ULRICH IDEALS AND MODULES

S. GOTO

Contents

1.	Introduction and definition	1
2.	Preliminary steps	3
3.	Proof of Theorem 1.3; relation between Ulrich ideals and modules	5
4.	Structure of minimal free resolutions of Ulrich ideals	7
5.	Ulrich ideals in numerical semi-group rings	13
References		14

1. INTRODUCTION AND DEFINITION

Let A be a Cohen-Macaulay local ring with maximal ideal \mathfrak{m} and $d = \dim A \ge 0$. Let M be a finitely generated A-module. In [BHU] J. Brennan, J. Herzog, and B. Ulrich gave structure theorems of MGMCM (<u>maximally generated maximal Cohen-Macaulay</u>) modules that is, maximal Cohen-Macaulay A-modules M with $e^0_{\mathfrak{m}}(M) = \mu_A(M)$, where $e^0_{\mathfrak{m}}(M)$ (resp. $\mu_A(M)$) denotes the multiplicity of M with respect to \mathfrak{m} (resp. the number of elements in a minimal system of generators of M). In [HK] these modules are simply called *Ulrich* modules.

The purpose of my talk is to study Ulrich modules, and ideals as well, with a slightly generalized definition. To state our definition, let I be an \mathfrak{m} -primary ideal in A and assume that I contains a parameter ideal Q of A as a reduction; hence $I^{n+1} = QI^n$ for all $n \gg 0$. Remember that the latter condition, that is the existence of reductions, is satisfied, when the residue class field A/\mathfrak{m} of A is infinite.

Definition 1.1. Let $M \neq (0)$ be a finitely generated A-module. Then we say that M is an Ulrich A-module with respect to I, if

- (1) M is a Cohen-Macaulay A-module with dim_A M = d,
- (2) $e_I^0(M) = \ell_A(M/IM)$, and
- (3) M/IM is A/I-free,

where $e_I^0(M)$ denotes the multiplicity of M with respect to I and $\ell_A(*)$ denotes the length.

This talk is based on a work [GOTWY] jointly with R. Takahashi, K. Ozeki, K.-i. Watanabe, and K.-i. Yoshida

AMS 2000 Mathematics Subject Classification: 13H10, 13H15, 13A30.

Let me give a few comments about Definition 1.1. Suppose that M is a maximal Cohen–Macaulay A-module. Then

$$\mathbf{e}_{I}^{0}(M) = \mathbf{e}_{Q}^{0}(M) = \ell_{A}(M/QM) \ge \ell_{A}(M/IM) \ge \ell_{A}(M/\mathfrak{m}M) = \mu_{A}(M)$$

Hence condition (2) is equivalent to saying that QM = IM. If $I = \mathfrak{m}$, then condition (3) is automatically satisfied, and in general we have $e^0_{\mathfrak{m}}(M) \ge \mu_A(M)$, and $e^0_{\mathfrak{m}}(M) = \mu_A(M)$ if and only if M is a **MGMCM** module in the sense of [BHU].

Definition 1.2. Our ideal *I* is called an Ulrich ideal of *A*, if

(1)
$$I \supseteq Q$$
,
(2) $I^2 = QI$, and
(3) I/I^2 is A/I -free.

Here we notice that condition (2) equipped with (1) is equivalent to saying that the associated graded ring

$$\operatorname{gr}_{I}(A) = \bigoplus_{n \ge 0} I^{n} / I^{n+1}$$

of I is a Cohen-Macaulay ring with $a(gr_I(A)) = 1 - d$, whence Definition 1.2 is independent of the choice of reductions Q, and the blowing-up of SpecA with center V(I) enjoys nice properties. When $I = \mathfrak{m}$, condition (3) is automatically satisfied and condition (2) equipped with (1) is equivalent to saying that A is not a regular local ring, but possesses maximal embedding dimension in the sense of J. Sally, i.e, the following equality

$$\mathbf{v}(A) = \mathbf{e}(A) + \dim A - 1$$

holds true, where v(A) and e(A) denote, respectively, the embedding dimension of A and the multiplicity of A with respect to \mathfrak{m} .

In my talk we shall discuss several basic properties of Ulrich modules and ideals, and the relation between them as well. In Section 2 we will summarize some auxiliary results on Ulrich ideals for the later use.

The main result in Section 3 is the following. Let $\operatorname{Syz}_{A}^{i}(A/I)$ denote the *i*-th syzygy module of A/I in a minimal A-free resolution.

Theorem 1.3 (cf. [BHU]). The following conditions are equivalent.

- (1) I is an Ulrich ideal of A.
- (2) $\operatorname{Syz}_{A}^{i}(A/I)$ is an Ulrich A-module with respect to I for all $i \geq d$.
- (3) There exists an exact sequence

$$0 \to X \to F \to Y \to 0$$

of finitely generated A-modules such that

- (a) F is a finitely generated free A-modules,
- (b) $X \subseteq \mathfrak{m}F$, and

(c) both X and Y are Ulrich A-modules with respect to I.

If d > 0, we can add the following.

(4) $\mu_A(I) > d$, I/I^2 is A/I-free, and $\operatorname{Syz}_A^i(A/I)$ is an Ulrich A-module with respect to I for some i > d.

In Section 4 we will give a structure theorem of minimal free resolutions of Ulrich ideals and some applications as well. We shall discuss in Section 5 Ulrich ideals in numerical semi-group rings.

2. Preliminary steps

Let me begin with the following.

