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Key Words: super Hopf algebra, super affine group, super algebraic group.

Mathematics Subject Classification (2010): 14M30, 16T05, 16W55.

1. Motivation

We work over k which we suppose to be a field (with a very few excep-
tions). Thus, vector spaces, tensor products ⊗, any kind of algebras and so
on are supposed to be over the field k, unless otherwise stated.

Let us start with the following famous theorem due to Deligne, which is
here formulated rather informally.

Theorem 1.1 (Deligne [6]). Suppose that k is an algebraically closed field of
characteristic zero. Then any rigid symmetric k-linear abelian tensor cate-
gory that satisfies some mild, algebraic assumption is realized as the category
of finite-dimensional super modules over some super algebraic group.

The definition of super algebraic groups is quite simple, as will be seen
below. But, when I encountered this theorem around 2003, little seemed
to be known about them, compared with super Lie groups which have a
longer history of study founded by Kostant [15], Koszul [16] and others in
the 1970’s. Indeed, there was not yet proven even the one-to-one correspon-
dence between the closed normal super subgroups of a given super algebraic
group and its quotient super groups; see Section 4.5 below. That is why
I became, though slowly, to study the subject. I use Hopf algebraic tech-
niques, following Hochschild and Takeuchi who studied algebraic groups by
using those techniques in the 1970’s; see [13, 29, 30, 31, 32].

I am going to review recent results on super algebraic groups, emphasizing
results obtained by myself and my coauthors. For my knowledge of the
subject I owe very much Alexandr N. Zubkov, one of my coauthors. See
[4, 7, 33] for modern treatment of wider topics on super geometry.

2. What is an affine/algebraic group?

Before going into the super world let us recall what happened in the
classical non-super situation.
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2.1. Geometric vs. functorial viewpoints. What is a space over k? It is
defined from geometric viewpoint to be a locally ringed space (X,OX), where
OX is a sheaf of commutative algebras over k. From functorial viewpoint it is
defined to be a set-valued functor defined on the category (Comm Algebras)
of commutative algebras over k. The notion of schemes is defined sepa-
rately from each viewpoint. The Comparison Theorem1 [8, I, §1, 4.4] states
that there exists a category equivalence between the schemes defined from
geometric viewpoint and the schemes defined from functorial viewpoint.

Here we recall how schemes or sheaves are defined from functorial view-
point. Let X be a set-valued functor X defined on (Comm Algebras). We say
that X is affine if it is representable. A scheme (over k) is a local functor
defined on (Comm Algebras) which is covered by open affine subfunctors. A
map R→ T of commutative algebras is called an fpqf (resp., fppf ) covering,
if (i) T is faithfully flat over R (resp., if (i) and (ii) T is finitely presented
as an R-algebra). Such a map gives a natural exact diagram

(2.1) R→ T ⇒ T ⊗R T.
We say that X is a dur sheaf (resp., sheaf ) (over k) if it preserves finite
direct products and any exact diagram as given above. Obviously, a dur
sheaf is a sheaf. It is known that a scheme is a dur sheaf; see [8, III, §1, 3.3].

2.2. Affine groups. It is convenient and even natural to define affine/alge-
braic groups from functorial viewpoint. An affine group is a representable
functor G : (Comm Algebras) → (Groups) with values in the category of
groups. The representing algebra O(G) has uniquely structure maps of a
Hopf algebra

∆ : O(G)→ O(G)⊗O(G), ε : O(G)→ k, S : O(G)→ O(G),

which give the product, the unit and the inverse of G, respectively. Thus
we have a category anti-isomorphism

(2.2) (Affine Groups) ' (Comm Hopf Algebras)

between the affine groups and the commutative Hopf algebras. The affine
group G which corresponds to a commutative Hopf algebra is denoted by
SpA; this should be once distinguished from the prime spectrum SpecA,
though the two notions are eventually equivalent.

By definition a closed subgroup of an affine group G is an affine group H
which is represented by a quotient Hopf algebra of O(G); it is said to be nor-
mal if each subgroup H(R) is normal in G(R), where R ∈ (Comm Algebras).
A quotient group of G is an affine group which is represented by a Hopf
subalgebra of O(G). This last definition is justified by the fact2 that a
commutative Hopf algebra A is faithfully flat over every Hopf subalgebra B,
since it implies that SpA → SpB is an epimorphism of dur sheaves. One
can prove a natural one-to-one correspondence between the closed normal
subgroups of a given affine group G and the quotient groups of G.

A representation of an affine group G (or a left G-module) is a mor-
phism of group-valued functors φ : G → GLV to the general linear group

1The theorem is indeed proved when k is an arbitrary commutative ring.
2We have a very simple, purely Hopf-algebraic proof of this fact (see [22]), from which

the readers may hopefully see that Hopf algebraic techniques are effective.
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GLV on some vector space V ; GLV associates to R ∈ (Comm Algebras)
the group AutR(V ⊗ R) of all R-linear automorphism on V ⊗ R. Since
G is representable, such a φ is uniquely determined by the image φ(id) :

V ⊗O(G)
'−→ V ⊗O(G) of the identity map on O(G), or by its restriction

ρ := φ(id)|V : V → V ⊗O(G) to V = V ⊗k. The requirement that φ should
preserve the group structure is equivalent to that ρ is coassociative and
counital, or (V, ρ) is a right O(G)-comodule. In summary, a left G-module
is the same as a right O(G)-comodule.

2.3. Algebraic groups. An affine group G is called an algebraic group if
O(G) is finitely generated. A finitely generated commutative Hopf algebra
is called an affine Hopf algebra. Therefore, the category anti-isomorphism
(2.2) restricts to

(Algebraic Groups) ' (Affine Hopf Algebras).

