ON THE NOETHERIAN PROPERTY OF SYMBOLIC REES RINGS

Koji Nishida

1. Definitions of symbolic powers and symbolic Rees rings

Throughout this section, we assume that R is a Noetherian ring and I is a proper ideal of R. Moreover, Min I denotes the set of minimal prime ideals containing I. We put $\mathbb{N} = \{1, 2, 3, \dots\}$ and $\mathbb{N}_0 = \{0, 1, 2, 3, \dots\}$. For any $r \in \mathbb{Z}$, we set

$$I^{(r)} = \bigcap_{P \in \operatorname{Min} I} (I^r R_P \cap R)$$

= { $a \in R$ | There exists $s \in R \setminus \bigcup_{P \in \operatorname{Min} I} P$ such that $sa \in I^r$ }

and call it the r-th symbolic power of I. Then we obviously have $I^{(r)} \supseteq I^r$ and $I^{(r)} \supseteq I^{(r+1)}$ for any $r \in \mathbb{Z}$.

Proposition 1.1. The following assertions hold.

- (1) If R is Cohen-Macaulay and I is generated by a regular sequence, we have $I^{(r)} = I^r$ for any $r \in \mathbb{Z}$.
- (2) If $\sqrt{I} = I$, we have $I^{(r)} = \bigcap_{P \in \operatorname{Min} I} P^{(r)}$ for any $r \in \mathbb{Z}$.

Let t be an indeterminate. We put

$$\mathscr{R}_s(I) = \sum_{r \in \mathbb{N}_0} I^{(r)} t^r \subset R[t]$$

and call it the symbolic Rees ring of I. Since $I^{(r)}I^{(s)} \subseteq I^{(r+s)}$ for any $r, s \in \mathbb{Z}$, $\mathscr{R}_s(I)$ is a graded subring of R[t]. Moreover, we set

$$\mathscr{R}'_{s}(I) = \sum_{r \in \mathbb{Z}} I^{(r)} t^{r} \subset R[t, t^{-1}].$$

Theorem 1.2. The following conditions are equivalent.

- (1) $\mathscr{R}_{s}(I)$ is finitely generated.
- (2) $\mathscr{R}'_{s}(I)$ is finitely generated.
- (3) There exists $k \in \mathbb{N}$ such that $I^{(kr)} = (I^{(k)})^r$ for any $r \in \mathbb{Z}$.

2. HISTORICAL BACKGROUND

First, let us recall Nagata's counterexample to Hilbert's 14th problem. Let R = K[x, y, z] be a polynomial ring over a field K. Let $\{(\alpha_i : \beta_i : \gamma_i)\}_{i=1,\dots,m}$ be a set of points in \mathbb{P}^2_K . We set

$$P_i = I_2 \begin{pmatrix} x & y & z \\ \alpha_i & \beta_i & \gamma_i \end{pmatrix} \in \operatorname{Spec} R$$

and $I_H = \bigcap_{i=1}^m P_i$. Then we have $I_H^{(r)} = \bigcap_{i=1}^m P_i^r$ for all $r \in \mathbb{Z}$. Now, let $K = \mathbb{C}$, and assume that H is consisting of independent generic points, i.e., $\{\alpha_i, \beta_i, \gamma_i\}_{i=1,\dots,m}$ is algebraically independent over \mathbb{Q} .

Theorem 2.1. (Nagata [13], 1954) The following assertions hold.

(1) There exists a polynomial ring S and a group G acting on S such that

 $S^G \cong \mathscr{R}'_s(I_H).$

(2) $\mathscr{R}'_{s}(I_{H})$ is not finitely generated if $m = 4^{2}, 5^{2}, 6^{2}, \ldots$

Next, let us recall Cowsik's question. Let (R, \mathfrak{m}) be a local ring such that R/\mathfrak{m} is infinite and dim R = d > 0. Let P be a prime ideal of R such that dim R/P = 1.

Theorem 2.2. (Cowsik [2], 1984) If $\mathscr{R}_s(P)$ is Noetherian, then P is a set theoretic complete intersection.

Proof. As $\mathscr{R}_s(P)$ is Noetherian, there exists $k \in \mathbb{N}$ such that $P^{(kr)} = (P^{(k)})^r$ for any $r \in \mathbb{Z}$. Let $I = P^{(k)}$. Then we have depth $R/I^r > 0$ for any $r \in \mathbb{N}$. Let

$$\mathscr{F} = \oplus_{r \in \mathbb{N}_0} I^r / \mathfrak{m} I^r$$

be the fiber cone of I. Then by Burch's inequality (cf. [1]),

 $\dim \mathscr{F} \leq \dim R - \inf \{ \operatorname{depth} R/I^r \}_{r=1,2,\dots} \leq d-1.$

Hence there exist $a_1, \dots, a_{d-1} \in I$ such that $I^{r+1} = (a_1, \dots, a_{d-1})I^r$ for $r \gg 0$. Thus we see $P = \sqrt{I} = \sqrt{(a_1, \dots, a_{d-1})R}$.

Question 2.3. (Cowsik [2], 1984) Is $\mathscr{R}_s(P)$ Noetherian if R is a regular local ring and $P \in \operatorname{Spec} R$?

Example 2.4. The following is a list of negative answers to Cowsik's question.

- (1) (cf. [15], 1985)) Roberts gave the first counterexample in the case where dim R = 3 using Nagata's counterexample to Hilbert's 14th problem. Unfortunately, in this example, \hat{P} is not a prime ideal in \hat{R} .
- (2) (cf. [16], 1990) Roberts gave another counterexample. In this example, R is complete, dim R = 7 and dim R/P = 4.
- (3) (cf. [7], 1994) Goto, Nishida and Watanage found counterexamples among the ideals defining space monomial curves in the case where the base field has characteristic zero. In their examples, the minimum value of e(R/P) is 25.
- (4) (cf. [4], 2016) González and Karu extended the class of ideals described in (3). In their examples, the minimum value of e(R/P) is 7.
- (5) (cf. [17], 2017) Sannai and Tanaka constructed a counterexample in the polynomial ring with 12 variables over any field.