Example 2.1. Suppose that R is a Cohen–Macaulay local ring with maximal ideal \mathfrak{n} and dim R = d. Let $F = R^n$ for n > 0 and $A = R \ltimes F$ the idealization of R over F. Let \mathfrak{q} be a parameter ideal in R and put $I = \mathfrak{q} \times F$ and Q = qA. Then A is a Cohen-Macaulay local ring with maximal ideal $\mathfrak{m} = \mathfrak{n} \times F$ and dim A = d, I is an \mathfrak{m} -primary ideal of A which contains the parameter ideal Q of A as a reduction. We furthermore have that I is an Ulrich ideal of A. Therefore A contains infinitely many Ulrich ideals, if $d = \dim R > 0$.

Question 2.2. I don't know whether those ideals $I = \mathfrak{q} \times F$ are all the Ulrich ideals in $A = R \ltimes F$.

Example 2.3. We have the following.

- (1) In the ring $A = k[[X, Y, Z]]/(Z^2 XY)$, the maximal ideal $\mathfrak{m} = (x, y, z)$ is a unique Ulrich ideal and $\mathfrak{p} = (z, x)$ is a unique indecomposable Ulrich A-module with respect to \mathfrak{m} .
- (2) The ring $A = k[[t^3, t^5]] \cong k[[X, Y]]/(X^5 Y^3)$ contains no Ulrich ideals.

We note here a proof of assertion (2). See Example 4.8 for the proof of assertion (1).

Proof of assertion (2). Let $A = k[[t^3, t^5]]$ and V = k[[t]]. Assume that A contains an Ulrich ideal, say I, and let Q = (a) be a reduction of I. We put $B = \frac{I}{a} := \{\frac{x}{a} \mid x \in$ $I\} \subseteq V$. Then $B = A[\frac{I}{a}]$ and B is a Gorenstein local ring with $\mu_A(B) = 2$, because

$$I = aB$$
 and $I \cong \operatorname{Hom}_A(B, A)$.

Thus $B \neq V$, since $\mu_A(V) = 3$. We have $t^7 \in B$, because $A : \mathfrak{m} = A + kt^7$ (remember that A is a Gorenstein ring) and $A \subseteq B$. Hence $t^5V \subseteq B$. Let $\mathfrak{c} = B :_{\mathcal{Q}(B)} V$ and write $\mathfrak{c} = t^n V$ with $n \ge 1$. Then, since B is a Gorenstein local ring,

$$n = \ell_B(V/\mathfrak{c}) = 2\ell_B(B/\mathfrak{c}).$$

Hence $n \leq 4$, because $t^5V \subseteq B$. Thus n = 2 or n = 4. If $t^4 \in B$, then $t^{3}V \subseteq B$, whence n = 2. Consequently, $k[[t^{2}, t^{3}]] \subseteq B \subsetneq V$, and $B = k[[t^{2}, t^{3}]]$, since $\ell_{k[[t^2,t^3]]}(V/k[[t^2,t^3]]) = 1$. This is impossible, because $\mu_A(k[[t^2,t^3]]) = 3$. Thus A contains no Ulrich ideals.

To provide examples of Ulrich modules, we need more preliminaries. For the moment, assume that d > 0. Let $a \in Q \setminus \mathfrak{m}Q$ and put $\overline{A} = A/(a)$, $\overline{I} = I/(a)$, and $\overline{Q} = Q/(a)$. We then have the following. Remember that $\operatorname{Syz}_A^i(A/I)$ denotes the *i*-th syzygy of A/I in a minimal A-free resolution.

Lemma 2.4 (W. V. Vasconcelos). Suppose I/I^2 is A/I-free. Then

$$\operatorname{Syz}_{A}^{i}(A/I)/a \cdot \operatorname{Syz}_{A}^{i}(A/I) \cong \operatorname{Syz}_{\overline{A}}^{i-1}(\overline{A}/\overline{I}) \bigoplus \operatorname{Syz}_{\overline{A}}^{i}(\overline{A}/\overline{I})$$

for all $i \geq d$.

Proof. We have only to show $I/aI \cong A/I \oplus I/(a)$. Let $I = (a) + (x_1, x_2, \cdots, x_n)$ with $n = \mu_A(I) - 1$. Then $I/aI = A\overline{a} + \sum_{i=1}^n A\overline{x_i}$, where \overline{a} and $\overline{x_i}$ denote the images of a and x_i in I/aI, respectively. Assume that $c\overline{a} + \sum_{i=1}^n c_i\overline{x_i} = 0$ with $c, c_i \in A$. Then $ca + \sum_{i=1}^n c_i x_i \in aI \subseteq I^2$. Since $\{\overline{a}, \overline{x_i} \in I/I^2\}_{1 \le i \le n}$ forms a free A/I-basis of I/I^2 , we have $c, c_i \in I$ for $1 \le i \le n$. Therefore $c\overline{a} = \sum_{i=1}^n c_i\overline{x_i} = 0$, whence $I/aI \cong A/I \oplus I/(a)$.

Let me note the following.

Lemma 2.5. Let I be an Ulrich ideal in a Cohen-Macaulay local ring A with $d = \dim A > 0$. Let $a \in Q \setminus \mathfrak{m}Q$, where $Q = (a_1, a_2, \ldots, a_d)$ is a reduction of I. Then I/(a) is an Ulrich ideal of A/(a).

Proof. We set $\overline{A} = A/(a)$, $\overline{I} = I/(a)$, and $\overline{Q} = Q/(a)$. Then $\overline{I} \supseteq \overline{Q}$ and $\overline{I}^2 = \overline{Q} \overline{I}$. Let us consider the exact sequence

$$0 \to [(a) + I^2]/I^2 \to I/I^2 \to \overline{I}/\overline{I}^2 \to 0$$

of A-modules. We then have

$$I/I^2 \cong A/I \oplus \overline{I}/\overline{I}^2,$$

since I/I^2 is A/I-free and \overline{a} which is the image of a in I/I^2 forms a part of A/I-free basis of I/I^2 . Thus $\overline{I}/\overline{I}^2$ is also $\overline{A}/\overline{I}$ -free, so that \overline{I} is an Ulrich ideal of \overline{A} .

