dots, m_e\}/\cong$$

is finite, where \cong denotes isomorphism of graded *R*-modules admitting degree shift.

Example 1.2 (rings of FFRT).

(1) Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring. Then R has FFRT, since

$$R^{1/q} = k[x_1^{1/q}, \dots, x_n^{1/q}] = \bigoplus_{0 \le i_1, \dots, i_n \le q-1} Rx_1^{i_1/q} \cdots x_n^{i_n/q} \cong R^{\oplus q^i}$$

is a free *R*-module for all $q = p^e$.

- (2) Two-dimensional rational double points have FFRT (Artin–Verdier [AV]).
- (3) Tame quotient singularities have FFRT ([SVdB]). Namely, if $R = S^G$ is the invariant subring of finite group G of order not divisible by p acting on a polynomial ring S, then R has FFRT.
- (4) A Cohen-Macaulay ring R is called a *Frobenius sandwich* if an iterated Frobenius ring homomorphism of a polynomial ring S factors through R, i.e., there exists a power q of p such that $S^q \subset R \subset S$. If R is a Frobenius sandwich, then it has FFRT. For example, $R = k[x, y, z]/(z^p - f(x, y))$ has FFRT.

Remark 1.2.1. Rings in (1), (2) have stronger property "finite representation type," i.e., there exist only finitely many isomorphism classes of maximal Cohen–Macaulay R-modules. On the other hand, rings in (3), (4) do not necessarily have this property.

Remark 1.2.2. Rings in (1)–(3) are *F*-regular, but Frobenius sandwiches are not *F*-regular in general. It seems natural to ask if *F*-regular implies FFRT, since this is true in dimension ≤ 2 . But this implication fails in higher dimension ([SS], [TT]).

Section rings. The first example of a two-dimensional graded ring that does not have FFRT was found by Smith–Van den Bergh [SVdB]. Let us review their construction. Let X be a smooth projective variety over k, L an ample invertible sheaf on X and let

$$R = R(X, L) = \bigoplus_{n \ge 0} H^0(X, L^{\otimes n})t^n$$

be the section ring associated to (X, L), where t is a homogeneous element of degree 1. In what follows we denote the n-times tensor power $L^{\otimes n}$ of L simply by L^n .

For each $q = p^e$, the $\frac{1}{q}\mathbb{Z}$ -graded *R*-module $R^{1/q}$ decomposes as

$$R^{1/q} = \bigoplus_{n \ge 0} H^0(X, F^e_*(L^n)) t^{n/q} = \bigoplus_{i=0}^{q-1} (R^{1/q})_{i/q \mod \mathbb{Z}},$$

where the graded R-modules

$$(R^{1/q})_{i/q \bmod \mathbb{Z}} = \bigoplus_{0 \le n \equiv i \bmod q} H^0(X, F^e_*(L^n))t^{n/q} \cong \bigoplus_{m \ge 0} H^0(X, F^e_*(L^i) \otimes L^m)$$

appearing as the direct summands are in one-to-one correspondence with the coherent sheaves $F^e_*(L^i)$ on X. Thus the decomposition of $(R^{1/q})_{i/q \mod \mathbb{Z}}$ into indecomposable graded R-modules are described in terms of the decomposition

$$F^e_*(L^i) = \mathcal{F}^{(e,i)}_1 \oplus \cdots \oplus \mathcal{F}^{(e,i)}_{m_{e,i}}$$

of the vector bundles $F^{e}(L^{i})$ into indecomposable bundles $\mathcal{F}_{j}^{(e,i)}$ in $\operatorname{Coh}(X)$.

Proposition-Definition 1.3. Let the notation be as above. Then R = R(X, L) has FFRT if and only if the set of isomorphism classes in Coh(X),

$$\{\mathcal{F}_{i}^{(e,i)} \mid e \in \mathbb{N}; i = 0, 1, \dots, p^{e} - 1; j = 1, \dots, m_{e,i}\} \cong$$

is finite. In this case, the pair (X, L) is said to have globally finite F-representation type (GFFRT).

The following proposition generalizes [SVdB, Example 3.1.7].

Proposition 1.4. Let C be a smooth projective curve over k of genus $g(C) \ge 1$ and let L be an ample invertible sheaf on C. Then the section ring R = R(C, L) does not have FFRT.