Since every commutative Hopf algebra is a directed union of finitely gener-
ated Hopf subalgebras, every affine group is a projective limit of algebraic
groups.

Given an algebraic group G, then functor points G(k) in the algebraic
closure k of k form a linear algebraic group over k. If k is an algebraically
closed field of characteristic zero, G 7→ G(k) gives an equivalence from
(Algebraic Groups) to the category of linear algebraic groups.

Let G be an algebraic group over a field k, and let H be a closed sub-
group of G. Let G/H denote the functor defined on (Comm Algebras) which
associates to each R the set G(R)/H(R) of left cosets. We have uniquely a

sheafification G/̃H of G/H, that is, a sheaf given a functor morphism from
G/H that has the obvious universality. We have a natural epimorphism

G → G/̃H of sheaves. Here is a well-known theorem; see [14, Part I, 5.6,
(8)].

Theorem 2.1. G/̃H is a Noetherian scheme such that G→ G/̃H is affine
and faithfully flat.

The result applied to the opposite algebraic groups Gop ⊃ Hop shows an

analogous result for the sheafification H \̃G of the functor R 7→ H(R)\G(R)
giving right cosets.

2.4. Hyperalgebras. Takeuchi studied algebraic groups via characteristic-
free approach using Hopf algebras; see [29, 30, 31, 32] for example. Com-
pared with commutative Hopf algebras, cocommutative Hopf algebras are
much more tractable. Suppose that we are given an algebraic group G,
and let A = O(G). Takeuchi’s main idea is to study the associated cocom-
mutative Hopf algebra hy(G), which is called the hyperalgebra of G. By
definition this consists of those elements in the dual vector space A∗ of A
which annihilate some powers (A+)n, 0 < n ∈ Z, of the augmentation ideal
A+ := Ker(ε : A→ k). Thus we have

(2.3) hy(G) =
⋃
n>0

(A/(A+)n)∗.

This is indeed a cocommutative Hopf algebra which is irreducible as a coal-
gebra in the sense that the trivial hy(G)-comodule k is the unique simple
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hy(G)-comodule. If the characteristic char k is zero, then hy(G) coincides
with the universal envelope U(Lie(G)) of the Lie algebra Lie(G) of G.

A hyperalgebra is a synonym of an irreducible cocommutative Hopf al-
gebra, and it may be regarded as a generalized object of Lie algebras3.
Takeuchi proved that hy(G) reflects various properties of G, even better
than Lie(G) does in some situations. Recently, hy(G) is often denoted al-
ternatively by Dist(G), called the distribution algebra of G. I wish to use
hy(G) in honor of Takeuchi’s contributions.

2.5. The dual coalgebra. Let A be an algebra. Given an ideal I ⊂ A
which is cofinite in the sense dimA/I < ∞, the dual space (A/I)∗ of A/I
is naturally a coalgebra. Therefore, the directed union

(2.4) A◦ :=
⋃
I

(A/I)∗ ⊂ A∗,

where I runs over all cofinite ideals of A, is a coalgebra, which is called the
dual coalgebra of A. This coincides with the coefficient space of all finite-
dimensional representations, π : A → End(V ), of A; it is by definition the
union

⋃
π Im(π∗) in A∗. If A is a Hopf algebra, then A◦ is a Hopf algebra.

Let V be a vector space possibly of infinite dimension. Given a right
A◦-comodule structure ρ : V → V ⊗ A◦ on V , we have a locally finite left
A-module structure given by

a v :=
∑
i

fi(a) vi, a ∈ A, v ∈ V,

where ρ(v) =
∑

i vi⊗fi. This gives rise to a bijection from the set of all right
A◦-comodule structures on V to the set of all locally finite left A-module
structures on V .

3. Invitation to the super world

In what follows until end of this report we assume chark 6= 2.

3.1. Super vector spaces. Let Z2 = {0, 1} is the finite group of order 2.
“Super” is a synonym of “Z2-graded”. So, a super vector space is a vector
space V = V0 ⊕ V1 decomposed into subspaces Vi indexed by i = 0, 1. The
component Vi and its elements are said to be even or odd, respectively, if
i = 0 or if i = 1. We say that V is purely even or odd, respectively, if
V = V0 or if V = V1. The super vector spaces V,W, . . . form a tensor
category (Super Vec Spaces); the tensor product is that of vector spaces
V ⊗W which is Z2-graded by the total degree,

(V ⊗W )k :=
⊕
i+j=k

Vi ⊗Wj , k = 0, 1.

The unit object is k which is purely even. This tensor category is symmetric

with respect to the symmetry cV,W : V ⊗W '−→W ⊗ V given by

cV,W (v ⊗ w) = (−1)|v| |w|w ⊗ v =

{
−w ⊗ v if |v| = |w| = 1

w ⊗ v otherwise.

3I hear that it used to be called a hyper-Lie algebra, before Takeuchi removed “Lie”
from the name.
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Here v, w are supposed, as our convention, to be homogeneous elements with
degrees |v|, |w|. The assumption char k 6= 2 ensures that this is different from
the obvious symmetry v⊗w 7→ w⊗v. The symmetry defined above is called
the super symmetry, and will be depicted by

V W

W V.

3.2. Super objects. Algebraic systems, such as algebra or Hopf (or Lie)
algebra, defined in the tensor category (Vec Spaces) of vector spaces with the
obvious symmetry are generalized by algebraic systems in (Super Vec Spaces),
which are called with the prefix “super”, so as super algebra or super Hopf
(or Lie) algebra4. An essential difference appears when the symmetries are
concerned in the argument. For example, a super algebra is just a Z2-graded
algebra, which is not concerned with the super symmetry. But the tensor
product A⊗B of super algebras A, B involves the super symmetry, and its
product is given by

(a⊗ b)(c⊗ d) = (−1)|b| |c|(ac⊗ bd).