3. Remarks on a system of parameters for a two dimensional regular local ring

In this section, we assume that (R, \mathfrak{m}) is a 2-dimensional regular local ring and a_1, a_2 is an sop for R such that $a_i \in \mathfrak{m}^{r_i}$ for i = 1, 2, where $r_i \in \mathbb{N}$. We set

$$\mathscr{R}(R) = \sum_{r=0}^{\infty} \mathfrak{m}^r t^r,$$

which is a graded subring of R[t]. Let $\mathscr{R}(R)_+$ be the ideal generated by $\{\mathfrak{m}^r t^r\}_{r=1,2,\dots}$.

Lemma 3.1. The following conditions are equivalent.

 $\begin{array}{ll} (1) \ \mathscr{R}(R)_{+} = \sqrt{(a_{1}t^{r_{1}}, a_{2}t^{r_{2}})\mathscr{R}(R)}.\\ (2) \ \mathfrak{m}^{r} = a_{1}\mathfrak{m}^{r-r_{1}} + a_{2}\mathfrak{m}^{r-r_{2}} \ for \ r \gg 0.\\ (3) \ \mathfrak{m}^{2r_{1}r_{2}} = Q\mathfrak{m}^{r_{1}r_{2}}, \ where \ Q = (a_{1}^{r_{2}}, a_{2}^{r_{1}})R \subset \mathfrak{m}^{r_{1}r_{2}}. \end{array}$

Proof. All implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$ can be verified directly.

The following fact plays a key role in this report.

Lemma 3.2. We have $\ell_R(R/(a_1, a_2)R)) \ge r_1r_2$, where the equality holds if and only if

$$\mathscr{R}(R)_{+} = \sqrt{(a_1 t^{r_1}, a_2 t^{r_2}) \mathscr{R}(R)}.$$

Proof. We put $Q = (a_1^{r_2}, a_2^{r_1})R \subset \mathfrak{m}^{r_1r_2}$. Then

$$r_1 r_2 \cdot \ell_R(R/(a_1, a_2)R) = \ell_R(R/Q) = e(Q) \ge e(\mathfrak{m}^{r_1 r_2}) = (r_1 r_2)^2 \cdot e(\mathfrak{m}) = r_1^2 r_2^2.$$

Therefore the required inequality follows. Moreover,

$$\ell_R(R/(a_1, a_2)R) = r_1 r_2 \quad \Leftrightarrow \quad e(Q) = e(\mathfrak{m}^{r_1 r_2})$$

$$\Leftrightarrow \quad Q \text{ is a reduction of } \mathfrak{m}^{r_1 r_2}.$$

Consequently, we get the last assertion by 3.1.

4. RADICAL IDEALS OF REGULAR LOCAL RINGS OF DIMENSION THREE

Throughout this section, we assume that (R, \mathfrak{m}) is a 3-dimensional regular local ring. Moreover, I is an ideal of R such that $\sqrt{I} = I$ and dim R/I = 1. Then $I = \bigcap_{P \in \operatorname{Min} I} P$ and R/I is a CM ring. Furthermore, we have ht P = 2 and $IR_P = PR_P$ for any $P \in \operatorname{Min} I$. Hence, for $f \in R$ and $r \in \mathbb{Z}$, we see that $f \in I^{(r)}$ if and only if $f \in P^r R_P$ for any $P \in \operatorname{Min} I$.

Theorem 4.1. Let $\xi_i \in I^{(r_i)}$ for i = 1, 2, where $r_i \in \mathbb{N}$. Let $u \in \mathfrak{m}$ be an sop for R/I such that $\sqrt{(x, \xi_1, \xi_2)R} = \mathfrak{m}$. Then

$$\mathbf{e}_{uR}(R/(\xi_1,\xi_2)R) \ge r_1 r_2 \cdot \mathbf{e}_{uR}(R/I).$$

Proof. If $P \in \text{Min } I$, we have $\xi_i \in P^{r_i} R_P$ for i = 1, 2. We put $\mathscr{P} = \text{Min} (\xi_1, \xi_2) R \supseteq \text{Min } I$. Then, applying the additive formula of multiplicity and Lemma 3.2, we get

$$\begin{aligned} \mathbf{e}_{uR}(R/(\xi_1,\xi_2)R) &= \sum_{P\in\mathscr{P}} \ell(R_P/(\xi_1,\xi_2)R_P) \cdot \mathbf{e}_{uR}(R/P) \\ &\geq \sum_{P\in\mathrm{Min}\,I} \ell(R_P/(\xi_1,\xi_2)R_P) \cdot \mathbf{e}_{uR}(R/P) \\ &\geq \sum_{P\in\mathrm{Min}\,I} r_1 r_2 \cdot \mathbf{e}_{uR}(R/P) \\ &= r_1 r_2 \cdot \sum_{P\in\mathrm{Min}\,I} \ell(R_P/IR_P) \cdot \mathbf{e}_{uR}(R/P) \\ &= r_1 r_2 \cdot \mathbf{e}_{uR}(R/I). \end{aligned}$$

Now we introduce Huneke's Condition. Let $\xi_i \in I^{(r_i)}$ for i = 1, 2, where $r_i \in \mathbb{N}$.

Definition 4.2. If there exists an sop $u \in \mathfrak{m}$ for R/I such that $\sqrt{(u,\xi_1,\xi_2)R} = \mathfrak{m}$ and

*)
$$e_{uR}(R/(\xi_1,\xi_2)R) = r_1 r_2 \cdot e_{uR}(R/I),$$

we say that ξ_1 and ξ_2 satisfy **HC** on *I*.

Lemma 4.3. The following conditions are equivalent.

(1) ξ_1 and ξ_2 satisfy **HC** on *I*. (2) $\mathfrak{m} = \sqrt{(u,\xi_1,\xi_2)R}$ for any sop $u \in \mathfrak{m}$ for R/I and (*) holds. (3) $I = \sqrt{(\xi_1,\xi_2)R}$ and $\mathscr{R}(R_P)_+ = \sqrt{(\xi_1t^{r_1},\xi_2t^{r_2})\mathscr{R}(R_P)}$ for any $P \in \operatorname{Min} I$.