We note the following. To prove it, we just remember that in the exact sequence

$$0 \to Q/I^2 \to I/I^2 \to I/Q \to 0,$$

the A/I-module $Q/I^2 = Q/QI$ is free and is generated by a part of a minimal basis of I/I^2 .

Proposition 2.6. Suppose that A is a Cohen-Macaulay local ring and assume that $I^2 = QI$. Then the following conditions are equivalent.

(1) I/I^2 is A/I-free.

(2) I/Q is A/I-free.

When this is the case, $I = Q :_A I$, if $Q \subsetneq I$; hence I is a good ideal of A in the sense of [GIW], if A is a Gorenstein ring.

The following result shows the number of generators of Ulrich ideals I of A is bounded by the Cohen-Macaulay type r(A) and the dimension of A.

Proposition 2.7. Suppose that A is a Cohen-Macaulay local ring and let I be an Ulrich ideal of A. Then we have the following, where r(A) denotes the Cohen-Macaulay type of A.

(1)
$$\mathbf{r}(A) \ge \mu_A(I) - d$$
.

(2) $\mu_A(I) = d + 1$ and $I/Q \cong A/I$, if A is a Gorenstein ring.

Proof. (1) Let $n = \mu_A(I)$ (> d). Then by Proposition 2.6, $I/Q \cong (A/I)^{n-d}$, so that $I = Q :_A I$. Hence $r(A) = (n-d) \cdot r(A/I) \ge n-d > 0$, where r(A/I) denotes the Cohen-Macaulay type of A/I.

(2) As r(A) = 1, we have n - d = 1 by assertion (1), whence $I/Q \cong A/I$.

3. PROOF OF THEOREM 1.3; RELATION BETWEEN ULRICH IDEALS AND MODULES

The heart of the proof of the implication $(3) \Rightarrow (1)$ in Theorem 1.3 is the following.

Proposition 3.1. Suppose that A is a Cohen-Macaulay local ring. Let I be an \mathfrak{m} -primary ideal in A and assume that I contains a parameter ideal Q of A as a reduction. Assume that there exists an exact sequence

$$0 \to X \to F \to Y \to 0$$

of finitely generated A-modules such that

(i) F is a finitely generated free A-module,

(ii) $X \neq (0)$ and $X \subseteq \mathfrak{m}F$, and

(iii) Y is an Ulrich A-module with respect to I.

Then the following conditions are equivalent.

- (1) X is an Ulrich A-module with respect to I.
- (2) $I^2 \subseteq Q$ and I/Q is A/I-free.

When this is the case, the following assertions hold true.

- (a) $I^2 = QI$ and I/I^2 is A/I-free, if the residue class field A/\mathfrak{m} of A is infinite. Hence I is an Ulrich ideal of A.
- (b) $\mu_A(X) = \mu_A(Y) \cdot \operatorname{rank}_{A/I}(I/Q).$

Proof. We consider the exact sequence

$$(\ddagger) \quad 0 \to X \to F \to Y \to 0$$
5

of A-modules. Because $X \neq (0)$ and F and Y are Cohen-Macaulay A-modules with $\dim_A F = \dim_A Y = d$, X is a Cohen-Macaulay A-module with $\dim_A X = d$. We set $m = \operatorname{rank}_A F$; hence $m = \mu_A(Y)$, because $X \subseteq \mathfrak{m}F$. Tensoring exact sequence (\sharp) by A/Q, we get an exact sequence

$$0 \to X/QX \to F/QF \to Y/QY \to 0$$

of A-modules, where $Y/QY = Y/IY \cong (A/I)^{\oplus m}$, because Y is an Ulrich A-modules with respect to I and $m = \mu_A(Y)$. Therefore, since $F/QF = (A/Q)^{\oplus m}$, we have $X/QX \cong (I/Q)^{\oplus m}$.

(1) \Rightarrow (2) Since IX = QX and $X/QX \cong (I/Q)^{\oplus m}$, we have $I \cdot (I/Q)^{\oplus m} = (0)$, whence $I^2 \subseteq Q$. Because $X/IX = X/QX \cong (I/Q)^{\oplus m}$ is A/I-free, the A/I-module I/Q is also free.

 $(2) \Rightarrow (1)$ and (b) Since $I^2 \subseteq Q$ and $X/QX \cong (I/Q)^{\oplus m}$, we have $I \cdot (X/QX) = (0)$, whence IX = QX. Let $r = \operatorname{rank}_{A/I} I/Q$. Then

$$X/IX = X/QX \cong (I/Q)^{\oplus m} \cong (A/I)^{\oplus mr},$$

because $I/Q \cong (A/I)^{\oplus r}$. Thus X is an Ulrich A-module with respect to I and $\mu_A(X) = \mu_A(Y) \cdot \operatorname{rank}_{A/I}(I/Q)$.