This is depicted by

A A

A

B B

B,

where

A A

A

B B

B

represent the products on A, B, respectively. To emphasize this situation,
we will write A⊗B for A⊗B.

For a super bi- or Hopf algebra A, the coproduct ∆ : A → A⊗A is
required to be a Z2-graded algebra map.

A super Lie algebra is a super vector space g = g0⊕ g1 given a Z2-graded
linear map [ , ] : g⊗ g→ g, called bracket, which satisfies

[ , ] ◦ (idg⊗g + cg,g) = 0, [[ , ], ] ◦ (idg⊗g⊗g + cg,g⊗g + cg⊗g,g) = 0.

Note that g0 is then an ordinary Lie algebra.
Ordinary objects such as Hopf or Lie algebra are regarded as purely even

super objects, such as purely even super Hopf or Lie algebra.
A super algebra A is said to be super-commutative if the product A⊗A→

A is invariant, composed with cA,A, or more explicitly, if we have

ab = ba if a or b is even, and ab = −ba if a, b are both odd.

The last condition is equivalent to that a2 = 0 if a is odd. Dually, one
defines the super-cocommutativity for super coalgebras.

4This usage of terms is not necessarily in fashion, but it seems more acceptable for
non-specialists.
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A super-commutative super (Hopf) algebra will be called a super commu-
tative (Hopf) algebra, regarded as a commutative (Hopf) algebra object in
(Super Vec Spaces).

Example 3.1. Let V be a vector space. The exterior algebra ∧(V ) =⊕∞
n=0 ∧n(V ) is graded by N = {0, 1, . . . }, and hence is graded by Z2, so

as (∧(V ))i =
⊕∞

m=0 ∧2m+i(V ), i = 0, 1. This turns uniquely into a super
Hopf algebra in which each element v ∈ V is (odd) primitive, i.e. ∆(v) =
1 ⊗ v + v ⊗ 1. This super Hopf algebra is super-commutative and super-
cocommutative. The pairings 〈 , 〉 : ∧n(V ∗) × ∧n(V ) → k, n = 0, 1, . . . ,
given by

〈f1∧· · ·∧fn, v1∧· · ·∧vn〉 =
∑
σ∈Sn

(sgnσ)f1(vσ(1)) . . . fn(vσ(n)), fi ∈ V ∗, vi ∈ V

are summarized to 〈 , 〉 : ∧(V ∗)×∧(V )→ k, which induces an isomorphism

of super Hopf algebras ∧(V ∗)
'−→ ∧(V )∗ if dimV <∞.

3.3. Bosonization. A super vector space V is identified with a module over
the group algebra kZ2; the generator of Z2 acts on Vi by scalar multiplication
by (−1)i. A super algebra A is identified with an algebra on which Z2 acts
as algebra automorphisms, so that we have the algebra Z2 n A of semi-
direct (or smash) product. A super A-module is an A-module object in
(Super Vec Spaces); it is identified with an ordinary module over Z2 n A.
Given a super right A-module M and a super left A-module N , we have

M ⊗Z2nA N = (M ⊗A N)0, M ⊗Z2nA N [1] = (M ⊗A N)1,

where N [1] denotes the degree shift of N so that N [1]0 = N1, N [1]1 = N0.
This together with the fact that Z2 n A is faithfully flat over A proves the
following.

Lemma 3.2. For M as above the following are equivalent:

(1) M is (faithfully) flat, regarded as an ordinary right A-module;
(2) M is (faithfully) flat as a right Z2 nA-module;
(3) The functor M⊗A defined on the category of super left A-modules,

which associates M ⊗A N to each N , is (faithfully) exact.

An analogous result for super left A-modules holds true. Note that if A
is super-commutative, super left A-modules and super right A-modules are
naturally identified.

We remark that a super (left or right) A-module is projective in the
category of super A-modules (or equivalently, of Z2 n A-modules) if and
only if it is projective in the category of ordinary A-modules; this holds
since the ring extension Z2 nA ⊃ A is separable.

Let C be a super coalgebra. A super C-comodule is a C-comodule object
in (Super Vec Spaces); it is identified with an ordinary comodule over the
coalgebra of smash coproduct

Z2 I< C.

This equals kZ2 ⊗ C as a vector space, and has as its counit the tensor
product ε⊗ε of the counits. The coproduct ∆ : Z2I<C → (Z2I<C)⊗(Z2I<C)
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is the left kZ2-module map defined by

(3.1) ∆(1⊗ c) =
∑
(c)

(1⊗ c(1))⊗ (|c(1)| ⊗ c(2)), c ∈ C,

where ∆(c) =
∑

(c) c(1) ⊗ c(2) denotes the coproduct on C. A dual result of

Lemma 3.2 holds; see [23, Proposition 2.3].
Suppose that A is a super Hopf algebra. The smash product and coprod-

uct structures make kZ2 ⊗A into an ordinary Hopf algebra,

Z2 mB<A,

which is called the bosonization of A; this construction was given by Radford
[24] in a generalized situation. The construction gives us a useful technique
to derive results on super Hopf algebras from known results on ordinary
Hopf algebras; see [23, Section 10] for example.

4. Super affine/algebraic groups

Let us start to discuss these objects of our concern.

