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1. Introduction and definition

Let A be a Cohen-Macaulay local ring with maximal ideal m and d = dim A ≥ 0. Let

M be a finitely generated A-module. In [BHU] J. Brennan, J. Herzog, and B. Ulrich gave

structure theorems of MGMCM (maximally generated maximal Cohen–Macaulay)

modules that is, maximal Cohen–Macaulay A–modules M with e0
m(M) = µA(M), where

e0
m(M) (resp. µA(M)) denotes the multiplicity of M with respect to m (resp. the number

of elements in a minimal system of generators of M). In [HK] these modules are simply

called Ulrich modules.

The purpose of my talk is to study Ulrich modules, and ideals as well, with a slightly

generalized definition. To state our definition, let I be an m–primary ideal in A and

assume that I contains a parameter ideal Q of A as a reduction; hence In+1 = QIn for

all n ≫ 0. Remember that the latter condition, that is the existence of reductions, is

satisfied, when the residue class field A/m of A is infinite.

Definition 1.1. Let M ( ̸= (0) be a finitely generated A–module. Then we say that M

is an Ulrich A–module with respect to I, if

(1) M is a Cohen-Macaulay A–module with dimA M = d,

(2) e0
I(M) = ℓA(M/IM), and

(3) M/IM is A/I–free,

where e0
I(M) denotes the multiplicity of M with respect to I and ℓA(∗) denotes the

length.

This talk is based on a work [GOTWY] jointly with R. Takahashi, K. Ozeki, K.-i. Watanabe, and
K.-i. Yoshida
AMS 2000 Mathematics Subject Classification: 13H10, 13H15, 13A30.
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Let me give a few comments about Definition 1.1. Suppose that M is a maximal

Cohen–Macaulay A-module. Then

e0
I(M) = e0

Q(M) = ℓA(M/QM) ≥ ℓA(M/IM) ≥ ℓA(M/mM) = µA(M).

Hence condition (2) is equivalent to saying that QM = IM . If I = m, then condition

(3) is automatically satisfied, and in general we have e0
m(M) ≥ µA(M), and e0

m(M) =

µA(M) if and only if M is a MGMCM module in the sense of [BHU].

Definition 1.2. Our ideal I is called an Ulrich ideal of A, if

(1) I ) Q,

(2) I2 = QI, and

(3) I/I2 is A/I–free.

Here we notice that condition (2) equipped with (1) is equivalent to saying that the

associated graded ring

grI(A) =
⊕
n≥0

In/In+1

of I is a Cohen-Macaulay ring with a(grI(A)) = 1 − d, whence Definition 1.2 is inde-

pendent of the choice of reductions Q, and the blowing-up of SpecA with center V(I)

enjoys nice properties. When I = m, condition (3) is automatically satisfied and con-

dition (2) equipped with (1) is equivalent to saying that A is not a regular local ring,

but possesses maximal embedding dimension in the sense of J. Sally, i.e, the following

equality

v(A) = e(A) + dim A − 1

holds true, where v(A) and e(A) denote, respectively, the embedding dimension of A

and the multiplicity of A with respect to m.

In my talk we shall discuss several basic properties of Ulrich modules and ideals,

and the relation between them as well. In Section 2 we will summarize some auxiliary

results on Ulrich ideals for the later use.

The main result in Section 3 is the following. Let Syzi
A(A/I) denote the i–th syzygy

module of A/I in a minimal A-free resolution.

Theorem 1.3 (cf. [BHU]). The following conditions are equivalent.

(1) I is an Ulrich ideal of A.

(2) Syzi
A(A/I) is an Ulrich A–module with respect to I for all i ≥ d.

(3) There exists an exact sequence

0 → X → F → Y → 0

of finitely generated A–modules such that

(a) F is a finitely generated free A–modules,

(b) X ⊆ mF , and
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(c) both X and Y are Ulrich A–modules with respect to I.

If d > 0, we can add the following.

(4) µA(I) > d, I/I2 is A/I–free, and Syzi
A(A/I) is an Ulrich A–module with respect

to I for some i ≥ d.