Proof. In view of Proposition 1.3, it is sufficient to show that there appear infinitely many isomorphism classes of indecomposable direct summands of $F^e_*\mathcal{O}_C$ when e ranges over all non-negative integers. This is verified case by case as follows:

Case 1: g(C) = 1. If C is an ordinary elliptic curve, then $F_*^e \mathcal{O}_C$ splits into p^e distinct p^e -torsion line bundles. If C is supersingular, then $F_*^e \mathcal{O}_C$ is isomorphic to Atiyah's indecomposable vector bundle \mathcal{F}_{p^e} ; see [A].

Case 2: $g(C) \geq 2$. In this case, the vector bundle $F^e_* \mathcal{O}_C$ is stable and so is indecomposable for all $e \geq 0$ (Sun [Su], see also Kitadai–Sumihiro [KS], Mehta–Pauly [MP]).

2. FFRT property of two-dimensional graded rings

In this section, we consider the condition for two-dimensional normal graded rings to have FFRT. Specifically, we will answer the following question:

Question (H. Brenner). Does the ring $R = k[x, y, z]/(x^2 + y^3 + z^7)$ have FFRT?

It is known that two-dimensional F-regular rings have FFRT. On the other hand, due to Proposition 1.4 we could expect that a two-dimensional normal graded ring R has FFRT only if Proj $R \cong \mathbb{P}^1$; see Theorem 2.1. So, Brenner's question is in

a critical case, because the ring $R = k[x, y, z]/(x^2 + y^3 + z^7)$ is not *F*-regular and Proj $R \cong \mathbb{P}^1$. In this case, however, it is known that *R* has FFRT if $p \leq 7$, since it is a Frobenius sandwich in characteristic p = 2, 3, 7 (Shibuta [Sh]).

Pinkham–Demazure construction ([P], [D]). Let R be a two-dimensional normal graded ring over $R_0 = k$. Then there exists an ample Q-Cartier divisor D on $C = \operatorname{Proj} R$ such that

$$R \cong R(C, D) = \bigoplus_{n \ge 0} H^0(C, \mathcal{O}_C(\lfloor nD \rfloor))t^n.$$

Let g(C) denote the genus of the smooth projective curve C. We write

$$D = \lfloor D \rfloor + \sum_{i=1}^{m} \frac{s_i}{r_i} P_i$$

with closed points P_i of C and coprime integers $r_i \ge 2$ and s_i . We then put

$$D' := \sum_{i=1}^m \frac{r_i - 1}{r_i} P_i$$

and call it the *fractional part* of D.

We now state the main results of Hara–Ohkawa [HO]. Let the notation be as above.

Theorem 2.1 ([HO]). If $g(C) \ge 1$, then R = R(C, D) does not have FFRT.

Proposition 2.2 ([HO]). If $\deg(K_C + D') < 0$, then R = R(C, D) has FFRT.

Remark 2.2.1. Note that $\deg(K_C + D') < 0$ if and only if $C \cong \mathbb{P}^1$, and $m \leq 2$ or m = 3 and $(r_1, r_2, r_3) = (2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5)$. These are exactly the cases where R(C, D) has a log terminal singularity.

Theorem 2.3 ([HO]). Suppose $C = \mathbb{P}^1$, deg $(K_C + D') \ge 0$ and r_1, \ldots, r_m are not divisible by p. Then $R = R(\mathbb{P}^1, D)$ does not have FFRT.

Idea of proof. In what follows, we briefly sketch the idea of the proof of the theorems. When D is an integral divisor, then R is the section ring associated to the line bundle $L = \mathcal{O}_C(D)$, and we have the correspondence between the direct summands $(R^{1/q})_{i/q \mod \mathbb{Z}}$ of $R^{1/q}$ and the vector bundles $F_*^e(L^i)$ on C as described in Section 1. The obstruction is that we do not have this correspondence in the case where D is not an integral divisor.

To overcome the above difficulty, we import notions from the theory of algebraic stacks [B], [OI]. What we will use is the *orbifold curve*

$$\mathfrak{C} = C[\sqrt[r_1]{P_1}, \dots, \sqrt[r_m]{P_m}] \xrightarrow{\pi} C.$$

This is not a scheme (if D is not integral) but is a one-dimensional root stack of weight (r_1, \ldots, r_m) over $P_1, \ldots, P_m \in C$. The orbifold curve \mathfrak{C} is something like the "minimal covering" of C on which D becomes integral. We summarize properties of \mathfrak{C} in the following lemma.