4.1. Definitions. Once given the definition of affine/algebraic groups, it
is quite easy to define their super analogues. One has only to replace
(Com Algebras) with the category (Super Com Algebras) of super commu-
tative algebras. Thus, a super affine group is a representable functor G :
(Super Com Algebras) → (Groups); it is uniquely represented by a super
commutative Hopf algebra, which we denote by O(G). Such a G is called
a super algebraic group if O(G) is affine, i.e. finitely generated (and super-
commutative). We have thus a category anti-isomorphism between the super
affine groups and the super commutative Hopf algebras, which restricts to
a category anti-isomorphism between the super algebraic groups and the
super affine Hopf algebras. The super affine group which corresponds to
a super commutative Hopf algebra A is denote by SSpA; it associates to
R ∈ (Super Com Algebras) the group of all super algebra maps A → R. A
closed (normal) super subgroup of a super affine group G is a super affine
group H which is represented by a quotient super Hopf algebra of O(G) (so
that each H(R) is normal in G(R), where R ∈ (Super Com Algebras)). Just
as in the non-super situation, every super affine group is a projective limit
of super algebraic groups.

By restriction of the domain every functor G : (Super Com Algebras) →
(Groups) gives rise to a functor (Com Algebras)→ (Groups), which we denote
by Gev. Suppose that G = SSpA is a super affine/algebraic group. Then
Gev is an affine/algebraic group, being represented by

A := A/(A1).

This is the (largest) quotient purely even super algebra of A divided by
the ideal generated by A1, and is indeed a quotient super Hopf algebra.
Therefore, Gev can be identified with the closed super subgroup of G given
by R 7→ G(R0). We will say that Gev is associated with G. This Gev will be
seen to play an important role when we study G.
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4.2. Super GL. Let V = V0 ⊕ V1 be a super vector space. Let GLsupV be
the functor which associates to each R ∈ (Super Com Algebras) the group of
AutsupR (V ⊗R) of all super R-linear automorphisms on V ⊗R. A represen-
tation of a super affine group G (or a super left G-module structure) on V
is a morphism of group-valued functors G→ GLsupV . Those representations
(or structures) are in a natural one-to-one correspondence with the super
right O(G)-comodule structures on V .

Example 4.1. Suppose that V is finite-dimensional, and m = dimV0, n =
dimV1. Then GLsupV is denoted by GL(m|n). This is a super algebraic group
represented by

O(GL(m|n)) = k[xij , yk`,det(X)−1, det(Y )−1]⊗ ∧(pi`, qkj).

Here xij , yk` are even, and pi`, qkj odd; we suppose that they are entries of
the matrix (

X P
Q Y

)
=

(
xij pi`
qkj yk`

)
, 1 ≤ i, j ≤ m, 1 ≤ k, ` ≤ n.

∧(pi`, qkj) denotes the exterior algebra on the vector space with basis pi`,
qkj . We choose bases v1, . . . , vm of V0 and vm+1, . . . , vm+n of V1. Note that
every automorphism σ ∈ AutsupR (V ⊗ R) then arises uniquely from a super
algebra map γ : O(GL(m|n))→ R so that(

σv1 . . . σvm+n

)
⊗ 1 =

(
v1 . . . vm+n

)
⊗
(
γX γP
γQ γY

)
.

Just as for the ordinary GL, the coalgebra structure maps are given by

∆

(
X P
Q Y

)
=

(
X P
Q Y

)
⊗
(
X P
Q Y

)
, ε

(
X P
Q Y

)
=

(
I O
O I

)
.

From the equation

(
X P
Q Y

)(
S(X) S(P )
S(Q) S(Y )

)
=

(
I O
O I

)
one sees that the

antipode S must be given by

S(X) = (X − PY −1Q)−1, S(Y ) = (Y −QX−1P )−1,

S(P ) = −X−1PS(Y ), S(Q) = −Y −1QS(X).

One sees the algebraic group associated with GL(m|n) is GLV0 ×GLV1 .

Just as for algebraic groups every super algebraic group can be embedded
into some GL(m|n) as its closed super subgroup.

4.3. Tensor product decomposition theorem. To state this key result,
let G = SSpA be a super affine group. Then we have the associated affine
group Gev = SpA, where A = A/(A1). The cotangent super vector space
T ∗ε (G) of G at 1 is given by A+/(A+)2, where A+ := Ker(ε : A → k). One
sees that the odd component of T ∗ε (G) equals

(4.1) WA := A1/A
+
0 A1,

where A+
0 = A0 ∩A+. We have the tensor product A⊗∧(WA) of two super

Hopf algebras; see Example 3.1. Forgetting some of the structures we regard
this as a left A-comodule super algebra with counit. Regard A as such an
object; the left A-comodule A is then regarded as a left A-comodule along
the quotient map A→ A.
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Theorem 4.2 (Tensor product decomposition [18]). There is a counit-

preserving isomorphism A
'−→ A⊗∧(WA) of left A-comodule super algebras.

Isomorphisms such as above are not canonical in general. The theorem
is basic, and is indeed used to prove most of the results which will be cited
in what follows. To prove the theorem, Hopf crossed products, a natural
generalization of crossed products of algebras by groups, are used; see [18,
20].

Decompositions as above might not have been familiar to super geometers,
as could be guessed from the following example.

Example 4.3. Recall from the previous example

O(GLsupV ) = k[xij , yk`,det(X)−1, det(Y )−1]⊗ ∧(pi`, qkj).

This does NOT give such a decomposition as above. Replacing pi`, qkj with
the entries in

(p′i`) := X−1P, (q′kj) := QY −1,

one has a decomposition as above,

O(GLsupV ) = k[xij , yk`, det(X)−1,det(Y )−1]⊗ ∧(p′i`, q
′
kj).

4.4. Faithful flatness. To give an immediate consequence of Theorem 4.2,
let f : A → B be a map of super commutative Hopf algebras. We remark
that isomorphisms as given by the theorem can be chosen so as compatible
with f , so that we have the commutative diagram

A A⊗ ∧(WA)

B B ⊗ ∧(WB).