(a) Let $n = \mu_A(I)$ and write $I = (x_1, x_2, \dots, x_n)$. Then since the residue class field A/\mathfrak{m} of A is infinite, we may choose a minimal basis $\{x_i\}_{1 \leq i \leq n}$ of I so that the ideal $(x_{i_1}, x_{i_2}, \dots, x_{i_d})$ is a reduction of I for any set $1 \leq i_1 < i_2 < \dots < i_d \leq n$ of integers. We now fix a subset $\Lambda = \{i_1, i_2, \dots, i_d\}$ of $\{1, 2, \dots, n\}$ and put $Q = (x_{i_1}, x_{i_2}, \dots, x_{i_d})$. We now consider the epimorphism

$$(A/I)^{\oplus n} \xrightarrow{\varphi} I/I^2 \to 0$$

of A/I-modules such that $\mu_A(\mathbf{e}_i) = \overline{x_i}$ for all $1 \le i \le n$, where $\{\mathbf{e}_i\}_{1 \le i \le n}$ is the standard basis of A/I-free module $(A/I)^{\oplus n}$ and $\overline{x_i}$ denotes the image of x_i in I/I^2 . Assume that $\sum_{i=1}^n c_i \overline{x_i} = 0$ with $c_i \in A$. Then since

$$\sum_{i=0}^{n} c_i x_i \in I^2 \subseteq Q = (x_i \mid i \in \Lambda),$$

we have $\sum_{1 \leq i \leq n, i \notin \Lambda} c_i x_i \in Q$. Therefore because $\{\overline{x_i} \in I/Q\}_{1 \leq i \leq n, i \notin \Lambda}$ forms a A/I-free basis of I/Q, we get $c_i \in I$ for all $1 \leq i \leq n$ whenever $i \notin \Lambda$. After changing $\Lambda = \{i_1, i_2, \cdots, i_d\}$, we have $c_i \in I$ for all $1 \leq i \leq n$, whence $I/I^2 \cong (A/I)^{\oplus n}$.

We now show that $I^2 = QI$. Since $I^2 \subseteq Q$, it is enough to check that $Q \cap I^2 \subseteq QI$. Let $x \in Q \cap I^2$ and write $x = \sum_{1 \leq j \leq d} d_{i_j} x_{i_j}$ with $d_{i_j} \in A$. Then, because $\{\overline{x_{i_j}}\}_{1 \leq j \leq d}$ forms a part of A/I-free basis of I/I^2 , we have $d_{i_j} \in I$ for all $1 \leq j \leq d$. Hence $x = \sum_{1 \leq j \leq d} d_{i_j} x_{i_j} \in QI$, so that $I^2 = QI$. Thus I is an Ulrich ideal of A.

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. (1) \Rightarrow (2) We proceed by induction on d. Let $n = \mu_A(I)$ and $X_i = \operatorname{Syz}_A^i(A/I)$ for all $i \geq 1$. If d = 0, then we have $I^2 = (0)$ and $I \cong (A/I)^{\oplus n}$. Therefore $X_i \cong (A/I)^{\oplus n^i}$ for all $i \geq 1$. Thus X_i is an Ulrich A-module with respect to I for all $i \geq 0$. Assume that d > 0 and that our assertion holds true for d - 1. Let $a \in Q \setminus \mathfrak{m}Q$ and put $\overline{A} = A/(a), \ \overline{I} = I/(a), \ \overline{Q} = Q/(a), \ \operatorname{and} \overline{X_i} = X_i/aX_i \ \text{for } i \geq 1$. Then by Lemma 2.5 \overline{I} is an Ulrich ideal of \overline{A} . Hence the hypothesis of induction on d guarantees that $\operatorname{Syz}_{\overline{A}}^i(\overline{A}/\overline{I})$ is an Ulrich \overline{A} -module with respect to \overline{I} for all $i \geq d - 1$, while we get by Lemma 2.4 an isomorphism

$$\overline{X_i} \cong \operatorname{Syz}_{\overline{A}}^{i-1}(\overline{A}/\overline{I}) \bigoplus \operatorname{Syz}_{\overline{A}}^i(\overline{A}/\overline{I})$$

of A-modules, whence $\overline{X_i} \neq (0)$, $\overline{I} \, \overline{X_i} = \overline{Q} \, \overline{X_i}$, and $\overline{X_i} / \overline{I} \, \overline{X_i}$ is $\overline{A} / \overline{I}$ -free for all $i \geq d$. Therefore $X_i \neq (0)$, $IX_i = QX_i$ and X_i / IX_i is A / I-free for all $i \geq d$, so that X_i is an Ulrich A-module with respect to I for all $i \geq d$.

 $(2) \Rightarrow (3)$ This is clear.

(3) \Rightarrow (1) By Proposition 3.1 we get the implication, because the residue class field A/\mathfrak{m} of A is infinite.

 $(2) \Rightarrow (4)$ This is clear.

 $(4) \Rightarrow (1)$ Let $a \in Q \setminus \mathfrak{m}Q$ and put $\overline{A} = A/(a), \overline{I} = I/(a), \overline{Q} = Q/(a)$, and $\overline{X_i} = X_i/aX_i$. We look at the isomorphism

$$\overline{X_i} \cong \operatorname{Syz}_{\overline{A}}^{i-1}(\overline{A}/\overline{I}) \bigoplus \operatorname{Syz}_{\overline{A}}^i(\overline{A}/\overline{I})$$

obtained by Lemma 2.4, and set $Z = \operatorname{Syz}_{\overline{A}}^{i-1}(\overline{A}/\overline{I}), Z' = \operatorname{Syz}_{\overline{A}}^{i}(\overline{A}/\overline{I})$. Then $\overline{X_i}$ is an Ulrich \overline{A} -module with respect to \overline{I} and $Z \neq (0)$. If Z' = (0), then $\overline{X_i} \cong Z$ is \overline{A} -free. Then, since $\overline{I} \overline{X_i} = \overline{Q} \overline{X_i}$, we have I = Q, which is impossible; thus $Z' \neq (0)$. We now consider the exact sequence

$$0 \to Z' \to F_{i-1}/aF_{i-1} \to Z \to 0$$

of \overline{A} -modules. Because Z and Z' are Ulrich \overline{A} -modules with respect to \overline{I} , we have $\overline{I}^2 \subseteq \overline{Q}$ by Proposition 3.1, whence $I^2 \subseteq Q = (a_1, a_2, \cdots, a_d)$. On the other hand, since I/I^2 is A/I-free and $\{\overline{a_i}\}_{1 \leq i \leq d}$ forms a part of A/I-free basis of I/I^2 where $\overline{a_i}$ denotes the image of a_i in I/I^2 , we get $Q \cap I^2 = QI$. Thus $I^2 = QI$, whence I is an Ulrich ideal of A.