Lemma 2.4. For each i = 1, ..., m, there is a "stacky point" Q_i on \mathfrak{C} lying over P_i satisfying the following properties.

- (1) $\pi: \mathfrak{C} \to C$ is an isomorphism away from Q_i and P_i .
- (2) Q_i is a Cartier divisor on \mathfrak{C} and $\pi^* P_i = r_i Q_i$.
- (3) If E is a Q-divisor on C such that π^*E is integral, then

$$\pi_*\mathcal{O}_{\mathfrak{C}}(\pi^*E) \cong \mathcal{O}_C(|E|) \text{ and } R^1\pi_*\mathcal{O}_{\mathfrak{C}}(\pi^*E) = 0.$$

(4) \mathfrak{C} has a dualizing sheaf

$$\omega_{\mathfrak{C}} \cong \pi^* \omega_C \otimes \mathcal{O}_{\mathfrak{C}}(\sum_{i=1}^m (r_i - 1)Q_i).$$

It follows from the lemma that π^*D is an integral Cartier divisor on \mathfrak{C} and if we denote $\mathcal{L} = \mathcal{O}_{\mathfrak{C}}(\pi^*D)$, then

$$H^0(\mathfrak{C}, \mathcal{L}^{\otimes n}) \cong H^0(C, \mathcal{O}_C(\lfloor nD \rfloor))$$

for all $n \in \mathbb{Z}$. Thus

$$R = R(C, D) \cong R(\mathfrak{C}, \mathcal{L})$$

is the section ring associated to the line bundle \mathcal{L} on \mathfrak{C} .

Corollary 2.5. R = R(C, D) has FFRT if and only if $(\mathfrak{C}, \mathcal{L})$ has GFFRT in the same sense as in Proposition-Definition 1.3.

Now let $\delta_{\mathfrak{C}} = \deg \omega_{\mathfrak{C}}$. Then $\delta_{\mathfrak{C}} = \deg(K_C + D')$ by Lemma 2.4 (4). If $\delta_{\mathfrak{C}} < 0$, then $(\mathfrak{C}, \mathcal{L})$ has GFFRT by [CB, Theorem 1], from which Proposition 2.2 follows.

To prove that R does not have FFRT in Theorems 2.1 and 2.3, it is sufficient to show that infinitely many indecomposable summands appear in $F^e_*\mathcal{O}_{\mathfrak{C}}$, when eranges over all non-negative integers. In case $g(C) \geq 1$ (Theorem 2.1), this follows as in the proof of Proposition 1.4, since $\pi_*F^e_*\mathcal{O}_{\mathfrak{C}} \cong F^e_*\mathcal{O}_C$ by Lemma 2.4 (3).

The proof of our Main Theorem 2.3 is again due to case-by-case verification.

Case $\delta_{\mathfrak{C}} = 0$. In this case, it follows that m = 3 or 4 and the weight (r_1, \ldots, r_m) ordered as $r_1 \leq \cdots \leq r_m = r$ is either one of the following: (2,3,6), (2,4,4), (3,3,3), (2,2,2,2). We have a separable *r*-fold covering $f: E \to C = \mathbb{P}^1$ from an elliptic curve *E* with assigned ramification indexes (r_1, \ldots, r_m) . It factors through \mathfrak{C} as

$$f: E \stackrel{\varphi}{\longrightarrow} \mathfrak{C} \stackrel{\pi}{\longrightarrow} C,$$

with φ unramified. We can use the unramified morphism $\varphi \colon E \to \mathfrak{C}$ to prove the following; see [HO] for details.

- (1) If E is supersingular, then $\varphi^* F^e_* \mathcal{O}_{\mathfrak{C}}$ is isomorphic to the Atiyah's indecomposable bundle \mathcal{F}_{p^e} of rank p^e and degree zero [A]. Hence $F^e_* \mathcal{O}_{\mathfrak{C}}$ itself is indecomposable.
- (2) If E is ordinary, then $p \equiv 1 \pmod{r}$ and there are exactly $s = \frac{p^e-1}{r}$ equivalence classes of non-trivial p^e -torsion line bundles on E with respect to the action of $\operatorname{Gal}(E/C)$. If L_1, \ldots, L_s are complete representatives thereof, then

$$F^e_*\mathcal{O}_{\mathfrak{C}}\cong\mathcal{O}_{\mathfrak{C}}\oplus\varphi_*L_1\oplus\cdots\oplus\varphi_*L_s,$$

where $\varphi_*L_1, \cdots, \varphi_*L_s$ are non-isomorphic indecomposable *r*-bundles on \mathfrak{C} .