'
//

'
//

f
��

f⊗∧(W f )
��

	

Here note that since the constructions of A, WA are functorial, we have
maps f : A → B, W f : WA → WB. Now, suppose that f is an inclusion
A ⊂ B. Then the commutative diagram shows that the last two maps are
injections. By the classical result cited in Section 2.2, B is faithfully flat
over A. In addition, ∧(WB) is free over ∧(WA) on both sides. It follows
that B is faithfully flat over A on both sides.

4.5. Schemes and sheaves in the super situation. The definitions of
schemes and (dur) sheaves given in the second paragraph of Section 2.1 are
directly generalized to the super situation; see [35, 23]. The generalized
notion of schemes is named super schemes. Dur sheaves and sheaves are
generalized by the notions with the same names. To generalize the former
the exact diagram (2.1) should be replaced by the one that arises from a
morphism R→ T in (Super Com Algebras) such that T satisfies those three
equivalent conditions for faithful flatness over R which are given in Lemma
3.2; the conditions are now equivalent to the opposite-sided variants due
to the super-commutativity assumption. Super schemes are necessarily dur
sheaves, which in turn are sheaves; see [23].

Suppose that G is a super affine group. Just as in the non-super situation,
the faithful flatness result obtained in the last subsection justifies us to define
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a quotient super group of G to be a super affine group which is represented by
a super Hopf subalgebra of O(G). We can prove that there is a natural one-
to-one correspondence between the closed normal super subgroups N of G
and the quotient super groups of G; the quotient super group corresponding

to anN is given by the dur sheafification G
˜̃
/N of the functor which associates

to R ∈ (Super Com Algebras) the quotient group G(R)/N(R). If G is a super

algebraic group, then O(G
˜̃
/N) ⊂ O(G) is an fppf covering, so that G

˜̃
/N

coincides with the sheafification G/̃N . See [18, 35].
The geometric viewpoint defines a super space (over k) to be a pair

(X,OX) of a topological space X and a sheaf OX of super commutative
algebra on X such that each stalk OX,x is local, i.e. its even component
is local. A super scheme is then defined to be a super space which has an
open covering of affine super spaces; see Manin [17, Chapter 4]. The Com-
parison Theorem cited in Section 2.1 is generalized to the super situation,
so that the two notions of super schemes defined separately from geometric
and functorial viewpoints are equivalent; see [23, Theorem 5.14].

5. The quotient sheaf G/̃H

Whether can one generalize Theorem 2.1 to the super situation? This is a
question which was posed by Brundan to Zubkov, privately. We will answer
this in the positive.

Let G be a super algebraic group, and let H be a closed super subgroup
of G.

Theorem 5.1 ([23]). (1) The sheafification G/̃H of the functor defined
on (Super Com Algebras) which associates to each R the set G(R)/H(R) of
left cosets is a Noetherian super scheme such that the natural epimorphism

G→ G/̃H is affine and faithfully flat.

(2) The functor (G/̃H)ev defined on (Com Algebras) which is obtained

from G/̃H by restriction of the domain is naturally isomorphic to the scheme

Gev/̃Hev.

Given G, H as above, Brundan [1] assumes the existence of a Noetherian

super scheme X with the same properties as those of G/̃H which are just
shown by Part 1 above, in order to discuss sheaf cohomologies H i(X, ). The
assumption was superfluous.

Brundan also asked to Zubkov whether G/̃H is affine (or representable)
whenever the algebraic group Hev is geometrically reductive. We answer
this again in the positive in a generalized form, as follows; it is known that

under the assumption, the scheme Gev/̃Hev is affine.

Proposition 5.2 ([23]). G/̃H is affine if and only if Gev/̃Hev is.

Just as in the non-super situation, G/̃H is affine if and only if O(G) is
an injective cogenerator (or equivalently, faithfully coflat) as a left or right
O(H)-comodule; see [35].

As was just seen the affinity of G/̃H is reducible to the same property of
the associated non-super object. Three more such properties will be seen in
Sections 6.3, 7.3 and 7.4.



SUPER ALGEBRAIC GROUPS 11

6. Super hyperalgebras and super Lie algebras

Let us see what roles these super objects play.

6.1. Super hyperalgebras. Let G be a super algebraic group. The super
hyperalgebra hy(G) of G is defined by the same formula as (2.3) when we
suppose A = O(G). This is now a super cocommutative Hopf algebra which
is irreducible as a coalgebra. The super vector subspace of hy(G) consisting
of all primitives

g = {u ∈ hy(G) | ∆(u) = 1⊗ u+ u⊗ 1}

turns into a finite-dimensional super Lie algebra with respect to [ , ] :=
product ◦ (idg⊗2 − cg,g). This is called the super Lie algebra of G, denoted
by Lie(G). We have

(6.1) Lie(G)0 = Lie(Gev).

If chark = 0, then hy(G) coincides with the universal envelope U(Lie(G))
of Lie(G).

The canonical pairing hy(G)×O(G)→ k induces a natural map

(6.2) O(G)→ hy(G)◦

of super Hopf algebras. Here we remark that given a super Hopf algebra B,
the dual coalgebra B◦ defined by (2.4) is naturally a super Hopf algebra.

Set W := WA with A = O(G) (see (4.1)), and choose an isomorphism

O(G)
'−→ O(Gev)⊗∧(W ) such as given by Theorem 4.2. This induces a unit-

preserving isomorphism hy(Gev)⊗∧(W )∗
'−→ hy(G) of left hy(Gev)-module

super coalgebras. The natural inclusion hy(Gev) ⊂ hy(G) induces a super
Hopf algebra map (indeed, surjection) hy(G)◦ → hy(Gev)

◦, along which
hy(G)◦ will be regarded as a left hy(Gev)

◦-comodule. One can show that
the last isomorphism induces a counit-preserving, left hy(Gev)

◦-comodule

super algebra isomorphism hy(G)◦
'−→ hy(Gev)

◦⊗∧(W ) which fits into the
commutative diagram

hy(G)◦ hy(Gev)
◦ ⊗ ∧(W )

O(G) O(Gev)⊗ ∧(W ).