4. Structure of minimal free resolutions of Ulrich ideals

In this section let me consider minimal free resolutions of Ulrich ideals. We fix the following notation. Let A be a Cohen-Macaulay local ring with maximal ideal \mathfrak{m} and $d = \dim A \ge 0$. Let I be an Ulrich ideal of A and let $Q = (a_1, a_2, \dots, a_d)$ be a parameter ideal of A which is a reduction of I. Let

$$F_{\bullet}: \dots \to F_i \xrightarrow{\partial_i} F_{i-1} \to \dots \to F_1 \xrightarrow{\partial_1} F_0 \to A/I \to 0$$

be a minimal A-free resolution of A/I. For $i \ge 0$ let $\beta_i = \beta_A^i(A/I)$ be the *i*-th betti number of A/I. Let $n = \beta_1 = \mu_A(I)$, the number of generators of I. We then have the following.

Theorem 4.1. The following assertions hold true.

(1)

$$\beta_{i} = \begin{cases} (n-d)^{i-d}(n-d+1)^{d} & (i \ge d), \\ \binom{d}{i} + (n-d)\beta_{i-1} & (1 \le i \le d), \\ 1 & (i=0) \end{cases}$$

for $i \ge 0$. (2) $A/I \otimes_A \partial_i = 0$ for all $i \ge 1$. (3) $\beta_i = {d \choose i} + (n-d)\beta_{i-1}$ for all $i \ge 1$.

Proof. We proceed by induction on d. Let $X_i = \operatorname{Syz}_A^i(A/I)$ for $i \ge 1$. If d = 0, then $I^2 = (0)$ and $I \cong (A/I)^{\oplus n}$. Hence $X_i \cong (A/I)^{\oplus n^i}$ for all $i \ge 1$. Therefore $\beta_i = n^i$ and $A/I \otimes_A \partial_i = 0$. Assume that d > 0 and that our assertion holds true for d - 1. Let $a \in Q \setminus \mathfrak{m}Q$ and put $\overline{A} = A/(a)$, $\overline{I} = I/(a)$, and $\overline{X_i} = X_i/aX_i$ for $i \ge 1$. Then by Lemma 2.5 \overline{I} is an Ulrich ideal of \overline{A} . By Lemma 2.4 we have an isomorphism

$$\overline{X_i} \cong \operatorname{Syz}_{\overline{A}}^{i-1}(\overline{A}/\overline{I}) \bigoplus \operatorname{Syz}_{\overline{A}}^i(\overline{A}/\overline{I})$$

of \overline{A} -modules for all $i \geq 1$. Hence $\beta_i = \overline{\beta_{i-1}} + \overline{\beta_i}$ for all $i \geq 1$, where $\overline{\beta_i} = \beta_{\overline{A}}^i(\overline{A}/\overline{I})$ denotes the *i*-th betti number of $\overline{A}/\overline{I}$. We set $\overline{n} = \mu_{\overline{A}}(\overline{I}) = n-1$ and $\overline{d} = \dim \overline{A} = d-1$.

(1) Suppose that $i \ge d$. Then by the hypothesis of induction on d we get

$$\overline{\beta_j} = (\overline{n} - \overline{d})^{j-\overline{d}} \cdot (\overline{n} - \overline{d} + 1)^{\overline{d}}$$

for $j \ge d-1$. Hence

$$\begin{aligned} \beta_i &= \overline{\beta_{i-1}} + \overline{\beta_i} \\ &= (\overline{n} - \overline{d})^{i-1-\overline{d}} \cdot (\overline{n} - \overline{d} + 1)^{\overline{d}} + (\overline{n} - \overline{d})^{i-\overline{d}} \cdot (\overline{n} - \overline{d} + 1)^{\overline{d}} \\ &= (n-d)^{i-d} \cdot (n-d+1)^{d-1} + (n-d)^{i-d+1} \cdot (n-d+1)^{d-1} \\ &= (n-d)^{i-d} \cdot (n-d+1)^{d-1} \cdot \{1+(n-d)\} \\ &= (n-d)^{i-d} \cdot (n-d+1)^d. \end{aligned}$$

Suppose now that $1 \leq i \leq d$. Since $\beta_1 = n = {d \choose 1} + (n-d)\beta_0$, our assertion holds true for the case where i = 1. If $2 \leq i \leq d-1$, then by the hypothesis of induction on d, we have

$$\overline{\beta_j} = \binom{\overline{d}}{j} + (\overline{n} - \overline{d})\overline{\beta_{i-1}}$$

for all $1 \leq j \leq d-1$. Therefore

$$\begin{aligned} \beta_i &= \beta_{i-1} + \beta_i \\ &= \left\{ \begin{pmatrix} \overline{d} \\ i-1 \end{pmatrix} + (\overline{n} - \overline{d}) \overline{\beta_{i-2}} \right\} + \left\{ \begin{pmatrix} \overline{d} \\ i \end{pmatrix} + (\overline{n} - \overline{d}) \overline{\beta_{i-1}} \right\} \\ &= \begin{pmatrix} d-1 \\ i-1 \end{pmatrix} + (n-d) \overline{\beta_{i-2}} + \begin{pmatrix} d-1 \\ i \end{pmatrix} + (n-d) \overline{\beta_{i-1}} \\ &= \begin{pmatrix} d-1 \\ i-1 \end{pmatrix} + \left\{ \begin{pmatrix} d \\ i \end{pmatrix} - \begin{pmatrix} d-1 \\ i-1 \end{pmatrix} \right\} + (n-d) \overline{\beta_{i-2}} + \overline{\beta_{i-1}} \} \\ &= \begin{pmatrix} d \\ i \end{pmatrix} + (n-d) \beta_{i-1}. \end{aligned}$$