Proof. Let $u \in \mathfrak{m}$ be an sop for R/I such that $\sqrt{(u,\xi_1,\xi_2)R} = \mathfrak{m}$. From the proof of Theorem 4.1, we see that

$$e_{uR}(R/(\xi_1,\xi_2)R) = r_1 r_2 \cdot e_{uR}(R/I)$$

holds if and only if

$$\operatorname{Min}(\xi_1,\xi_2)R = \operatorname{Min} I$$
 and $\ell(R_P/(\xi_1,\xi_2)R_P) = r_1r_2$ for any $P \in \operatorname{Min} I$.

Of course, $\operatorname{Min}(\xi_1, \xi_2)R = \operatorname{Min} I$ holds if and only if $\sqrt{(\xi_1, \xi_2)R} = I$. Moreover, Lemma 3.2 implies that, for any $P \in \operatorname{Min} I$, $\ell(R_P/(\xi_1, \xi_2)R_P) = r_1r_2$ holds if and only if $\mathscr{R}(R_P)_+ = \sqrt{(\xi_1 t^{r_1}, \xi_2 t^{r_2})\mathscr{R}(R_P)}$. Therefore we get $(1) \Rightarrow (3)$ and $(3) \Rightarrow (2)$ of Lemma 4.3. The implication $(2) \Rightarrow (1)$ holds obviously. \Box

The next result is called the Huneke's criterion.

Theorem 4.4. (cf. [11, 12]) The following conditions are equivalent.

- (1) $\mathscr{R}_{s}(I)$ is finitely generated.
- (2) There exist $r_1, r_2 \in \mathbb{N}$ for which we can choose elements $\xi_1 \in I^{(r_1)}$ and $\xi_2 \in I^{(r_2)}$ satisfying **HC** on *I*.

Huneke's criterion was first found by Huneke (cf. [11]) in the case where I is a prime ideal and R/\mathfrak{m} is infinite. Kurano and Nishida (cf. [12]) gave the generalized version together with a totally different proof for $(2) \Rightarrow (1)$. The assumption that R is local is essential for $(1) \Rightarrow (2)$. There exists a graded version for $(2) \Rightarrow (1)$, which will be explained in the following. For that purpose, let us recall some basic facts on the localization by the irrelevant maximal ideal.

Let S = K[x, y, z] be the polynomial ring over a field K. We regard S as an \mathbb{N}_0 -graded ring putting suitable weight on each variable, and set $\mathfrak{n} = (x, y, z)S$. Suppose that \mathfrak{a} is a homogeneous ideal of S such that $\sqrt{\mathfrak{a}} = \mathfrak{a}$ and dim $S/\mathfrak{a} = 1$. We put $R = S_{\mathfrak{n}}$ and $I = \mathfrak{a}R$. Then, the basic assumptions on R and I of this section are satisfied. It is easy to see that, for any homogeneous ideal \mathfrak{b} of S, we have $\ell(S/\mathfrak{b}) = \ell(R/\mathfrak{b}R)$. Moreover, the following assertions hold.

Proposition 4.5. For any $r \in \mathbb{Z}$, $\mathfrak{a}^{(r)}$ is homogeneous and $\mathfrak{a}^{(r)}R = I^{(r)}$. Moreover, $\mathscr{R}_s(\mathfrak{a})$ is finitely generated if and only if so is $\mathscr{R}_s(I)$

Let $\xi_i \in \mathfrak{a}^{(r_i)}$ for i = 1, 2, where $r_i \in \mathbb{N}$. Then the image of ξ_i in R is in $I^{(r_i)}$.

Definition 4.6. We say that ξ_1 and ξ_2 satisfy **HC** on \mathfrak{a} , if the images of those elements in R satisfy **HC** on I.

Proposition 4.7. $\mathscr{R}_s(\mathfrak{a})$ is finitely generated if and only if there exist $r_1, r_2 \in \mathbb{N}$ for which we can choose elements $\xi_1 \in \mathfrak{a}^{(r_1)}$ and $\xi_2 \in \mathfrak{a}^{(r_2)}$ satisfying **HC** on \mathfrak{a} .

Let us notice that the elements ξ_1 and ξ_2 satisfying **HC** on \mathfrak{a} are not necessarily homogeneous.

5. Radical ideals of K[x, y, z] generated by homogeneous polynomials

Throughout this section, we assume that R = K[x, y, z] is a polynomial ring over a field K. We put $\mathfrak{m} = (x, y, z)R$ and regard R as an \mathbb{N}_0 -graded ring setting deg $x = \deg y = \deg z = 1$. Let I be a homogeneous ideal of R such that $\sqrt{I} = I$ and dim R/I = 1. We put e = e(R/I). Then $I = \bigcap_{P \in \operatorname{Min} I} P$ and R/I is a homogeneous Cohen-Macaulay ring. Let us regard $\mathscr{R}_s(I)$ as an \mathbb{N}^2 -graded ring. If $f \in [I^{(r)}]_d$, then the degree of $ft^r \in \mathscr{R}_s(I)$ is (r, d).

It is obvious that any $P \in \text{Min } I$ is homogeneous and ht P = 2. Hence, for any $P \in \text{Min } I$, we have $IR_P = PR_P$, so

$$\ell_{R_P}(R_P/I^{(r)}R_P) = \ell_{R_P}(R_P/P^rR_P) = 1 + 2 + \dots + r = \frac{r(r+1)}{2}$$

Then, by additive formula of multiplicity, we see

$$e(R/I^{(r)}) = \sum_{P \in Min I} \ell(R_P/I^{(r)}R_P) e(R/P) = \frac{r(r+1)}{2} \sum_{P \in Min I} e(R/P).$$

Thus we get the following result.