'
//

'
//

OO OO

	

Here the right vertical arrow denotes the natural Hopf algebra mapO(Gev)→
hy(Gev)

◦ tensored with the identity map on ∧(W ).
A finite etale group is an algebraic group such that the corresponding Hopf

algebra is finite-dimensional separable as an algebra. The super algebraic
group G has the largest finite etale quotient group denoted by π0(G). The
following are equivalent:

(i) π0(G) is trivial;
(ii) The associated algebraic group Gev is connected;
(iii) The prime spectrum Spec(A0) of the even component of A = O(G)

is connected;
(iv) The natural map O(G)→ hy(G)◦ given above is injective.
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If these are satisfied we say that G is connected.
Assume that G is connected. Then we may regard O(G) ⊂ hy(G)◦,

O(Gev) ⊂ hy(Gev)
◦ as super Hopf subalgebras, via the natural maps. The

last commutative diagram shows the following.

Lemma 6.1 ([21]). If G is connected, then O(G) is characterized in the left
hy(Gev)

◦-comodule hy(G)◦ as the largest O(Gev)-subcomodule.

Assume that in addition, Gev is a reductive algebraic group with a split
maximal torus T . Then we have the purely even super Hopf subalgebra
hy(T ) of hy(G). The next result follows from Lemma 6.1 combined with the
corresponding result [14, Part II, 1.20] in the non-super situation; see also
Section 2.5.

Proposition 6.2 ([21]). Given a super vector space V , there is a natural
one-to-one correspondence between

• the super G-module structures on V , and
• those locally finite super hy(G)-module structures on V whose re-

stricted hy(T )-module structures arise (uniquely) from T -module struc-
tures.

The last condition on the restricted hy(T )-module structures means that
V decomposes so as V =

⊕
λ∈X(T ) Vλ into weight spaces Vλ, where X(T )

denotes the character group of T . The result above was previously known
only for some special super algebraic groups that satisfy the assumption; see
[2, 3, 26].

Remark 6.3. The definitions of (super) affine/algebraic groups make sense
over any commutative ring. Theory of algebraic groups over a commutative
ring has been established. Indeed, the result [14, Part II, 1.20] cited above is
formulated so as to hold over any integral domain. Accordingly, Proposition
6.2 can be re-formulated in the same situation; see [21].

6.2. Harish-Chandra pairs. Given a super affine group G = SSpA, the
tensor product decomposition theorem tells us that A can recover from A
and WA to some extent. One may expect that A or G can recover completely
from these two together with some additional data. This is true if G is a
super algebraic group, as will be seen below.

Definition 6.4 ([15, 16]). A Harish-Chandra pair is a pair (F, V ) of an
algebraic group F and a finite-dimensional right F -module V , given an F -
module map [ , ] : V ⊗ V → Lie(F ) such that

(i) [u, v] = [v, u] for all u, v ∈ V , and
(ii) v / [v, v] for all v ∈ V .

Here, Lie(F ) is regarded as a right F -module by the right adjoint action
(which arises from the conjugation by F on itself), and the / in (ii) denotes
the action by Lie(F ) on V which arises from the given F -module structure
on V .

The Harish-Chandra pairs naturally from a category (Harish-Chandra Pairs).
Let (Super Algebraic Groups) denote the category of super algebraic groups,

and choose an object G = SSpA from it. Let VG = Lie(G)1 be the odd
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component of Lie(G); note that VG = (WA)∗. The right adjoint action
by G on Lie(G), restricted to Gev, stabilizes VG, so that we have a right
Gev-module VG. Restrict the bracket on Lie(G) onto VG ⊗ VG to obtain
[ , ] : VG ⊗ VG → Lie(Gev). Then the pair (Gev, VG) together with [ , ] just
obtained is a Harish-Chandra pair.

Theorem 6.5. G 7→ (Gev, VG) gives a category equivalence

(Super Algebraic Groups) ≈ (Harish-Chandra Pairs).

This is a reformulation of [19, Theorem 29], and has the same formulation
as the corresponding result by Koszul [16] (see also [4, Section 7.4]) for super
Lie groups; the theorem was previously proved by Carmeli and Fioresi [5]
for super algebraic groups over an algebraically closed of characteristic zero.

Let us construct a quasi-inverse of the functor above by using Hopf-
algebraic techniques. Let (F, V ) be a Harish-Chandra pair. Then V is a right
F -module, whence it is a right Lie module over the Lie algebra g0 := Lie(F ).
There is associated the super Lie algebra g0 n V of semi-direct sum, with
even component g0 and odd component V . Note that the bracket on g0nV
restricted to V ⊗ V is constantly zero. Replace this zero map with the [ , ]
associated with the Harish-Chandra pair. Obtained is a new super Lie al-
gebra, say g. Let U0 := U(g0). Note that the right U0-module structure on
V uniquely gives rise to a right U0-module super Hopf algebra structure on
the tensor algebra T (V ) on V , in which every element in V is supposed to
be odd primitive. The associated semi-direct (or smash) product

H := U0 n T (V )

is a super cocommutative Hopf algebra; this is the tensor product U0⊗T (V )
as a super coalgebra. Note that U(g) is constructed as the quotient super
Hopf algebra of H divided by the super Hopf ideal

I = (uv + vu− [u, v] | u, v ∈ V )

generated by the indicated even primitives.
We are going to dualize this last construction. Let C := O(F ). Note that

the dual space V ∗ of V is a left F -module, or a right C-comodule. The right
C-comodule structure on V ∗ uniquely gives rise to a right C-comodule super
Hopf algebra structure on the graded dual Tc(V

∗) :=
⊕∞

n=0 T
n(V )∗ of T (V ).