Case $\delta_{\mathfrak{C}} > 0$. In this case, we have the following theorem, which follows similarly as in the case of smooth projective curves of genus $g \ge 2$ [Su, Theorem 2.2].

Theorem 2.6. If $\delta_{\mathfrak{C}} > 0$ and r_1, \ldots, r_m are not divisible by p, then $F^e_* \mathcal{O}_{\mathfrak{C}}$ is stable and so indecomposable for all $e \geq 0$.

Example 2.7. Let $R = k[x, y, z]/(x^2 + y^3 + z^7)$, the ring in Brenner's question. This is not a rational singularity but Proj $R \cong \mathbb{P}^1$ and $R \cong R(\mathbb{P}^1, D)$ for a Q-divisor $D = \frac{1}{2}(\infty) - \frac{1}{3}(0) - \frac{1}{7}(1)$ on \mathbb{P}^1 . By Theorem 2.3, R does not have FFRT if $p \neq 2, 3, 7$.

Example 2.8. Let $R = R(\mathbb{P}^1, D)$ for a \mathbb{Q} -divisor $D = \frac{1}{3}(\infty) + \frac{1}{3}(0) - \frac{1}{3}(1)$ on \mathbb{P}^1 . This is a rational log canonical singularity but not log terminal. The ring R does not have FFRT if and only if $p \neq 3$. In the exceptional case when p = 3, the weighted projective line \mathfrak{C} of weight (3, 3, 3) is a Frobenius sandwich.

3. The anticanonical ring of the quintic Del Pezzo surface

The FFRT problem for graded rings is wide open yet in higher dimension (i.e., $\dim R \geq 3$). We do not know even the answer to the following question.

Question. Let X be the smooth quintic del Pezzo surface in characteristic p > 0 with anticanonical bundle $L = \omega_X^{-1}$. Does the section ring $R(X, -K_X) = R(X, L)$ have FFRT?

The setup in the question above is considered one of the simplest non-trivial cases because of the following reasons:

- (1) Del Pezzo surfaces of degree $K^2 \ge 6$ are toric surfaces. In this case, the Frobenius push-forward of any line bundle splits into line bundles [To], and it is easy to see that the anticanonical ring has FFRT.
- (2) In order to prove that R(X, L) is FFRT, one has to know the decomposition of $F_*^e(L^i)$ for all i with $0 \le i \le p^e - 1$. However, when $L = \omega_X^{-1}$, it is enough to consider $0 \le i \le \frac{p^e - 1}{2}$, since $F_*^e(L^i)$ is dual to $F_*^e(\omega_X^{1-p^e} \otimes L^{-i}) = F_*^e(L^{p^e - 1-i})$.

In this section, we will study the structure of $F^e_*(L^i)$ mainly in the extremal cases i = 0 and $i = \frac{p^e-1}{2}$. Since the quintic del Pezzo surface X is obtained by blowing up the projective plane \mathbb{P}^2 at four points in general position, we work under the following notation throughout this section.

Notation. Let $\pi: X \to \mathbb{P}^2$ be the blow-up at four points $P_1, P_2, P_3, P_4 \in \mathbb{P}^2$ in general position. Let H be a line in \mathbb{P}^2 and $E_i = \pi^{-1}(P_i)$ the exceptional curve over P_i . Also let $E = E_1 + E_2 + E_3 + E_4$.

Theorem 3.1 (case i = 0 [H]). Any indecomposable direct summand of $F_*^e \mathcal{O}_X$ (e = 1, 2, ...) coincides with one of the following vector bundles of rank ≤ 3 .

- (1) line bundles \mathcal{O}_X , $L_0 = \mathcal{O}_X(E 2\pi^*H)$ and $L_i = \mathcal{O}_X(E_i \pi^*H)$, i = 1, 2, 3, 4;
- (2) an indecomposable rank two bundle \mathcal{G} given by a unique non-trivial extension

$$0 \to \mathcal{O}_X(-\pi^*H) \to \mathcal{G} \to L_0 \to 0;$$

(3) an indecomposable rank three bundle \mathcal{B} given by a non-trivial extension

$$0 \to L_1 \oplus L_2 \to \mathcal{B} \to \mathcal{O}_X(E_3 + E_4 - \pi^* H) \to 0.$$