If $i = d \ge 2$, then by the hypothesis of induction on d we have

$$\overline{\beta_{d-1}} = \begin{pmatrix} d-1\\ \overline{d} \end{pmatrix} + (\overline{n} - \overline{d})\overline{\beta_{d-2}}$$

and

$$\overline{\beta_d} = (\overline{n} - \overline{d})^{d-\overline{d}} \cdot (\overline{n} - \overline{d} + 1)^{\overline{d}} = (\overline{n} - \overline{d}) \cdot (\overline{n} - \overline{d} + 1)^{\overline{d}} = (\overline{n} - \overline{d}) \overline{\beta_d} = (\overline{n} - \overline{d}) \overline{\beta_{d-1}}.$$

Therefore

$$\begin{aligned} \beta_d &= \overline{\beta_{d-1}} + \overline{\beta_d} \\ &= \left\{ \begin{pmatrix} d-1 \\ \overline{d} \end{pmatrix} + (\overline{n} - \overline{d}) \overline{\beta_{d-2}} \right\} + (\overline{n} - \overline{d}) \overline{\beta_{d-1}} \\ &= 1 + (n-d) \overline{\beta_{d-2}} + (n-d) \overline{\beta_{d-1}}, \end{aligned}$$

while

$$\binom{d}{d} + (n-d)\beta_{d-1} = 1 + (n-d)\{\overline{\beta_{d-2}} + \overline{\beta_{d-1}}\}.$$

Thus $\beta_d = \binom{d}{d} + (n-d)\beta_{d-1}$. Hence we get assertion (1). (2) We have nothing to prove for the case where i = 1. Suppose that $i \ge 2$. Then by Lemma 2.4 we have an isomorphism

$$\overline{X_i} \cong \operatorname{Syz}_{\overline{A}}^{i-1}(\overline{A}/\overline{I}) \bigoplus \operatorname{Syz}_{\overline{A}}^i(\overline{A}/\overline{I})$$

of \overline{A} -modules. Hence by the hypothesis of induction on d we get $A/I \otimes_A \partial_i = 0$ for all $i \geq 2.$

(3) We have only to consider the case where i > d. We get $\beta_i = (n-d)^{i-d} \cdot (n-d+1)^d$ for all $i \ge d$ by assertion (1), while

$$\binom{d}{i} + (n-d)\beta_{i-1} = (n-d) \cdot \{(n-d)^{i-1-d} \cdot (n-d+1)^d\}$$
$$= (n-d)^{i-d} \cdot (n-d+1)^d.$$

Hence $\beta_i = {d \choose i} + (n-d)\beta_{i-1}$ for all $i \ge 1$, which proves assertion (3).

Let $K_{\bullet} = K_{\bullet}(a_1, a_2, \dots, a_d; A)$ denote the Koszul complex with differential maps $\partial_i^K : K_i \to K_{i-1}$. Then because $\beta_i = \binom{d}{i} + (n-i)\beta_{i-1}$ for all i > 0 by Theorem 4.1 (3), in the exact sequence

$$0 \to Q \to I \to I/Q \to 0$$

of A-modules a minimal A-free resolution of I is obtained by those of Q and I/Q, so that we have the following.

Proposition 4.2. $F_i \cong K_i \oplus F_{i-1}^{\oplus (n-d)}$ for all $1 \leq i \leq d$ and $F_i \cong F_{i-1}^{\oplus (n-d)}$ for all $i \geq d+1$.

Corollary 4.3. Suppose that d > 0.

- (1) $\operatorname{Syz}_{A}^{i+1}(A/I) \cong [\operatorname{Syz}_{A}^{i}(A/I)]^{\oplus (n-d)}$ for all $i \ge d$.
- (2) $F_{d+i} = F_d$ and $\partial_{d+i+1} = \partial_{d+1}$ for all $i \ge 1$, if A is a Gorenstein local ring.

Proof. Let $X_i = \operatorname{Syz}_A^i(A/I)$ for $i \ge 1$.

(1) This is clear.

(2) Since A is a Gorenstein ring, we have n - d = 1 by Proposition 2.7, so that assertion (1) shows $F_{i+1} \cong F_i$ for all $i \ge d$. We now look at the following commutative diagram

of A-modules with isomorphisms $\alpha: F_{d+2} \to F_{d+1}$ and $\beta: F_{d+1} \to F_d$. It is standard to check that the following sequence

$$\cdots \to F_{d+1} \xrightarrow{\beta^{-1}\partial_{d+1}} F_{d+1} \to \cdots \to F_{d+1} \xrightarrow{\beta^{-1}\partial_{d+1}} F_{d+1} \xrightarrow{\partial_{d}\beta} F_{d-1} \xrightarrow{\partial_{d-1}} F_{d-2} \to \cdots$$

is also exact, which completes the proof of Corollary 4.3.