Proposition 5.1. $e(R/I^{(r)}) = \frac{r(r+1)}{2} \cdot e \text{ for any } r \in \mathbb{N}.$

Let us notice that $R/I^{(r)}$ is a 1-dimensional graded Cohen-Macaulay ring. Hence $R/I^{(r)}$ has a homogeneous non-zero-divisor of degree one. Therefore

$$[R/I^{(r)}]_d \hookrightarrow [R/I^{(r)}]_{d+1}$$

for any $d \in \mathbb{N}$. By Propsosition 5.1, we see

$$\dim_K[R/I^{(r)}]_d = \frac{r(r+1)}{2} \cdot e^{-\frac{r(r+1)}{2}} \cdot e^{-\frac{r(r+$$

for $d \gg 0$, and so

$$\dim_{K} [I^{(r)}]_{d} = \dim_{K} R_{d} - \dim_{K} [R/I^{(r)}]_{d}$$

$$\geq \binom{d+2}{2} - e \cdot \frac{r(r+1)}{2}$$

$$= \frac{1}{2} \{ (d+2)(d+1) - er(r+1) \}$$

$$= \frac{1}{2} \{ d^{2} + 3d + 2 - er(r+1) \}.$$

If $d \ge \sqrt{e(r+1)}$, then $d^2 \ge e(r+1)^2 > er(r+1)$, so $\dim_K [I^{(r)}]_d > 0$. Consequently, we get the following result.

Proposition 5.2. $[I^{(r)}]_d \neq 0$ for any $(r, d) \in \mathbb{N}^2$ satisfying $d \geq \sqrt{e} \cdot r + \sqrt{e}$.

Here, let us introduce the condition NC as follows.

Definition 5.3. We say that I satisfies **NC** if $[I^{(r)}]_d = 0$ for any $(r, d) \in \mathbb{N}^2$ satisfying $d/r \leq \sqrt{e}$.

As is well known, if e is not a square number, then $\sqrt{e} \notin \mathbb{Q}$, and so we may replace the inequality $d/r \leq \sqrt{e}$ in Definition 5.3 with $d/r < \sqrt{e}$.

Conjecture 5.4. (Nagata's conjecture) Let $K = \mathbb{C}$ and let H be a set of independent generic m points in $\mathbb{P}^2_{\mathbb{C}}$. If $m \geq 10$, then I_H satisfies **NC**.

Nagata himself proved that his conjecture is true if $m = 4^2, 5^2, 6^2, \dots$ (cf. [13]).

Theorem 5.5. If I satisfies NC, then $\mathscr{R}_s(I)$ is not finitely generated.

Proof. Suppose that I satisfies **NC**. Let us take finitely many non zero homogeneous elements $f_1 \in [I^{(r_1)}]_{d_1}, f_2 \in [I^{(r_2)}]_{d_2}, \ldots, f_n \in [I^{(r_n)}]_{d_n}$ arbitrarily, where $r_i, d_i \in \mathbb{N}$ for $i = 1, \ldots, n$. Setting $T = R[f_1t^{r_1}, f_2t^{r_2}, \ldots, f_nt^{r_n}]$, We aim to show $T \subsetneq \mathscr{R}_s(I)$. Let $a = \min\{d_1/r_1, d_2/r_2, \ldots, d_n/r_n\}$. Since I satisfies **NC**, we have $a > \sqrt{e}$. On

Let $a = \min\{d_1/r_1, d_2/r_2, \ldots, d_n/r_n\}$. Since I satisfies **NC**, we have $a > \sqrt{e}$. On the other hand, if $T_{(r,d)} \neq 0$, it follows that $d/r \geq a$. Let us notice that there exists $(r', d') \in \mathbb{N}^2$ such that $a > d'/r' > \sqrt{e}$ and $d' \geq \sqrt{e} \cdot r' + \sqrt{e}$. Then we have $T_{(r',d')} = 0$ and $[I^{(r')}]_{d'} \neq 0$ by Proposition 5.2. Therefore we see $T \subsetneq \mathscr{R}_s(I)$

The next result is the homogeneous version of Theorem 4.1.

Theorem 5.6. Suppose $\xi_i \in [I^{(r_i)}]_{d_i}$ for i = 1, 2, where $r_i, d_i \in \mathbb{N}$. Assume that ξ_1, ξ_2 is an *R*-regular sequence. Then we have

$$\frac{d_1}{r_1} \cdot \frac{d_2}{r_2} \ge e$$

Proof. We may assume that K is infinite. Let us choose sufficiently general element $u \in R_1$. Since $\xi_i \in (IR_{\mathfrak{m}})^{(r_i)}$ for i = 1, 2 and u is an sop for $R_{\mathfrak{m}}/(\xi_1, \xi_2)R_{\mathfrak{m}}$, by Theorem 4.1 we get

$$\mathbf{e}_{uR_{\mathfrak{m}}}(R_{\mathfrak{m}}/(\xi_{1},\xi_{2})R_{\mathfrak{m}}) \geq r_{1}r_{2} \cdot \mathbf{e}_{uR_{\mathfrak{m}}}(R_{\mathfrak{m}}/IR_{\mathfrak{m}})$$

The left hand side coincides with $e(R/(\xi_1,\xi_2)R) = d_1d_2$. Moreover, we have

$$e_{uR_{\mathfrak{m}}}(R_{\mathfrak{m}}/IR_{\mathfrak{m}}) = e(R/I) = e$$

Hence we get the required inequality.

Here, let us review the condition **HC**.

Lemma 5.7. Let $\xi_i \in [I^{(r_i)}]_{d_i}$ for i = 1, 2, where $r_i, d_i \in \mathbb{N}$. We assume that ξ_1, ξ_2 is an *R*-regular sequence. Then ξ_1 and ξ_2 satisfy **HC** on *I* if and only if

$$(*) \quad \frac{d_1}{r_1} \cdot \frac{d_2}{r_2} = e$$

Therefore, by Huneke's criterion we get the next result.

Theorem 5.8. $\mathscr{R}_s(I)$ is finitely generated if there exist $r_1, d_1, r_2, d_2 \in \mathbb{N}$ satisfying the following conditions;

- (1) the equality (*) holds, and
- (2) there exist $\xi_i \in [I^{(r_i)}]_{d_i}$ for i = 1, 2 such that ξ_1, ξ_2 is an *R*-regular sequence.