Furthermore, for any power $q = p^e$ of p with $e \ge 1$ one has

$$F^e_*\mathcal{O}_X \cong \mathcal{O}_X \oplus \bigoplus_{i=0}^4 L^{\oplus (q-2)}_i \oplus \mathcal{B} \oplus \mathcal{G}^{\oplus \frac{(q-2)(q-3)}{2}}$$

Case $i = \frac{p^e - 1}{2}$. Let $L = \omega_X^{-1}$ and assume that the characteristic p is an odd prime. We consider the decomposition of $F_*^e(L^i)$ in the other extremal case, i.e., $i = \frac{p^e - 1}{2}$. Let $q = p^e$ for $e = 0, 1, 2, \ldots$ Note that the vector bundle $F_*^e(L^{\frac{q-1}{2}})$ is self-dual.

We begin with constructing the *L*-stable bundle \mathcal{F} of rank three which is supposed to be a unique non-trivial indecomposable summand of $F^e_*(L^{\frac{q-1}{2}})$. We require \mathcal{F} to sit in an exact sequence

$$0 \to \mathcal{G}(2\pi^*H - E) \to \mathcal{F} \to \mathcal{O}_X(E - \pi^*H) \to 0,$$

where \mathcal{G} is the rank two bundle given in Theorem 3.1 (2). To identify the isomorphism class of \mathcal{F} , we also need the following splitting condition: For i = 1, 2, 3, 4, the restriction of \mathcal{F} to $U_i = X \setminus E_i$ splits into line bundles as

$$(\star) \qquad \qquad \mathcal{F}|_{U_i} \cong \mathcal{O}_{U_i}(\pi^*H - E) \oplus \mathcal{O}_{U_i} \oplus \mathcal{O}_{U_i}(E - \pi^*H)$$

We fix an open covering $X = U \cup V$ with $U = X \setminus E_4$, $V = X \setminus E_1$ and let

$$\mathcal{F}_U = \mathcal{O}_U(\pi^*H - E) \oplus \mathcal{O}_U \oplus \mathcal{O}_U(E - \pi^*H),$$

$$\mathcal{F}_V = \mathcal{O}_V(\pi^*H - E) \oplus \mathcal{O}_V \oplus \mathcal{O}_V(E - \pi^*H).$$

Then \mathcal{F} is given by gluing \mathcal{F}_U and \mathcal{F}_V via an isomorphism $\varphi_{UV} \colon \mathcal{F}_U|_{U \cap V} \to \mathcal{F}_V|_{U \cap V}$ corresponding to a transition matrix

$$T_{\alpha,\beta,\gamma} = \begin{bmatrix} 1 & \alpha & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{bmatrix}$$

with $\alpha, \beta, \gamma \in k$.

Proposition 3.2. Let $\mathcal{F}_{\alpha,\beta,\gamma}$ denote the vector bundle given by gluing \mathcal{F}_U and \mathcal{F}_V with the transition matrix $T_{\alpha,\beta,\gamma}$.

- (1) $\mathcal{F}_{\alpha,\beta,\gamma}$ satisfies condition (*) for i = 1, 2, 3, 4 if and only if $\alpha\beta = 2\gamma$.
- (2) If \mathcal{F} is an indecomposable bundle satisfying condition (*) for i = 1, 2, 3, 4, then $\mathcal{F} \cong \mathcal{F}_{1,1,1/2}$.

Conjecture 3.3. Assume that p is an odd prime and let $q = p^e$ for e = 0, 1, 2, ...

(1) The rank of the maximal free summand of $F^e_*(L^{\frac{q-1}{2}})$ is $h^0(L^{\frac{q-1}{2}}) = \frac{5q^2+3}{8}$.

(2)
$$F^e_*(L^{\frac{q-1}{2}}) \cong \mathcal{O}_X^{\oplus \frac{5q^2+3}{8}} \oplus (\mathcal{F}_{1,1,1/2})^{\oplus \frac{q^2-1}{8}}$$

Proposition 3.4. Conjecture 3.3 (1) implies Conjecture 3.3 (2).