The associated smash coproduct A := C I< Tc(V
∗) is a super commutative

Hopf algebra; this is the tensor product C ⊗ Tc(V ∗) as a super algebra, and
the coproduct on A is the left C-module map, generalizing (3.1), defined by

∆(1⊗ x) =
∑
(x)

1⊗ ρ(x(1))⊗ x(2), x ∈ Tc(V ∗),

where ρ : Tc(V
∗)→ Tc(V

∗)⊗C denotes the C-comodule structure on Tc(V
∗).

This A is completed to

Â := (C I< Tc(V
∗))∧ =

∞∏
n=0

C ⊗ Tn(V )∗

with respect to the linear topology on A naturally given by the N-grading.

This Â is a complete topological super commutative Hopf algebra, and is a

left C-comodule super algebra along the projection Â → C onto the zero-th
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component. Let λ : Â → C ⊗ Â denote the structure map. The tensor
product of the natural pairings on C × U0 and on Tc(V

∗) × T (V ) gives a

pairing 〈 , 〉 : Â×H → k. Being a left F -module, C is a left U0-module. Let
HomU0(H, C) denote the vector space of all left U0-module maps H → C.
One sees easily that a linear isomorphism

ξ : Â '−→ HomU0(H, C)

is given by ξ(a)(x) =
∑

i ci〈ai, x〉, where a ∈ Â, x ∈ H and λ(a) =
∑

i ci⊗ai.
Transfer the structures on Â onto HomU0(H, C) via ξ. One can describe
explicitly the transferred structures, and sees that

HomU(g0)(U(g), C) = HomU0(H/I, C)

is a discrete super Hopf subalgebra of HomU0(H, C), and is indeed a super
affine Hopf algebra. The association of the corresponding super algebraic
group to (F, V ) gives the desired quasi-inverse.

Remark 6.6. (1) Theorem 6.5 shows us a systematic method to construct
super algebraic groups, and it is applied to prove Propositions 6.7, 7.2
and Theorem 7.6 below. With some modification the theorem can be re-
formulated so as to hold over any commutative ring; see Gavarini [12, The-
orem 4.3.14].

(2) Fioresi and Gavarini [9, 10, 11] constructed super Chevalley groups
over Z from simple super Lie algebras over C and their faithful representa-
tions; they are Z-forms of an important class of super algebraic groups over
C. The re-formulated Theorem 6.5 gives an alternative, hopefully more con-
ceptual construction of the super Chevalley groups over Z; see [21, Sections
9, 10].

6.3. Simply-connectedness. Given a connected super algebraic group G,

an etale covering of G is a pair (G̃, η) of a connected super algebraic group

G̃ and an epimorphism η : G̃ → G of super algebraic groups such that the
kernel Ker η is finite etale. We say that G is simply connected if it has no
non-trivial etale covering.

Proposition 6.7 ([19]). A connected super algebraic group G is simply
connected if and only if Gev is simply connected.

Suppose that (a) k is an algebraically closed field of characteristic zero, or
(b) k is a perfect field of characteristic > 2. It follows from Proposition 6.7
combined results by Hochschild [13] (in case (a)) and by Takeuchi [30, 31]
(in case (b)) that for a simply connected super algebraic group G, O(G) is
described in terms of g := Lie(G) (in case (a)) or of hy(G) (in case (b)). The
result is simpler in case (b), and is then that O(G) = hy(G)◦. In case (a),
O(G) is the super Hopf subalgebra of U(g)◦ consisting of those elements each
of which annihilates an ideal of U(g) generated by some power Rad(g0)

n,
0 < n ∈ Z, of the radical Rad(g0) of g0. Therefore, if Gev is supposed to be
semisimple in addition, then we have O(G) = U(g)◦.

7. Linear reductivity and unipotency

We will characterize super affine or algebraic groups with representation
theoretic properties such as above.
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7.1. Linear reductivity in characteristic zero. A super affine group G
is said to be linearly reductive if every super G-module is semisimple. Every
quotient super group of a linearly reductive affine super group is linearly
reductive.

Suppose that chark = 0. In the non-super situation the Chevalley De-
composition Theorem states that any affine group G is a semi-direct product
GrnGu of the unipotent radical Gu by a linearly reductive affine group Gr.
Therefore, if Gu is trivial (especially, if G is a reductive algebraic group),
then G is linearly reductive. Contrary to this, linearly reductive super alge-
braic groups are rather restricted, as will be seen below.

Note that every super affine group G = SSpA has the largest purely
even quotient super group Gqev; one sees that O(Gqev) is the pull-back
∆−1(A0⊗A0) of A0⊗A0 along the coproduct on A. If G is a super algebraic
group, the largest finite etale quotient G→ π0(G) factors through Gqev.

We say that a super algebraic group G is tight if the adjoint action by
Gev on the odd component of Lie(G) is faithful; the condition is equivalent
to that O(G) is the smallest super Hopf subalgebra of O(G) that includes
the Gev-invariants O(G)Gev in O(G). One sees that every super algebraic
group G has the largest tight quotient super group, which we denote by Gti.

The following is a reformulation of Weissauer’s Theorem.

Theorem 7.1 (Weissauer [34]). Assume that k is an algebraically closed
field of characteristic zero.

(1) Those linearly reductive super algebraic group which are tight and
connected are exhausted by finite products∏

r

Spo(1, 2r)nr , nr ≥ 0

of the ortho-symplectic super algebraic groups Spo(1, 2r), r > 0.
(2) Those linearly reductive super algebraic group which are tight are

exhausted by semi-direct products

Γ n
∏
r

Spo(1, 2r)nr ,

where Γ is a finite group, and acts on each product Spo(1, 2r)nr via
permutations of components so that the resulting group map Γ →∏
rSnr is injective.