Remark 5.9. Let $\xi_i \in [I^{(r_i)}]_{d_i}$ for i = 1, 2, where $r_i, d_i \in \mathbb{N}$. We assume that ξ_1 and ξ_2 satisfy **HC** on I, *i.e.*,

$$\frac{d_1}{r_1} \cdot \frac{d_2}{r_2} = e$$

Then the following two cases can not happen;

(i)
$$\frac{d_i}{r_i} > \sqrt{e}$$
 for $i = 1, 2$; (ii) $\frac{d_i}{r_i} < \sqrt{e}$ for $i = 1, 2$.

Hence, replacing the subscripts 1 and 2 with each other if necessary, we have

$$\frac{d_1}{r_1} \leq \sqrt{e} \quad and \quad \frac{d_2}{r_2} \geq \sqrt{e}.$$

6. Fermat Ideals

Throughout this section, we assume that R = K[x, y, z] is a polynomial ring over a field K. We set $\mathfrak{m} = (x, y, z)R$ and regard R as an \mathbb{N}_0 -graded ring setting deg $x = \deg y = \deg z = 1$. Let $3 \leq n \in \mathbb{N}$. We assume that ch $K \nmid n$ if ch K > 0 and there exists a primitive *n*-th root of unity θ in K.

Let *H* be the set of the following $n^2 + 3$ points in \mathbb{P}^2_K ;

 $\{(1:0:0), (0:1:0), (0:0:1)\} \cup \{(1:\theta^i:\theta^j) \mid i, j = 1, 2, \dots, n\}.$

Then we have

$$I_H = (y, z) \cap (z, x) \cap (x, y) \cap \bigcap_{i, j=1}^n P_{ij},$$

where $P_{ij} = (y - \theta^i x, z - \theta^j x)$. Here we set $f = y^n - z^n$, $g = z^n - x^n$ and $h = x^n - y^n$. Since f + g + h = 0, we have (f, g) = (g, h) = (h, f). Moreover, we can prove

$$I_H = (xf, yg, zh)$$
 and $(f, g) = \bigcap_{i, j=1}^{n} P_{i,j}$.

Therefore, the following assertion holds.

Lemma 6.1. $I_{H}^{(r)} = (y, z)^{r} \cap (z, x)^{r} \cap (x, y)^{r} \cap (f, g)^{r}$ for any $r \in \mathbb{Z}$.

Harbourne and Seceleanu proved that $\mathscr{R}_s(I_H)$ is finitely generated if n = 3 (cf. [9]). Moreover, Nagel and Seceleanu proved that $\mathscr{R}_s(I_H)$ is still finitely generated even if $n \ge 4$ (cf. [14]). Here, we would like to give another proof using Huneke's criterion.

First, let us consider the case where n = 3. We set

$$\xi_1 = fgh \in [I_H^{(3)}]_9$$
 and $\xi_2 = xf \cdot yg + yg \cdot zh + zh \cdot xf \in [I_H^2]_8$.

Since $(9/3) \cdot (8/2) = 12 = e(R/I_H)$, it follows that ξ_1 and ξ_2 satisfies **HC** on I_H by Lemma 5.7. Next, we consider the case where $n \ge 4$. Choosing $\alpha \in K \setminus \{0, 1\}$, we set

$$\xi_1 = (fgh)(\alpha f + g)^{n-3}$$
 and $\xi_2 = (xf)^2 (yg)^{n-2} + (yg)^2 (zh)^{n-2} + (zh)^2 (xf)^{n-2} + f^{n-2}gh.$

Then $\xi_1 \in I_H^{(n)}$ and $\xi_2 \in I_H^n$. Although ξ_2 is not homogeneous, we can prove that ξ_1 and ξ_2 satisfy **HC** on I_H using Lemma 4.3.

7. Ideals of $\mathbb{Z}[x, y, z]$ generated by quasihomogeneous polynomials of type (a, b, c)

Throughout this section, we assume that $S = \mathbb{Z}[x, y, z]$ is a polynomial ring over \mathbb{Z} . We put $\mathfrak{n} = (x, y, z)S$. Let K be a field. We set $S_K = K \otimes_{\mathbb{Z}} S = K[x, y, z]$, and for an ideal J of S, we denote JS_K by J_K . Moreover, for an element $\xi \in S$, we denote its image in S_K by ξ_K . Let us regard S and S_K as \mathbb{N}_0 -graded rings setting deg x = a, deg y = b, deg z = c, where $a, b, c \in \mathbb{N}$. We assume that I is a homogeneous ideal of S such that $\sqrt{xS + I} = \mathfrak{n}, \sqrt{I_K} = I_K$ and dim $S_K/I_K = 1$ for any field K. Finally, throughout this section p denotes a prime number.

Definition 7.1. Let K be a field, $k \in \mathbb{N}$ and $f \in I_K^{(k)}$. We define $\operatorname{HC}(I_K; k, f) := \{ \ell \in \mathbb{N} \mid \text{There exists } g \in I_K^{(\ell)} \text{ such that } f \text{ and } g \text{ satisfy } \operatorname{HC} \text{ on } I_K \}.$

Proposition 7.2. Let k = 1 or 2, and let $f \in I_K^{(k)}$. We assume that there exists $i \in \mathbb{N}$ such that $f \equiv y^i \mod xS_K$ and $\operatorname{HC}(I_K; k, f) \neq \phi$. We set $m = \min \operatorname{HC}(I_K; k, f)$. Then the following assertions hold.

- (1) HC($I_K; k, f$) = {m, 2m, 3m, ...}. (2) $S_K[I_K t, I_K^{(2)} t^2, ..., I_K^{(m-1)} t^{m-1}] \subsetneq \mathscr{R}_s(I_K)$.

Definition 7.3. For any $r \in \mathbb{Z}$, we set $I^{(r,x)} = \bigcup_{i=1}^{\infty} (I^r :_R x^i)$.

If $\xi \in I^{(r,x)}$, it is easy to see $\xi_K \in I_K^{(r)}$ for any field K.