In Section 4 we will give a structure theorem of minimal free resolutions of Ulrich

ideals and some applications as well. We shall discuss in Section 5 Ulrich ideals in

numerical semi-group rings.

2. Preliminary steps

Let me begin with the following.

Example 2.1. Suppose that R is a Cohen–Macaulay local ring with maximal ideal n

and dim R = d. Let F = Rn for n > 0 and A = R n F the idealization of R over

F . Let q be a parameter ideal in R and put I = q × F and Q = qA. Then A is a

Cohen-Macaulay local ring with maximal ideal m = n × F and dim A = d, I is an

m–primary ideal of A which contains the parameter ideal Q of A as a reduction. We

furthermore have that I is an Ulrich ideal of A. Therefore A contains infinitely many

Ulrich ideals, if d = dim R > 0.

Question 2.2. I don’t know whether those ideals I = q × F are all the Ulrich ideals

in A = R n F .

Example 2.3. We have the following.

(1) In the ring A = k[[X,Y, Z]]/(Z2 − XY ), the maximal ideal m = (x, y, z) is a

unique Ulrich ideal and p = (z, x) is a unique indecomposable Ulrich A–module

with respect to m.

(2) The ring A = k[[t3, t5]] ∼= k[[X, Y ]]/(X5 − Y 3) contains no Ulrich ideals.

We note here a proof of assertion (2). See Example 4.8 for the proof of assertion (1).

Proof of assertion (2). Let A = k[[t3, t5]] and V = k[[t]]. Assume that A contains an

Ulrich ideal, say I, and let Q = (a) be a reduction of I. We put B = I
a

:= {x
a
| x ∈

I} ⊆ V . Then B = A[ I
a
] and B is a Gorenstein local ring with µA(B) = 2, because

I = aB and I ∼= HomA(B,A).

Thus B ̸= V , since µA(V ) = 3. We have t7 ∈ B, because A : m = A + kt7 (remember

that A is a Gorenstein ring) and A ( B. Hence t5V ⊆ B. Let c = B :Q(B) V and write

c = tnV with n ≥ 1. Then, since B is a Gorenstein local ring,

n = ℓB(V/c) = 2ℓB(B/c).

Hence n ≤ 4, because t5V ⊆ B. Thus n = 2 or n = 4. If t4 ∈ B, then

t3V ⊆ B, whence n = 2. Consequently, k[[t2, t3]] ⊆ B ( V , and B = k[[t2, t3]],
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since ℓk[[t2,t3]](V/k[[t2, t3]]) = 1. This is impossible, because µA(k[[t2, t3]]) = 3. Thus A

contains no Ulrich ideals. �

To provide examples of Ulrich modules, we need more preliminaries. For the moment,

assume that d > 0. Let a ∈ Q\mQ and put A = A/(a), I = I/(a), and Q = Q/(a). We

then have the following. Remember that Syzi
A(A/I) denotes the i–th syzygy of A/I in

a minimal A-free resolution.

Lemma 2.4 (W. V. Vasconcelos). Suppose I/I2 is A/I–free. Then

Syzi
A(A/I)/a·Syzi

A(A/I) ∼= Syzi−1

A
(A/I)

⊕
Syzi

A
(A/I)

for all i ≥ d.

Proof. We have only to show I/aI ∼= A/I ⊕ I/(a). Let I = (a) + (x1, x2, · · · , xn)

with n = µA(I) − 1. Then I/aI = Aa +
∑n

i=1 Axi, where a and xi denote the images

of a and xi in I/aI, respectively. Assume that ca +
∑n

i=1 cixi = 0 with c, ci ∈ A.

Then ca +
∑n

i=1 cixi ∈ aI ⊆ I2. Since {a, xi ∈ I/I2}1≤i≤n forms a free A/I-basis

of I/I2, we have c, ci ∈ I for 1 ≤ i ≤ n. Therefore ca =
∑n

i=1 cixi = 0, whence

I/aI ∼= A/I ⊕ I/(a). �

Let me note the following.

Lemma 2.5. Let I be an Ulrich ideal in a Cohen-Macaulay local ring A with d =

dim A > 0. Let a ∈ Q \mQ, where Q = (a1, a2, . . . , ad) is a reduction of I. Then I/(a)

is an Ulrich ideal of A/(a).