The following Theorem 4.4 plays a crucial role in the analysis of the problem of when the set \mathcal{X}_A of Ulrich ideals in A is finite.

Theorem 4.4. $I_1(\partial_i) = I$ for all $i \ge 1$, where $I_1(\partial_i)$ denotes the ideal of A generated by the entries of the matrix ∂_i .

Proof. Let me begin with the following.

Claim 1. $I_1(\partial_i) + Q = I$ for all $i \ge 1$.

Proof of Claim 1. We proceed by induction on d. We have nothing to prove when d = 0. Assume that d > 0 and that our assertion holds true for d - 1. Let $a = a_1 \in Q \setminus \mathfrak{m}Q$ and put $\overline{A} = A/(a)$, $\overline{I} = I/(a)$, and $\overline{Q} = Q/(a)$. Then \overline{I} is an Ulrich ideal of \overline{A} . Let $X_i = \operatorname{Syz}_A^i(A/I)$ and put $\overline{X_i} = X_i/aX_i$ for all $i \geq 1$. Then by Lemma 2.4

$$\overline{X_i} \cong \operatorname{Syz}_{\overline{A}}^{i-1}(\overline{A}/\overline{I}) \bigoplus \operatorname{Syz}_{\overline{A}}^i(\overline{A}/\overline{I})$$

for all $i \geq 2$. Therefore the hypothesis of induction on d shows that $I_1(\overline{\partial_i}) + \overline{Q} = \overline{I}$ for all $i \geq 2$, whence $I_1(\partial_i) + Q = I$. Notice that $I_1(\partial_1) = I$ clearly. Thus $I_1(\partial_i) + Q = I$ for all $i \geq 1$ as claimed.

By Claim 1 we have only to show that $I_1(\partial_i) \supseteq Q$ for all $i \ge 1$. Suppose $2 \le i \le d$ and consider the following commutative diagram

of A-modules, where $\iota_i(x) = (x, 0)$ and $p_i(x, y) = y$ with $x \in K_i$ and $y \in F_{i-1}^{\oplus (n-d)}$. Then, since $\partial_i \circ \iota_i = \iota_{i-1} \circ \partial_i^K$ and $p_{i-1} \circ \partial_i = \partial_{i-1}^{\oplus (n-d)} \circ p_i$, we have

$$\partial_i = \begin{pmatrix} \partial_i^K & * \\ 0 & \partial_{i-1}^{\oplus (n-d)} \end{pmatrix}.$$

Therefore $I_1(\partial_i) \supseteq I_1(\partial_i^K) = Q$. Thus $I_1(\partial_i) = I$ for $2 \le i \le d$. Suppose that i = d + 1 and consider the following commutative diagram

of A-modules. Then $\partial_{d+1} = \begin{pmatrix} * \\ \partial_d^{n-d} \end{pmatrix}$, because $\partial_d^{n-d} \circ p_{d+1} = p_d \circ \partial_{d+1}$. Hence $I_1(\partial_{d+1}) \supseteq I_1(\partial_d) = I$, so that $I_1(\partial_{d+1}) = I$. Thus by Corollary 4.3, $I_1(\partial_{i+1}) = I_1(\partial_i)$ for all $i \ge d+1$. Hence $I_1(\partial_{i+1}) = I_1(\partial_{d+1}) = I$ for $i \ge d$, which completes the proof of Theorem 4.4. \Box

We are now in a position is to study the finiteness problem of Ulrich ideals. Let

 $\mathcal{X}_A = \{I \mid I \text{ is an Ulrich ideal of } A\}.$

We are interested in the following question.

Question 4.5. When is \mathcal{X}_A a finite set?

Let me begin with the following, which readily follows from Theorem 4.4.

Corollary 4.6. Let I and J be Ulrich ideals of A. Then I = J if and only if $\operatorname{Syz}_A^i(A/I) \cong \operatorname{Syz}_A^i(A/J)$ for some $i \ge 0$.

Let me settle Problem 4.5 affirmatively in the following case.

Theorem 4.7. Suppose that A is of finite CM-representation type. Then \mathcal{X}_A is a finite set.

Proof. We set $\mathcal{Y}_A = \{ [\operatorname{Syz}_A^d(A/I)] \mid I \in \mathcal{X}_A \}$ be the set of isomorphism classes of $\operatorname{Syz}_A^d(A/I)$. Let $I \in \mathcal{X}_A$ with $n = \mu_A(I)$. Remember that

$$\mu_A(\operatorname{Syz}_A^d(A/I)) = (n - d + 1)^d \le (\operatorname{r}(A) + 1)^d < \infty$$

by Theorem 4.1, since $n - d \leq r(A)$ by Lemma 2.7. Therefore the set \mathcal{Y}_A is finite, since A is of finite CM-representation type, so that by Corollary 4.6 \mathcal{X}_A is also a finite set, because $\mathcal{X}_A \cong \mathcal{Y}_A$.

Let me explore one example.

Example 4.8. Let $A = k[[X, Y, Z]]/(Z^2 - XY)$. Then $\mathcal{X}_A = \{\mathfrak{m}\}$.

Proof. The indecomposable maximal Cohen-Macaulay A-modules are A and $\mathfrak{p} = (z, x)$. We get $\mathfrak{m} \in \mathcal{X}_A$, since $\mathfrak{m}^2 = (x, y)\mathfrak{m}$. Let $I \in \mathcal{X}_A$. Then $\mu_A(I) = 3$. Let $X = \operatorname{Syz}_A^2(A/I)$ and consider the exact sequence

$$0 \to \operatorname{Syz}_A^2(A/I) \to A^3 \to A \to A/I \to 0$$

of A-modules. We then have

$$\operatorname{Syz}_A^2(A/I) \cong \mathfrak{p} \bigoplus \mathfrak{p},$$

because $\mu_A(X) = 4$ and rank_A X = 2. Hence $I = \mathfrak{m}$ by Corollary 4.6.