Proof. If Conjecture 3.3 (1) is true, then $F_*^e(L^{\frac{q-1}{2}}) \cong \mathcal{O}_X^{\oplus \frac{5q^2+3}{8}} \oplus \mathcal{E}$ for a vector bundle \mathcal{E} of rank 3n, where $n = (q^2 - 1)/8$. It follows that \mathcal{E} is obtained by gluing

$$\mathcal{E}_U = \mathcal{O}_U(\pi^*H - E)^{\oplus n} \oplus \mathcal{O}_U^{\oplus n} \oplus \mathcal{O}_U(E - \pi^*H)^{\oplus n},$$

$$\mathcal{E}_V = \mathcal{O}_V(\pi^*H - E)^{\oplus n} \oplus \mathcal{O}_V^{\oplus n} \oplus \mathcal{O}_V(E - \pi^*H)^{\oplus n}$$

with the transition matrix

$$\begin{bmatrix} I_n & A & \Gamma \\ O & I_n & B \\ O & O & I_n \end{bmatrix}.$$

Here we note that $\mathcal{E}|_{U_i}$ splits into line bundles for each i = 1, 2, 3, 4, since $U_i = X \setminus E_i$ is isomorphic to an open set of the sextic del Pezzo surface, which is toric. As in Proposition 3.2, this splitting condition implies that $AB = 2\Gamma$. On the other hand, we see that the line bundles $\mathcal{O}_X(E-\pi^*H)$ and $\mathcal{O}_X(\pi^*H-E)$ are not direct summands of $F_*^e(L^{\frac{q-1}{2}})$ (and hence of \mathcal{E}). This implies that rank $A = \operatorname{rank} B = n$. Then the transition matrix is transformed under elementary transformations within row and column blocks to

$$\begin{bmatrix} I_n & I_n & \frac{1}{2}I_n \\ O & I_n & I_n \\ O & O & I_n \end{bmatrix} = T_{1,1,1/2}^{\oplus n}$$

It follows that $\mathcal{E} \cong (\mathcal{F}_{1,1,1/2})^{\oplus n}$.

Remark 3.4.1. Conjecture 3.3 (1) holds if and only if the natural pairing

$$\operatorname{Hom}(\mathcal{O}_X, L^{\frac{q-1}{2}}) \times \operatorname{Hom}(L^{\frac{q-1}{2}}, \mathcal{O}_X) \to \operatorname{Hom}(\mathcal{O}_X, \mathcal{O}_X)$$

is a perfect paring. Choosing appropriate affine coordinates x, y on \mathbb{P}^2 , we can identify $\operatorname{Hom}(\mathcal{O}_X, L^{\frac{q-1}{2}}) \cong \operatorname{Hom}(L^{\frac{q-1}{2}}, \mathcal{O}_X) \cong H^0(X, L^{\frac{q-1}{2}})$ with a subspace of $V = \langle x^i y^j | 0 \leq i, j \leq q-1 \text{ and } \frac{q-1}{2} \leq i+j \leq \frac{3q-3}{2} \rangle$. Then the pairing above is identified with the pairing

$$\langle , \rangle \colon H^0(X, L^{\frac{q-1}{2}}) \times H^0(X, L^{\frac{q-1}{2}}) \to k$$

given by

 $\langle \phi, \psi \rangle$ = the coefficient of the product $\phi \psi$ in $(xy)^{q-1}$

for $\phi, \psi \in H^0(X, L^{\frac{q-1}{2}}) \subset V$. Taking this into account, we can rephrase Conjecture 3.3 (1) into the assertion that a certain $\frac{q^2-1}{8} \times \frac{q^2-1}{8}$ matrix is invertible mod p. M. Tano has implemented a computer program to examine this assertion and verified that it is true up to $p^e < 100$.

Finally, we shall take a look at examples which we hope illustrate the behavior of the single Frobenius push-forwards $F_*(L^i)$ for all i in the range $0 \le i \le \frac{p-1}{2}$. In the following, we put $M_{i,j} = \mathcal{O}_X(E_i + E_j - \pi^*H)$ for $1 \le i < j \le 4$.

Example 3.5 (p = 5).

$$F_*\mathcal{O}_X \cong \mathcal{O}_X \oplus \bigoplus_{i=0}^4 L_i^{\oplus 3} \oplus \mathcal{B} \oplus \mathcal{G}^{\oplus 3},$$

$$F_*L \cong \mathcal{O}_X^{\oplus 6} \oplus \bigoplus_{i=1}^4 \mathcal{O}_X(-E_i) \oplus \bigoplus_{(i,j)=(1,2),(1,3),(1,4),\ (2,3),(2,4),(3,4)} M_{i,j} \oplus \mathcal{B}^{\oplus 3},$$

$$F_*(L^2) \cong \mathcal{O}_X^{\oplus 16} \oplus \mathcal{F}^{\oplus 3}$$

Example 3.6 (p = 7).