Proof. We set A = A/(a), I = I/(a), and Q = Q/(a). Then I ) Q and I
2

= QI. Let

us consider the exact sequence

0 → [(a) + I2]/I2 → I/I2 → I/I
2 → 0

of A-modules. We then have

I/I2 ∼= A/I ⊕ I/I
2
,

since I/I2 is A/I-free and a which is the image of a in I/I2 forms a part of A/I-free

basis of I/I2. Thus I/I
2

is also A/I-free, so that I is an Ulrich ideal of A. �

We note the following. To prove it, we just remember that in the exact sequence

0 → Q/I2 → I/I2 → I/Q → 0,

the A/I-module Q/I2 = Q/QI is free and is generated by a part of a minimal basis of

I/I2.

Proposition 2.6. Suppose that A is a Cohen-Macaulay local ring and assume that

I2 = QI. Then the following conditions are equivalent.

(1) I/I2 is A/I-free.
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(2) I/Q is A/I-free.

When this is the case, I = Q :A I, if Q ( I; hence I is a good ideal of A in the sense

of [GIW], if A is a Gorenstein ring.

The following result shows the number of generators of Ulrich ideals I of A is bounded

by the Cohen-Macaulay type r(A) and the dimension of A.

Proposition 2.7. Suppose that A is a Cohen-Macaulay local ring and let I be an Ulrich

ideal of A. Then we have the following, where r(A) denotes the Cohen-Macaulay type

of A.

(1) r(A) ≥ µA(I) − d.

(2) µA(I) = d + 1 and I/Q ∼= A/I, if A is a Gorenstein ring.

Proof. (1) Let n = µA(I) (> d). Then by Proposition 2.6, I/Q ∼= (A/I)n−d, so that

I = Q :A I. Hence r(A) = (n − d)·r(A/I) ≥ n − d > 0, where r(A/I) denotes the

Cohen-Macaulay type of A/I.

(2) As r(A) = 1, we have n − d = 1 by assertion (1), whence I/Q ∼= A/I. �

3. Proof of Theorem 1.3; relation between Ulrich ideals and modules

The heart of the proof of the implication (3) ⇒ (1) in Theorem 1.3 is the following.

Proposition 3.1. Suppose that A is a Cohen-Macaulay local ring. Let I be an m-

primary ideal in A and assume that I contains a parameter ideal Q of A as a reduction.

Assume that there exists an exact sequence

0 → X → F → Y → 0

of finitely generated A-modules such that

(i) F is a finitely generated free A-module,

(ii) X ̸= (0) and X ⊆ mF , and

(iii) Y is an Ulrich A-module with respect to I.

Then the following conditions are equivalent.

(1) X is an Ulrich A-module with respect to I.

(2) I2 ⊆ Q and I/Q is A/I-free.

When this is the case, the following assertions hold true.

(a) I2 = QI and I/I2 is A/I-free, if the residue class field A/m of A is infinite.

Hence I is an Ulrich ideal of A.

(b) µA(X) = µA(Y )·rankA/I(I/Q).

Proof. We consider the exact sequence

(♯) 0 → X → F → Y → 0
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of A-modules. Because X ̸= (0) and F and Y are Cohen-Macaulay A-modules with

dimA F = dimA Y = d, X is a Cohen-Macaulay A-module with dimA X = d. We set

m = rankAF ; hence m = µA(Y ), because X ⊆ mF . Tensoring exact sequence (♯) by

A/Q, we get an exact sequence

0 → X/QX → F/QF → Y/QY → 0

of A-modules, where Y/QY = Y/IY ∼= (A/I)⊕m, because Y is an Ulrich A-modules

with respect to I and m = µA(Y ). Therefore, since F/QF = (A/Q)⊕m, we have

X/QX ∼= (I/Q)⊕m.

(1) ⇒ (2) Since IX = QX and X/QX ∼= (I/Q)⊕m, we have I·(I/Q)⊕m = (0),

whence I2 ⊆ Q. Because X/IX = X/QX ∼= (I/Q)⊕m is A/I-free, the A/I-module

I/Q is also free.