Proposition 7.4. The following assertions hold.

- (1) $(I_{\mathbb{Q}})^{(r)} = (I^{(r,x)})_{\mathbb{Q}}$ and $(I_{\mathbb{F}_p})^{(r)} = (I^{(r,x)})_{\mathbb{F}_p}$ for $p \gg 0$.
- (2) Let $\xi \in I^{(k,x)}$ and $\eta \in I^{(\ell,x)}$, where $k, \ell \in \mathbb{N}$. Suppose that $\xi_{\mathbb{Q}}$ and $\eta_{\mathbb{Q}}$ satisfy HC on $I_{\mathbb{Q}}$. Then $\xi_{\mathbb{F}_p}$ and $\eta_{\mathbb{F}_p}$ satisfy **HC** on $I_{\mathbb{F}_p}$ for $p \gg 0$.
- (3) Suppose that $k \in \mathbb{N}, \xi \in I^{(k,x)}$ and $\xi \equiv y^i \mod xS$ for some $i \in \mathbb{N}$. Then we have $\operatorname{HC}(I_{\mathbb{Q}}; k, \xi_{\mathbb{Q}}) = \operatorname{HC}(I_{\mathbb{F}_p}; k, \xi_{\mathbb{F}_p}) \text{ for } p \gg 0.$

Theorem 7.5. Let k = 1 or 2. Let $\xi \in I^{(k,x)}$ and $\xi \equiv y^i \mod xS$ for some $i \in \mathbb{N}$. Suppose that there exists $r \in \mathbb{N}$ such that, for any $p \gg 0$, $rp^{e_p} \in \mathrm{HC}(I_{\mathbb{F}_p}; k, \xi_{\mathbb{F}_p})$ holds for some $e_p \in \mathbb{N}$. Then the following conditions are equivalent.

- (1) $\mathscr{R}_s(I_{\mathbb{Q}})$ is finitely generated.
- (2) $\operatorname{HC}(I_{\mathbb{Q}}; k, \xi_{\mathbb{Q}}) \neq \phi.$
- (3) $r \in \operatorname{HC}(I_{\mathbb{Q}}; k, \xi_{\mathbb{Q}}).$
- (4) $r \in \mathrm{HC}(I_{\mathbb{F}_n}; k, \xi_{\mathbb{F}_n})$ for $p \gg 0$.

Under the assumption of Theorem 7.5, it follows that $\mathscr{R}_s(I_{\mathbb{Q}})$ is not finitely generated if $r \notin \mathrm{HC}(I_{\mathbb{O}}; k, \xi_{\mathbb{O}}).$

8. Ideals defining space monomial curves

Throughout this section we assume that $S = \mathbb{Z}[x, y, z]$ is a polynomial ring over \mathbb{Z} . We put $\mathfrak{n} = (x, y, z)S$. Let K be a field. We set $S_K = K \otimes_{\mathbb{Z}} S = K[x, y, z]$. Moreover, for an element $\xi \in S$, we denote its image in S_K by ξ_K . Let us regard S and S_K as \mathbb{N}_0 -graded rings setting deg x = a, deg y = b, deg z = c, where $a, b, c \in \mathbb{N}$.

Let $\varphi: S_K \to K[t]$ be the homomorphism of K-algebras such that $\varphi(x) = t^a, \varphi(y) = t^b$ and $\varphi(z) = t^c$. We set

$$\mathfrak{p}_K(a,b,c) = \operatorname{Ker} \varphi,$$

which is a homogeneous prime ideal of S_K of height 2. If $\mathfrak{p}_K(a, b, c)$ is not a complete intersection, then it is generated by the maximal minors of a matrix of the following form;

$$(\sharp) \quad \left(\begin{array}{ccc} y^{t_3} & z^{u_1} & x^{s_2} \\ z^{u_2} & x^{s_3} & y^{t_1} \end{array}\right) \,,$$

where $s_2, s_3, t_1, t_3, u_1, u_2$ are positive integers which are determined without depending on the field K (cf. [10]). Let $\mathfrak{p}(a, b, c)$ be the ideal of S generated by the maximal minors of (\sharp). Then we have $\sqrt{xS} + \mathfrak{p}(a, b, c) = \mathfrak{n}$ and $\mathfrak{p}(a, b, c)S_K = \mathfrak{p}_K(a, b, c)$ for any field K.

The ideals defining space monomial curves explained above are deeply related to the defining ideals of certain finite set of points in \mathbb{P}^2_K . Let us verify this fact in the case where $K = \mathbb{C}$. We put $\theta_n = e^{2\pi i/n} \in \mathbb{C}$ for $n \in \mathbb{N}$. Let H(a, b, c) be the set of the following points in $\mathbb{P}^2_{\mathbb{C}}$;

$$\{ (\theta_a^i : \theta_b^j : \theta_c^k) \mid i = 1, \dots, a ; j = 1, \dots, b ; k = 1, \dots, c \}.$$

Taking new variables X, Y, Z, we set $T = \mathbb{C}[X, Y, Z]$. We consider the defining ideal of H(a, b, c) in T, i.e.,

$$I_{H(a,b,c)} = \bigcap_{i,j,k} I_2 \begin{pmatrix} X & Y & Z \\ \theta_a^i & \theta_b^j & \theta_c^k \end{pmatrix} .$$

Let us regard $S_{\mathbb{C}}$ as a subring of T setting $x = X^a, y = Y^b, z = Z^c$. Then the equality

$$I_{H(a,b,c)}^{(r)} = \mathfrak{p}_{\mathbb{C}}(a,b,c)^{(r)}T$$

holds for any $r \in \mathbb{Z}$ and we have the following.

Proposition 8.1. $\mathscr{R}_s(I_{H(a,b,c)})$ is finitely generated if and only if so is $\mathscr{R}_s(\mathfrak{p}_{\mathbb{C}}(a,b,c))$.