$$F_*\mathcal{O}_X \cong \mathcal{O}_X \oplus \bigoplus_{i=0}^4 L_i^{\oplus 5} \oplus \mathcal{B} \oplus \mathcal{G}^{\oplus 10},$$

$$F_*L \cong \mathcal{O}_X^{\oplus 6} \oplus \bigoplus_{i=0}^4 L_i^{\oplus 3} \oplus \bigoplus_{i=1}^4 \mathcal{O}_X(-E_i) \oplus \bigoplus_{\substack{(i,j)=(1,2),(1,3),(1,4),\\(2,3),(2,4),(3,4)}} M_{i,j} \oplus \mathcal{B}^{\oplus 6},$$

$$F_*(L^2) \cong \mathcal{O}_X^{\oplus 16} \oplus \bigoplus_{i=1}^4 \mathcal{O}_X(-E_i)^{\oplus 3} \oplus \bigoplus_{\substack{(i,j)=(1,2),(1,3),(1,4),\\(2,3),(2,4),(3,4)}} M_{i,j}^{\oplus 3} \oplus \mathcal{B},$$

$$F_*(L^3) \cong \mathcal{O}_X^{\oplus 31} \oplus \mathcal{F}^{\oplus 6}.$$

Acknowledgments. I would like to thank the organizers of the symposium for giving me an opportunity to present a talk and this report. I am grateful to Masaya Tano, a graduate student at the Institute of Engineering, TUAT, for his computation mentioned in Remark 3.4.1. This work is partially supported by Grant-in-Aid for Scientific Research, 16K05092.

References

- [AV] M. Artin and J.-L. Verdier, Reflexive sheaves over rational double points, Math. Ann. 270 (1985), 79–82.
- [A] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452.
- [B] K. Behrend, Introduction to algebraic stacks, in Moduli Spaces (eds. L. Brambila-Paz et al.), London Math. Soc. Lecture Note series 411, pp. 1–131, Cambridge University Press, 2014.
- [CB] W. Crawley-Boevey, Kac's theorem for weighted projective lines, J. Eur. Math. Soc. 12 (2010),1331–1345.
- [D] M. Demazure, Anneaux gradues normaux, in Seminaire Deamazure-Giraud-Teissier, Singularites des surfaces, pp. 241–266, Ecole Polytechnique, 1979.
- [H] N. Hara, Looking out for Frobenius summands on a blown-up surface of P², Illinois J. Math. 59 (2015), 115–142.
- [HO] N. Hara and R. Ohkawa, The FFRT property of two-dimensional graded rings and orbifold curves, preprint arXiv:1706.00255
- [KS] Y. Kitadai and H. Sumihiro, Canonical filtrations and stability of direct images by Frobenius morphisms, Tohoku Math. J. (2) 60 (2008), 287-301.
- [MP] V. B. Mehta and C. Pauly, Semistability of Frobenius direct images over curves, Bull. Soc. Math. France 135 (2007), 105-117.
- [Ol] M. Olsson, Algebraic spaces and stacks, American Mathematical Society, Colloquium Publications V. 62.
- [P] H. Pinkham, Normal surface singularities with C^{*} action, Math. Ann. 227 (1977), 183–193.
- [Sh] T. Shibuta, One-dimensional rings of finite F-representation type, J. Algebra 332 (2011), 434-441.
- [SS] A. K. Singh and I. Swanson, Associated primes of local cohomology modules and of Frobenius powers, Int. Math. Res. Not. 33 (2004), 1703–1733.
- [SVdB] K. E. Smith and M. Van den Bergh, Simplicity of rings of differential operators in prime characteristic, Proc. London Math. Soc. (3) 75 (1997), 32–62.

- [Su] X. Sun, Direct images of bundles under Frobenius morphism, Invent. Math. 173 (2008), 427–447.
- [TT] S. Takagi and R. Takahashi, D-modules over rings with finite F-representation type, Math. Res. Lett. (2008), 15, 563–581.
- [To] J. F. Thomsen, Frobenius direct images of line bundles on toric varieties, J. Algebra 226 (2000), 865—874.

Tokyo University of Agriculture and Technology, 2–24–16 Nakacho, Koganei, Tokyo 184–8588, Japan

E-mail address: nhara@cc.tuat.ac.jp

10