(2) ⇒ (1) and (b) Since I2 ⊆ Q and X/QX ∼= (I/Q)⊕m, we have I·(X/QX) = (0),

whence IX = QX. Let r = rankA/II/Q. Then

X/IX = X/QX ∼= (I/Q)⊕m ∼= (A/I)⊕mr,

because I/Q ∼= (A/I)⊕r. Thus X is an Ulrich A-module with respect to I and µA(X) =

µA(Y )·rankA/I(I/Q).

(a) Let n = µA(I) and write I = (x1, x2, · · · , xn). Then since the residue class field

A/m of A is infinite, we may choose a minimal basis {xi}1≤i≤n of I so that the ideal

(xi1 , xi2 , · · · , xid) is a reduction of I for any set 1 ≤ i1 < i2 < · · · < id ≤ n of integers.

We now fix a subset Λ = {i1, i2, · · · , id} of {1, 2, · · · , n} and put Q = (xi1 , xi2 , · · · , xid).

We now consider the epimorphism

(A/I)⊕n φ→ I/I2 → 0

of A/I-modules such that µA(ei) = xi for all 1 ≤ i ≤ n, where {ei}1≤i≤n is the standard

basis of A/I-free module (A/I)⊕n and xi denotes the image of xi in I/I2. Assume that∑n
i=1 cixi = 0 with ci ∈ A. Then since

n∑
i=0

cixi ∈ I2 ⊆ Q = (xi | i ∈ Λ),

we have
∑

1≤i≤n,i/∈Λ cixi ∈ Q. Therefore because {xi ∈ I/Q}1≤i≤n,i/∈Λ forms a A/I-

free basis of I/Q, we get ci ∈ I for all 1 ≤ i ≤ n whenever i /∈ Λ. After changing

Λ = {i1, i2, · · · , id}, we have ci ∈ I for all 1 ≤ i ≤ n, whence I/I2 ∼= (A/I)⊕n.

We now show that I2 = QI. Since I2 ⊆ Q, it is enough to check that Q ∩ I2 ⊆ QI.

Let x ∈ Q ∩ I2 and write x =
∑

1≤j≤d dijxij with dij ∈ A. Then, because {xij}1≤j≤d

forms a part of A/I-free basis of I/I2, we have dij ∈ I for all 1 ≤ j ≤ d. Hence

x =
∑

1≤j≤d dijxij ∈ QI, so that I2 = QI. Thus I is an Ulrich ideal of A. �

We are now in a position to prove Theorem 1.3.
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Proof of Theorem 1.3. (1) ⇒ (2) We proceed by induction on d. Let n = µA(I) and

Xi = Syzi
A(A/I) for all i ≥ 1. If d = 0, then we have I2 = (0) and I ∼= (A/I)⊕n.

Therefore Xi
∼= (A/I)⊕ni

for all i ≥ 1. Thus Xi is an Ulrich A-module with respect to

I for all i ≥ 0. Assume that d > 0 and that our assertion holds true for d − 1. Let

a ∈ Q \ mQ and put A = A/(a), I = I/(a), Q = Q/(a), and Xi = Xi/aXi for i ≥ 1.

Then by Lemma 2.5 I is an Ulrich ideal of A. Hence the hypothesis of induction on d

guarantees that Syzi
A
(A/I) is an Ulrich A-module with respect to I for all i ≥ d − 1,

while we get by Lemma 2.4 an isomorphism

Xi
∼= Syzi−1

A
(A/I)

⊕
Syzi

A
(A/I)

of A-modules, whence Xi ̸= (0), I Xi = QXi, and Xi/I Xi is A/I-free for all i ≥ d.

Therefore Xi ̸= (0), IXi = QXi and Xi/IXi is A/I-free for all i ≥ d, so that Xi is an

Ulrich A-module with respect to I for all i ≥ d.

(2) ⇒ (3) This is clear.

(3) ⇒ (1) By Proposition 3.1 we get the implication, because the residue class field

A/m of A is infinite.

(2) ⇒ (4) This is clear.