There are many one-dimensional Cohen-Macaulay local rings of finite CM-representation type. Let me collect a few results.

Example 4.9. The following assertions hold true.

- (1) $\mathcal{X}_{k[[t^3, t^4]]} = \{(t^4, t^6)\}.$
- (2) $\mathcal{X}_{k[[t^3,t^5]]} = \emptyset.$
- (3) $\mathcal{X}_{k[[X,Y]]/(Y(X^2-Y^{2a+1}))} = \{(x, y^{2a+1}), (x^2, y)\}, \text{ where } a \ge 1.$
- (4) $\mathcal{X}_{k[[X,Y]]/(Y(Y^2-X^3))} = \{(x^3, y)\}.$
- (5) $\mathcal{X}_{k[[X,Y]]/(X^2-Y^{2a})} = \{(x^2, y), (x y^a, y(x + y^a)), (x + y^a, y(x y^a))\}, \text{ where } a \ge 1 \text{ and } ch k \neq 2.$

5. Ulrich ideals in numerical semi-group rings

It seems interesting to ask how many Ulrich ideals are contained in a given Cohen-Macaulay local ring. We look at the numerical semigroup ring

$$A = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq k[[t]] = \overline{A},$$

where $0 < a_1, a_2, \ldots, a_\ell \in \mathbb{Z}$ such that $\text{GCD}(a_1, a_2, \ldots, a_\ell) = 1$. Let

$$\mathcal{X}_A^g = \{ \text{Ulrich ideals } I \text{ in } A \text{ such that } I = (\text{powers of } t) \}.$$

We then have the following.

Theorem 5.1. The set \mathcal{X}_A^g is finite.

Proof. We have
$$I/Q \cong (A/I)^{\oplus (n-d)}$$
 and $\frac{I}{a} = A[\frac{I}{a}]$, where $Q = (a)$ and $\frac{I}{a} = a^{-1}I$. Hence $A/I \subseteq I/Q \cong A[\frac{I}{a}]/A \subseteq \overline{A}/A$.

Therefore $A: \overline{A} = t^c \cdot k[[t]] \subseteq I$ for every Ulrich ideal I of A, where $c \geq 0$ denotes the conductor of the numerical semigroup

$$\langle a_1, a_2, \dots, a_\ell \rangle = \{ \sum_{i=1}^\ell c_i a_i \mid 0 \le c_i \in \mathbb{Z} \}.$$

Hence \mathcal{X}_A^g is a finite set.

Although the sets \mathcal{X}_A^g and \mathcal{X}_A might be different, it is expected, first of all, to find what the set \mathcal{X}_A^g is. Let me close this paper with a few (not complete) results.

Example 5.2. The following assertions hold true.

(1) $\mathcal{X}^{g}_{k[[t^3, t^5, t^7]]} = \{\mathfrak{m}\}.$

(2)
$$\mathcal{X}_{k[[t^4, t^5, t^6]]}^{g} = \{(t^4, t^6)\}$$

- (2) $\mathcal{X}^{g}_{k[[t^{a}, t^{5}, t^{6}]]} = \{(t^{*}, t^{\circ})\}.$ (3) $\mathcal{X}^{g}_{k[[t^{a}, t^{a+1}, \dots, t^{2a-2}]]} = \emptyset$, if $a \ge 5$. (4) Let $1 < a < b \in \mathbb{Z}$ such that GCD(a, b) = 1. Then $\mathcal{X}^{g}_{k[[t^{a}, t^{b}]]} \neq \emptyset$ if and only if aor b is even. (Compare with Example 5.3 (2).)
- (5) Let $A = k[[t^4, t^6, t^{4a-1}]]$ $(a \ge 2)$. Then $\sharp \mathcal{X}_A^g = 2a 2$.

Example 5.3 (with N. Taniguchi). The following assertions hold true.

(1)
$$\mathcal{X}_{k[[t^3,t^5]]} = \emptyset.$$

- (2) $\mathcal{X}_{k[[t^3, t^7]]} = \{ (t^6 ct^7, t^{10}) \mid 0 \neq c \in k \}.$
- (3) $\mathcal{X}_{k[[t^{2a+i} \mid 1 < i < 2a]]} = \emptyset$ for $\forall a \ge 2$.
- (4) $\mathcal{X}_{k[[t^{2a+i} \mid 0 \leq i \leq 2a-2]]} = \emptyset$ for $\forall a \geq 3$.
- (5) $\sharp(\mathcal{X}_{k[[X,Y]]/(Y^n)}) = \infty$ for $\forall n \ge 2$.

References

- [BHU] J. Brennan, J. Herzog, and B. Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand., 61 (1987), 181–203.
- [GIW] S. Goto, S. Iai, and K. Watanabe, Good ideals in Gorenstein local rings, Trans. Amer. Math. Soc., 353 (2000), 2309-2346.
- [GOTWY] S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, and K.-i. Yoshida, Ulrich ideals and modules, Mathematical Proceedings of the Cambridge Philosophical Society (to appear).
- [HK] J. Herzog and M. Kuhi, Maximal Cohen-Macaulay modules over Gorenstein rings and Bourbaki sequences. Commutative Algebra and Combinatorics, Adv. Stud. Pure Math., 11, 1987, 65-92.

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MEIJI UNIVERSITY, 1-1-1 HIGASHI-MITA, TAMA-KU, KAWASAKI 214-8571, JAPAN

E-mail address: goto@math.meiji.ac.jp