It is not so difficult to find concrete examples of $\mathfrak{p}_K(a, b, c)$ whose symbolic Rees algebras are finitely generated by using Huneke's criterion. For example, Huneke himself proved that $\mathscr{R}_s(\mathfrak{p}_K(a, b, c))$ is finitely generated if min $\{a, b, c\} \leq 4$ and ch $K \neq 2$ (cf. [11]). On the other hand, constructing infinitely generated $\mathscr{R}_s(\mathfrak{p}_K(a, b, c))$ is hard. Goto, Nishida and Watanabe found concrete examples of $\mathfrak{p}_K(a, b, c)$ with infinitely generated symbolic Rees rings for the first time (cf. [7]), and later González and Karu extended such class of ideals much wider (cf. [4]). In the following, we give examples of infinitely generated $\mathscr{R}_s(\mathfrak{p}(a, b, c))$ of new type.

First, we choose $\alpha \in \mathbb{Q}$ with $1 < \alpha < 5/4$ arbitrary. Then, as $2 < (17 - 10\alpha)/(6 - 3\alpha)$, we can choose $\beta \in \mathbb{Q}$ so that $2 < \beta < (17 - 10\alpha)/(6 - 3\alpha)$. Next, we write $\alpha = u_2/u_1$ and $\beta = s_2/s_3$, taking $u_2, u_1, s_2, s_3 \in \mathbb{N}$ suitably. Let $t_1 = t_3 = 1$ and $a = 2u_1 + u_2$, $b = s_3u_2 + s_2u_1 + s_2u_2$, $c = s_2 + 2s_3t_1$.

Example 8.2. ([12]) If $\text{GCD}\{a, b, c\} = 1$, then $\mathfrak{p}_K(a, b, c)$ is minimally generated by the maximal minors of the matrix (\sharp) stated above for any field K. We can find $\xi \in \mathfrak{p}(a, b, c)^{(2,x)}$ satisfying the following conditions ;

- (i) $\xi \equiv y^3 \mod xS$,
- (ii) for any prime number $p, 3p^{e_p} \in \mathrm{HC}(\mathfrak{p}_{\mathbb{F}_p}(a, b, c); 2, \xi_{\mathbb{F}_p})$ if $e_p \gg 0$, and
- (iii) $3 \notin \operatorname{HC}(I_{\mathbb{Q}}; 2, \xi_{\mathbb{Q}}).$

Consequently, it follows that $\mathscr{R}_{s}(\mathfrak{p}_{\mathbb{Q}}(a,b,c))$ is not Noetherian.

The simplest case is $\alpha = 6/5$ and $\beta = 49/24$. In this case a = 16, b = 683 and c = 97. In order to explain what is new about the example stated above, let us recall the notion of negative curve (cf. [3]). First, we have to consider the irreducible decomposition of elements in $[\mathfrak{p}_K(a,b,c)^{(r)}]_d$, where $r, d \in \mathbb{N}$. We put $R = S_K$ and $P = \mathfrak{p}_K(a,b,c)$. Let $\xi \in [P^{(r)}]_d \setminus P^{(r+1)}$.

Lemma 8.3. Let $\xi = \xi_1 \xi_2 \cdots \xi_s$, where $\xi_i \in [R]_{d_i}$ for $i = 1, 2, \cdots, s$. We set $r_i = \max\{\ell \mid \xi_i \in P^{\ell}R_P\}$. Then the following assertions hold.

(1) $\xi_i \in [P^{(r_i)}]_{d_i}$ for $i = 1, 2, \cdots, s$. (2) $r_1 + r_2 + \cdots + r_s = r$ and $d_1 + d_2 + \cdots + d_s = d$. (3) If $d/r < \alpha \in \mathbb{R}$, then $d_i/r_i < \alpha$ for some $i = 1, 2, \ldots, s$.

Proof. The assertion (1) and $d_1 + d_2 + \cdots + d_s = d$ is obvious. We get $r_1 + r_2 + \cdots + r_s = r$ by considering the initial forms of ξ_1, \cdots, ξ_s in the associated graded ring of R_P , which is an integral domain. Suppose that $d_i/r_i \geq \alpha$ for any $i = 1, 2, \cdots, s$. Then we have

$$d = d_1 + d_2 + \dots + d_s \ge \alpha (r_1 + r_2 + \dots + r_s) = \alpha r$$
,

which means $d/r \ge \alpha$.

Definition 8.4. Let $\xi \in [\mathfrak{p}_K(a, b, c)^{(r)}]_d$, where $r, d \in \mathbb{N}$. If ξ is irreducible and $\frac{d}{r} < \sqrt{abc}$,

 ξ is called a negative curve.

Theorem 8.5. Assume that a, b, c are pairwise coprime and abc is not a square number. Then there exists a negative curve if $\mathscr{R}_s(\mathfrak{p}_K(a, b, c))$ is finitely generated.

Proof. Let us give an algebraic proof in the case where $K = \mathbb{C}$. We put $R = S_{\mathbb{C}}$, $P = \mathfrak{p}_{\mathbb{C}}(a, b, c)$ and $H = H(a, b, c) \subset P_{\mathbb{C}}^2$. Let us define I_H to be an ideal of $T = \mathbb{C}[X, Y, Z]$. We assume that $\mathscr{R}_s(P)$ is Noetherian. Then $\mathscr{R}_s(I_H)$ is also Noetherian. Hence I_H does not satisfy **NC** by Theorem 5.5. This means that there exist $r, \delta \in \mathbb{N}$ such that $[I_H^{(r)}]_{\delta} \neq 0$ and $\delta/r < \sqrt{abc} (\delta/r = \sqrt{abc} \text{ can not happen as } abc \text{ is not a square number})$. Since $I_H^{(r)} = P^{(r)}T$, we have $[P^{(r)}]_d \neq 0$ for some $d \in \mathbb{N}$ with $d \leq \delta$. Let us notice $d/r \leq \delta/r < \sqrt{abc}$.