(4) ⇒ (1) Let a ∈ Q \ mQ and put A = A/(a), I = I/(a), Q = Q/(a), and

Xi = Xi/aXi. We look at the isomorphism

Xi
∼= Syzi−1

A
(A/I)

⊕
Syzi

A
(A/I)

obtained by Lemma 2.4, and set Z = Syzi−1

A
(A/I), Z ′ = Syzi

A
(A/I). Then Xi is an

Ulrich A-module with respect to I and Z ̸= (0). If Z ′ = (0), then Xi
∼= Z is A-free.

Then, since I Xi = Q Xi, we have I = Q, which is impossible; thus Z ′ ̸= (0). We now

consider the exact sequence

0 → Z ′ → Fi−1/aFi−1 → Z → 0

of A-modules. Because Z and Z ′ are Ulrich A-modules with respect to I, we have

I
2 ⊆ Q by Proposition 3.1, whence I2 ⊆ Q = (a1, a2, · · · , ad). On the other hand, since

I/I2 is A/I-free and {ai}1≤i≤d forms a part of A/I-free basis of I/I2 where ai denotes

the image of ai in I/I2, we get Q∩ I2 = QI. Thus I2 = QI, whence I is an Ulrich ideal

of A. �

4. Structure of minimal free resolutions of Ulrich ideals

In this section let me consider minimal free resolutions of Ulrich ideals. We fix the

following notation. Let A be a Cohen-Macaulay local ring with maximal ideal m and

d = dim A ≥ 0. Let I be an Ulrich ideal of A and let Q = (a1, a2, · · · , ad) be a parameter

ideal of A which is a reduction of I. Let

F• : · · · → Fi
∂i→ Fi−1 → · · · → F1

∂1→ F0 → A/I → 0
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be a minimal A-free resolution of A/I. For i ≥ 0 let βi = βi
A(A/I) be the i-th betti

number of A/I. Let n = β1 = µA(I), the number of generators of I. We then have the

following.

Theorem 4.1. The following assertions hold true.

(1)

βi =


(n − d)i−d(n − d + 1)d (i ≥ d),(

d
i

)
+ (n − d)βi−1 (1 ≤ i ≤ d),

1 (i = 0)

for i ≥ 0.

(2) A/I ⊗A ∂i = 0 for all i ≥ 1.

(3) βi =
(

d
i

)
+ (n − d)βi−1 for all i ≥ 1.

Proof. We proceed by induction on d. Let Xi = Syzi
A(A/I) for i ≥ 1. If d = 0, then

I2 = (0) and I ∼= (A/I)⊕n. Hence Xi
∼= (A/I)⊕ni

for all i ≥ 1. Therefore βi = ni and

A/I ⊗A ∂i = 0. Assume that d > 0 and that our assertion holds true for d − 1. Let

a ∈ Q \ mQ and put A = A/(a), I = I/(a), and Xi = Xi/aXi for i ≥ 1. Then by

Lemma 2.5 I is an Ulrich ideal of A. By Lemma 2.4 we have an isomorphism

Xi
∼= Syzi−1

A
(A/I)

⊕
Syzi

A
(A/I)

of A-modules for all i ≥ 1. Hence βi = βi−1 + βi for all i ≥ 1, where βi = βi
A
(A/I)

denotes the i-th betti number of A/I. We set n = µA(I) = n−1 and d = dim A = d−1.

(1) Suppose that i ≥ d. Then by the hypothesis of induction on d we get

βj = (n − d)j−d·(n − d + 1)d

for j ≥ d − 1. Hence

βi = βi−1 + βi

= (n − d)i−1−d·(n − d + 1)d + (n − d)i−d·(n − d + 1)d

= (n − d)i−d·(n − d + 1)d−1 + (n − d)i−d+1·(n − d + 1)d−1

= (n − d)i−d·(n − d + 1)d−1·{1 + (n − d)}
= (n − d)i−d·(n − d + 1)d.