(3) Every linearly reductive algebraic super group G is naturally isomor-
phic to the fiber product

Gqev ×π0(Gti) Gti,

where Gti is such as given in (2) with Γ = π0(Gti).

Keep k as assumed by the theorem. Spo(1, 2r) is the super algebraic
group which corresponds to the Harish-Chandra pair (Sp2r, V ) defined by
the following.

• Sp2r is the symplectic group5 of degree 2r, which thus consists of
the matrices g ∈ GL2r(k) such that g J tg = J , where J is a fixed

5To be more precise, Sp2r is meant to be the algebraic group which arises from the
linear algebraic group described here; see the second paragraph of Section 2.3.
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anti-symmetric matrix in GL2r(k); the Lie algebra sp2r = Lie(Sp2r)
of Sp2r consists of the 2r×2r matrices X such that XJ is symmetric.
• V is the vector space k2r of row vectors with 2r entries, and is

regarded as a right Sp2r-module by the matrix multiplication.
• The structure [ , ] : V ⊗ V → sp2r is defined by

[v, w] =
1

2
J
(
tv w + tw v

)
, v, w ∈ V.

The super algebraic group Spo(1, 2r) is simple (i.e. does not contain any
non-trivial closed normal super subgroup) and simply connected.

7.2. Linear reductivity in positive characteristic. In positive charac-
teristic the situation is more restrictive, as is seen from the following.

Proposition 7.2 ([19]). Assume that char k > 2. Then a linearly reductive
super affine group G is necessarily purely even, i.e. is an ordinary affine
group. Hence by Nagata’s Theorem, O(G) ⊗ k is a group algebra provided
G is algebraic and connected.

To discuss here Frobenius morphisms, let G = SSpA be a super affine
group over a field k of characteristic p > 2. Regard the super Hopf algebra

A(p) := A⊗ k1/p

over k1/p as a super Hopf algebra over k via c 7→ 1 ⊗ c1/p, k → A ⊗ k1/p,
and let G(p) = SSpA(p) denote the corresponding super affine group over k.
One sees that

FA : A(p) → A, FA(a⊗ c) = apcp

is a super Hopf algebra map. Let FG : G → G(p) denote the corresponding
morphism of super affine groups. This is called the Frobenius morphism for
G, and the kernel Gp := KerFG is called the Frobenius kernel of G. Recall
WA from (4.1). Since the image of F∧(WA) equals k, we see from Theorem
4.2 that the image of FA is a purely even super Hopf subalgebra of A, and
it coincides with the image of FA with A = O(Gev). Therefore, (Gp)ev
equals the Frobenius kernel KerFGev of Gev, and the WB of B := O(Gp)
equals WA. It follows that if G is a super algebraic group, then Gp is
infinitesimal in the sense that O(Gp) is finite-dimensional, and is local, i.e.
the augmentation ideal O(Gp)

+ is nilpotent.
In virtue of the situation above one sometimes finds it easier to prove

results in positive characteristic than in characteristic zero.

7.3. Integrals. Let G be a super affine group. A left integral for G is a
(not necessarily super) left O(G)-comodule map

∫
: O(G) → k. Such an

∫
is necessarily homogeneous, i.e.

∫
O(G)0 = 0 or

∫
O(G)1 = 0. Moreover,

the left integrals for G form a vector space, say I`(G), of dimension ≤ 1.
The vector space Ir(G) of the right integrals for G, which are defined in the

obvious manner, is isomorphic to I`(G) via an isomorphism I`(G)
'−→ Ir(G)

given by
∫
7→
∫
◦S. See Scheunert and Zhang [25].

We will say that G has an integral if I`(G) 6= 0 or equivalently, if Ir(G) 6=
0. It is known that G has an integral if dimO(G) <∞.

The following two lemmas follow easily from the corresponding results on
ordinary Hopf algebras, by using the bosonization; see Section 3.3.
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Lemma 7.3. The following are equivalent:

(1) G has an integral;
(2) O(G) is a generator in the category of super G-modules;
(3) Any injective super G-modules is necessarily projective;
(4) The injective hull of every finite-dimensional super G-module is finite-

dimensional.

Lemma 7.4. A super affine group G is linearly reductive if and only if there
exists a one-sided (necessarily, two-sided) integral

∫
: O(G) → k such that∫

1 6= 0.

The last equivalent conditions are rarely satisfied unless G is an ordinary
affine group, as is seen from the results of the last two subsections.

The following is an unpublished result by Taiki Shibata and myself.

Proposition 7.5. Suppose that G is a super algebraic group. Then the
following are equivalent:

(a) G has an integral;
(b) The associated algebraic group Gev has an integral.

Sullivan [28] (see also [27]) tells us that if chark = 0, then Condition (b) is
equivalent to that Gev is linearly reductive, and that if chark > 2, then the
condition is equivalent to that the reduced algebraic group Fred associated
with F is a torus, where F denotes the identity connected component (Gev)

0
k

of the base extension (Gev)k of Gev to the algebraic closure k of k.
If char k = 0, we have thus many examples of super algebraic groups

which are not linearly reductive, but have integrals.

7.4. Unipotency. A property very opposite to linear reductivity is unipo-
tency. A super affine group G is said to be unipotent if simple super G-
modules are exhausted by the trivial super G-module k which may be purely
even or odd, or in other words, if O(G) is irreducible as a coalgebra.

The following result is due to Alexandr N. Zubkov, and is contained in
[19], given a simple proof.

Theorem 7.6 (Zubkov). A super affine group G is unipotent if and only if
the associated affine group Gev is unipotent.
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