Now we take an element $0 \neq \xi \in [P^{(r)}]_d$. Let $\xi = \xi_1 \xi_2 \cdots \xi_s$ be the irreducible decomposition, where $\xi_i \in [R]_{d_i}$. We set $r_i = max\{\ell \mid \xi \in P^\ell R_P\}$ for $i = 1, 2, \cdots, s$. By Lemma 8.3, we have $d_i/r_i < \sqrt{abc}$ for some $i = 1, 2, \cdots, s$. Then ξ_i is a negative curve as $\xi_i \in [P^{(r_i)}]_{d_i}$.

Cutkosky proved that the converse of Theorem 8.5 holds if ch K > 0.

Theorem 8.6. We assume that a, b, c are pairwise coprime. Let $\xi_i \in [\mathfrak{p}_K(a, b, c)^{(r_i)}]_{d_i}$ for i = 1, 2, where $r_i, d_i \in \mathbb{N}$. Let ξ_1, ξ_2 be an S_K -regular sequence. Then the following assertions hold.

(1)
$$\frac{d_1}{r_1} \cdot \frac{d_2}{r_2} \ge abc.$$

(2) The equality holds in (1) if and only if ξ_1 and ξ_2 satisfies **HC** on $\mathfrak{p}_K(a, b, c)$.

If $K = \mathbb{C}$, Theorem 8.6 follows from Theorem 5.5, Lemma 5.6 and Proposition 8.3 as $e(T/I_{H(a,b,c)}) = \sharp H(a,b,c) = abc$.

The following result explains the uniqueness of negative curve.

Theorem 8.7. We assume that a, b, c are pairwise coprime. Let $\xi_i \in [\mathfrak{p}_K(a, b, c)^{(r_i)}]_{d_i}$ for i = 1, 2, where $r_i, d_i \in \mathbb{N}$. If both ξ_1 and ξ_2 are negative curves, then $\xi_1 \sim \xi_2$.

Proof. Suppose that ξ_i is a negative curve for i = 1, 2 and $\xi_1 \not\sim \xi_2$. Then, as $d_i/r_i < \sqrt{abc}$ for i = 1, 2, we have $(d_1/r_1)(d_2/r_2) < abc$. On the other hand, ξ_1, ξ_2 is S_K -regular as ξ_i is irreducible for i = 1, 2. So, by TheoremrefT8.7 we have $(d_1/r_1)(d_2/r_2) \ge abc$, which is impossible. Therefore the required assertion follows.

Let $\mathfrak{p}_{\mathbb{Q}}(a, b, c)$ be one of the examples found by Goto, Nishida, Watanabe (cf. [7]) and González, Karu (cf. [4]). Then it has a negative curve in the first symbolic power.

Example 8.8. (cf. [12]) Let $\mathfrak{p}_{\mathbb{Q}}(a, b, c)$ be the example given in Example 8.2. Let ξ be the element in $\mathfrak{p}(a, b, c)^{(2,x)}$ used for proving that $\mathscr{R}_s(\mathfrak{p}_{\mathbb{Q}}(a, b, c))$ is infinitely generated. Then, for any field $K, \xi_K \in \mathfrak{p}_K(a, b, c)^{(2)}$ and it is a negative curve.

For example, if $P = \mathfrak{p}_K(16, 683, 97)$, then $\xi_K \in [P^{(2)}]_{2049}$. One can check $2049/2 < \sqrt{16 \cdot 683 \cdot 97}$ directly.

Recently, for any $k \in \mathbb{N}$, González and Karu found examples of $\mathfrak{p}_{\mathbb{Q}}(a, b, c)$ such that $\mathscr{R}_{s}(\mathfrak{p}_{\mathbb{Q}}(a, b, c))$ is infinitely generated and there exists a negative curve in $\mathfrak{p}_{\mathbb{Q}}(a, b, c)^{(k)}$ (cf. [5]).

References

- [1] L. BURCH, Codimension and analytic spread, Proc. Camb. Phil. Soc. 72 (1972), 369–373.
- [2] R. C. COWSIK, Symbolic powers and number of defining equations, Algebra and its applications (New Delhi, 1981), Lecture Notes in Pure and Appl. Math. 91, Dekker, New York, 1984, 13-14.
- [3] S. D. CUTKOSKY, Symbolic algebras of monomial primes, J. reine angew. Math. 416 (1991), 71-89.
- [4] J. L. GONZÁLEZ AND K. KARU, Some non-finitely generated Cox rings, Compos. Math. 152 (2016), 984–996.
- [5] J. G. GONZÁLEZ, J. L. GONZÁLEZ AND K. KARU, On a family of negative curves, arXive:1712.04635v1.
- [6] S. GOTO, K. NISHIDA AND Y. SHIMODA, The Gorensteinness of symbolic Rees algebras for space curves, J. Math. Soc. Japan 43 (1991), 465–481.
- [7] S. GOTO, K, NISHIDA AND K.-I. WATANABE, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik's question, Proc. Amer. Math. Soc. 120 (1994), 383–392.
- [8] S. GOTO AND Y. SHIMODA, On the Rees algebras of Cohen-Macaulay local rings, Lecture Notes in Pure and Appl. Math. 68 (1982), 201–231.
- [9] B. HARBOURNE AND A. SECELEANU, Containment counter examples for ideals of various configurations of points in \mathbf{P}^N , J. Pure Appl. Algebra **219** (2015), 1062–1072.
- [10] J. HERZOG, Generators and relations of Abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175–193.
- [11] C. HUNEKE, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293–318.
- [12] K. KURANO AND K. NISHIDA, Infinitely generated symbolic Rees rings of space monomial curves having negative curves, to appear in Michigan Math. J., arXiv:1705.09865.
- [13] M. NAGATA, On the 14-th problem of Hilbert, Amer. J. Math. 81 (1959), 766–772.
- [14] U. NAGEL AND A. SECELEANU, Ordinary and symbolic Rees algebras for ideals of Fermat point configurations, J. Algebra 468 (2016), 80–102.
- [15] P. ROBERTS, A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian, Proc. Amer. Math. Soc. 94 (1985), 589–592.
- [16] P. ROBERTS, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra 132 (1990), 461–473.
- [17] A. SANNAI AND H. TANAKA, Infinitely generated symbolic Rees algebras over finite fields, arXive:1703.09121.