Suppose now that 1 ≤ i ≤ d. Since β1 = n =
(

d
1

)
+ (n − d)β0, our assertion holds

true for the case where i = 1. If 2 ≤ i ≤ d − 1, then by the hypothesis of induction on

d, we have

βj =

(
d

j

)
+ (n − d)βi−1
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for all 1 ≤ j ≤ d − 1. Therefore

βi = βi−1 + βi

=

{(
d

i − 1

)
+ (n − d)βi−2

}
+

{(
d

i

)
+ (n − d)βi−1

}
=

(
d − 1

i − 1

)
+ (n − d)βi−2 +

(
d − 1

i

)
+ (n − d)βi−1

=

(
d − 1

i − 1

)
+

{(
d

i

)
−

(
d − 1

i − 1

)}
+ (n − d){βi−2 + βi−1}

=

(
d

i

)
+ (n − d)βi−1.

If i = d ≥ 2, then by the hypothesis of induction on d we have

βd−1 =

(
d − 1

d

)
+ (n − d)βd−2

and

βd = (n − d)d−d·(n − d + 1)d

= (n − d)·(n − d + 1)d

= (n − d)βd = (n − d)βd−1.

Therefore

βd = βd−1 + βd

=

{(
d − 1

d

)
+ (n − d)βd−2

}
+ (n − d)βd−1

= 1 + (n − d)βd−2 + (n − d)βd−1,

while (
d

d

)
+ (n − d)βd−1 = 1 + (n − d){βd−2 + βd−1}.

Thus βd =
(

d
d

)
+ (n − d)βd−1. Hence we get assertion (1).

(2) We have nothing to prove for the case where i = 1. Suppose that i ≥ 2. Then by

Lemma 2.4 we have an isomorphism

Xi
∼= Syzi−1

A
(A/I)

⊕
Syzi

A
(A/I)

of A-modules. Hence by the hypothesis of induction on d we get A/I ⊗A ∂i = 0 for all

i ≥ 2.
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(3) We have only to consider the case where i > d. We get βi = (n−d)i−d·(n−d+1)d

for all i ≥ d by assertion (1), while(
d

i

)
+ (n − d)βi−1 = (n − d)·{(n − d)i−1−d·(n − d + 1)d}

= (n − d)i−d·(n − d + 1)d.

Hence βi =
(

d
i

)
+ (n − d)βi−1 for all i ≥ 1, which proves assertion (3). �

Let K• = K•(a1, a2, · · · , ad; A) denote the Koszul complex with differential maps

∂K
i : Ki → Ki−1. Then because βi =

(
d
i

)
+ (n− i)βi−1 for all i > 0 by Theorem 4.1 (3),

in the exact sequence

0 → Q → I → I/Q → 0

of A-modules a minimal A-free resolution of I is obtained by those of Q and I/Q, so

that we have the following.

Proposition 4.2. Fi
∼= Ki ⊕ F

⊕(n−d)
i−1 for all 1 ≤ i ≤ d and Fi

∼= F
⊕(n−d)
i−1 for all

i ≥ d + 1.

Corollary 4.3. Suppose that d > 0.

(1) Syzi+1
A (A/I) ∼= [Syzi

A(A/I)]⊕(n−d) for all i ≥ d.

(2) Fd+i = Fd and ∂d+i+1 = ∂d+1 for all i ≥ 1, if A is a Gorenstein local ring.

Proof. Let Xi = Syzi
A(A/I) for i ≥ 1.

(1) Thsi is clear.

(2) Since A is a Gorenstein ring, we have n − d = 1 by Proposition 2.7, so that

assertion (1) shows Fi+1
∼= Fi for all i ≥ d. We now look at the following commutative

diagram
Fd+2

∂d+2−−−→ Fd+1
∂d+1−−−→ Fdyα yβ y

Fd+1
∂d+1−−−→ Fd

∂d−−−→ Fd−1

of A-modules with isomorphisms α : Fd+2 → Fd+1 and β : Fd+1 → Fd. It is standard to

check that the following sequence

· · · → Fd+1
β−1∂d+1→ Fd+1 → · · · → Fd+1

β−1∂d+1→ Fd+1
∂dβ→ Fd−1

∂d−1→ Fd−2 → · · ·

is also exact, which completes the proof of Corollary 4.3. �

The following Theorem 4.4 plays a crucial role in the analysis of the problem of when

the set XA of Ulrich ideals in A is finite.

Theorem 4.4. I1(∂i) = I for all i ≥ 1, where I1(∂i) denotes the ideal of A generated

by the entries of the matrix ∂i.

Proof. Let me begin with the following.
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Claim 1. I1(∂i) + Q = I for all i ≥ 1.

Proof of Claim 1. We proceed by induction on d. We have nothing to prove when d = 0.

Assume that d > 0 and that our assertion holds true for d − 1. Let a = a1 ∈ Q \ mQ

and put A = A/(a), I = I/(a), and Q = Q/(a). Then I is an Ulrich ideal of A. Let

Xi = Syzi
A(A/I) and put Xi = Xi/aXi for all i ≥ 1. Then by Lemma 2.4

Xi
∼= Syzi−1

A
(A/I)

⊕
Syzi

A
(A/I)

for all i ≥ 2. Therefore the hypothesis of induction on d shows that I1(∂i) + Q = I for

all i ≥ 2, whence I1(∂i) + Q = I. Notice that I1(∂1) = I clearly. Thus I1(∂i) + Q = I

for all i ≥ 1 as claimed. �

By Claim 1 we have only to show that I1(∂i) ⊇ Q for all i ≥ 1. Suppose 2 ≤ i ≤ d

and consider the following commutative diagram

0 −−−→ Ki
ιi−−−→ Ki ⊕ F

⊕(n−d)
i−1

pi−−−→ F
⊕(n−d)
i−1 −−−→ 0y∂K

i

y∂i

y∂
⊕(n−d)
i−1

0 −−−→ Ki−1
ιi−1−−−→ Ki−1 ⊕ F

⊕(n−d)
i−2

pi−1−−−→ F
⊕(n−d)
i−2 −−−→ 0

of A-modules, where ιi(x) = (x, 0) and pi(x, y) = y with x ∈ Ki and y ∈ F
⊕(n−d)
i−1 .

Then, since ∂i ◦ ιi = ιi−1 ◦ ∂K
i and pi−1 ◦ ∂i = ∂

⊕(n−d)
i−1 ◦ pi, we have

∂i =

(
∂K

i ∗
0 ∂

⊕(n−d)
i−1

)
.

Therefore I1(∂i) ⊇ I1(∂
K
i ) = Q. Thus I1(∂i) = I for 2 ≤ i ≤ d. Suppose that i = d + 1

and consider the following commutative diagram

0 −−−→ (0) ⊕ F
⊕(n−d)
d

pd+1−−−→ F
⊕(n−d)
d −−−→ 0y∂d+1

y∂n−d
d

0 −−−→ Kd
ιd−−−→ Kd ⊕ F n−d

d−1

pd−−−→ F n−d
d−1 −−−→ 0

of A-modules. Then ∂d+1 =

(
∗

∂n−d
d

)
, because ∂n−d

d ◦pd+1 = pd ◦∂d+1. Hence I1(∂d+1) ⊇

I1(∂d) = I, so that I1(∂d+1) = I. Thus by Corollary 4.3, I1(∂i+1) = I1(∂i) for all i ≥ d+1.

Hence I1(∂i+1) = I1(∂d+1) = I for i ≥ d, which completes the proof of Theorem 4.4. �

We are now in a position is to study the finiteness problem of Ulrich ideals. Let

XA = {I | I is an Ulrich ideal of A}.

We are interested in the following question.

Question 4.5. When is XA a finite set?

Let me begin with the following, which readily follows from Theorem 4.4.
11



Corollary 4.6. Let I and J be Ulrich ideals of A. Then I = J if and only if

Syzi
A(A/I) ∼= Syzi

A(A/J) for some i ≥ 0.

Let me settle Problem 4.5 affirmatively in the following case.

Theorem 4.7. Suppose that A is of finite CM-representation type. Then XA is a finite

set.

Proof. We set YA = {[Syzd
A(A/I)] | I ∈ XA} be the set of isomorphism classes of

Syzd
A(A/I). Let I ∈ XA with n = µA(I). Remember that

µA(Syzd
A(A/I)) = (n − d + 1)d ≤ (r(A) + 1)d < ∞

by Theorem 4.1, since n− d ≤ r(A) by Lemma 2.7. Therefore the set YA is finite, since

A is of finite CM-representation type, so that by Corollary 4.6 XA is also a finite set,

because XA
∼= YA. �

Let me explore one example.

Example 4.8. Let A = k[[X, Y, Z]]/(Z2 − XY ). Then XA = {m}.

Proof. The indecomposable maximal Cohen-Macaulay A-modules are A and p = (z, x).

We get m ∈ XA, since m2 = (x, y)m. Let I ∈ XA. Then µA(I) = 3. Let X = Syz2
A(A/I)

and consider the exact sequence

0 → Syz2
A(A/I) → A3 → A → A/I → 0

of A-modules. We then have

Syz2
A(A/I) ∼= p

⊕
p,

because µA(X) = 4 and rankA X = 2. Hence I = m by Corollary 4.6. �

There are many one-dimensional Cohen-Macaulay local rings of finite CM-

representation type. Let me collect a few results.

Example 4.9. The following assertions hold true.

(1) Xk[[t3,t4]] = {(t4, t6)}.
(2) Xk[[t3,t5]] = ∅.
(3) Xk[[X,Y ]]/(Y (X2−Y 2a+1)) = {(x, y2a+1), (x2, y)}, where a ≥ 1.

(4) Xk[[X,Y ]]/(Y (Y 2−X3)) = {(x3, y)}.
(5) Xk[[X,Y ]]/(X2−Y 2a) = {(x2, y), (x − ya, y(x + ya)), (x + ya, y(x − ya))}, where a ≥

1 and ch k ̸= 2.
12



5. Ulrich ideals in numerical semi-group rings

It seems interesting to ask how many Ulrich ideals are contained in a given Cohen-

Macaulay local ring. We look at the numerical semigroup ring

A = k[[ta1 , ta2 , . . . , taℓ ]] ⊆ k[[t]] = A,

where 0 < a1, a2, . . . , aℓ ∈ Z such that GCD(a1, a2, . . . , aℓ) = 1. Let

X g
A = {Ulrich ideals I in A such that I = (powers of t)}.

We then have the following.

Theorem 5.1. The set X g
A is finite.

Proof. We have I/Q ∼= (A/I)⊕(n−d) and I
a

= A[ I
a
], where Q = (a) and I

a
= a−1I. Hence

A/I ⊆ I/Q ∼= A[
I

a
]/A ⊆ A/A.

Therefore A : A = tc·k[[t]] ⊆ I for every Ulrich ideal I of A, where c ≥ 0 denotes the

conductor of the numerical semigroup

⟨a1, a2, . . . , aℓ⟩ = {
ℓ∑

i=1

ciai | 0 ≤ ci ∈ Z}.

Hence X g
A is a finite set. �

Although the sets X g
A and XA might be different, it is expected, first of all, to find

what the set X g
A is. Let me close this paper with a few (not complete) results.

Example 5.2. The following assertions hold true.

(1) X g
k[[t3,t5,t7]] = {m}.

(2) X g
k[[t4,t5,t6]] = {(t4, t6)}.

(3) X g
k[[ta,ta+1,··· ,t2a−2]] = ∅, if a ≥ 5.

(4) Let 1 < a < b ∈ Z such that GCD(a, b) = 1. Then X g
k[[ta,tb]]

̸= ∅ if and only if a

or b is even. (Compare with Example 5.3 (2).)

(5) Let A = k[[t4, t6, t4a−1]] (a ≥ 2). Then ♯X g
A = 2a − 2.

Example 5.3 (with N. Taniguchi). The following assertions hold true.

(1) Xk[[t3,t5]] = ∅.
(2) Xk[[t3,t7]] = {(t6 − ct7, t10) | 0 ̸= c ∈ k}.
(3) Xk[[t2a+i | 1 ≤ i ≤ 2a]] = ∅ for ∀a ≥ 2.

(4) Xk[[t2a+i | 0 ≤ i ≤ 2a−2]] = ∅ for ∀a ≥ 3.

(5) ♯(Xk[[X,Y ]]/(Y n)) = ∞ for ∀n ≥ 2.
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