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Abstract. What are the moduli space of elliptic curves and its compactification? In
order to explain the issues involved, we discuss the case of planar cubic curves in detail.
A basic idea for compactification is the GIT-stability of Mumford.

In arbitrary dimension, GIT-stability canonically compactifies the moduli space of
abelian varieties over Z[ζN , 1/N ] for some large N ≥ 3. In the smallest possible case,
dimension one and N = 3, the problem is reduced to the study of planar cubic curves,
more specifically Hesse cubic curves. Every GIT-stable cubic curve is isomorphic to a
Hesse cubic curve.
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1. Hesse cubic curves

The major part of this note is taken from [Nakamura04]. Please visit [Nakamura04]
if you are interested in, since it could be still be a good introduction to the subject as
well as a survey on it. We also would like to invite the readers to visit a pdf file of our
homepage

http://www.math.sci.hokudai.ac.jp/˜nakamura/Okayama201108.pdf
Let P2

k be the projective plane over an algebraically closed field k of characteristic
different from 3. We could think of the base field k as the field C of complex numbers.

A Hesse cubic curve is by definition a cubic curve on the plane P2
k defined by the

following equation:

C(µ) : x3
0 + x3

1 + x3
2 − 3µx0x1x2 = 0(1)
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for some µ ∈ k, or µ = ∞ (in which case we understand that C(∞) is the curve defined
by x0x1x2 = 0). Let ζ3 is a primitive cube root of unity. For µ �= ∞, 1, ζ3, ζ

2
3 , the curve

C(µ) is a nonsingular elliptic curve, while for µ = ∞, 1, ζ3, ζ
2
3 C(µ) consists of three

nonsingular rational curves, pairwise intersecting at a distinct point so that the three
irreducible components of C(µ) form a cycle.

When k = C, if C(µ) is nonsingular, it is topologically a real 2-torus. Otherwise, it
is a cycle of 3 rational curves, (or equivalently a union of three lines in P2

k in general
position), topologically a cycle of three real 2-spheres, which looks like a rosary of three
beads. When µ approaches ∞ or ζk

3 , then a real 2-torus is pinched locally at three
distinct meridians into a cycle of three 2-spheres.

This class of curves was studied by Hesse in the middle of 19th century. His paper
published in 1849 (see [Hesse]) is summarized as follows.

Theorem 1.1. (1) Any nonsingular cubic curve can be converted into one of the Hesse
cubic curves (1) under the action of SL(3, k), namely it is isomorphic to one of C(µ)
for µ �= ∞, µ3 �= 1.

(2) Every Hesse cubic curve C(µ) has nine inflection points , independent of µ: [1 :
−β : 0], [0 : 1 : −β], [−β : 0 : 1] where β3 = 1.

(3) C(µ) is transformed isomorphically onto C(µ′) under SL(3, k) with each of nine
inflection points fixed if and only if µ = µ′.

The first and third assertions of the theorem show that any isomorphism class of
nonsingular cubic curves is represented by µ ∈ k with µ3 �= 1. In other words,

k \ {1, ζ3, ζ
2
3} = the moduli space of nonsingular cubic curves

with ordered nine inflection points .

We mean by a moduli space the space naturally representing the isomorphism classes
of some geometric objects as above. In this case the noncompact moduli space

k \ {1, ζ3, ζ
2
3} = Spec k[µ,

1
µ3 − 1

]

can be compactified into P1
k as the theorem of Hesse shows, where the exceptional values

µ = 1, ζ3, ζ
2
3 and µ = ∞ correspond to a singular Hesse cubic curve, that is a union of

three lines in general position. It is remarkable that the compactified moduli space is
also the moduli space of (isomorphism classes of) certain geometric objects, in this case
Hesse cubic curves possibly singular.

In what follows we mean by ”compactification of a moduli space” roughly what we
saw above.

In this article, via diverse modern interpretations of the theorem of Hesse, we will
present an analogy to it and construct for each large symplectic finite abelian group K
a compactification SQg,K over Z[ζN , 1/N ] of the moduli space of abelian varieties where
ζN is a primitive N -th root of unity for N suitably chosen.

It is important to recognize that the problem of compactifying a moduli space is not the
problem of finding all limits of some geometric objects. For example, the compactification
of the moduli space of nonsingular Hesse cubic curves is P1

k. As this outcome suggests,
one could say that the problem of compactification is to single out an important class or
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a relatively narrow class of limits only so that the class of limits may form a complete
(or compact) algebraic variety set-theoretically.

This problem of compactifying a moduli space is algebro-geometrically quite interest-
ing, whatever the objects to consider may be chosen. It was natural to ask whether
one could construct compactifications of the moduli spaces at least for curves, abelian
varieties and K3 surfaces because they are basic objects in algebraic geometry. As is
well known, we have the Deligne-Mumford compactification for curves [DM69], whereas
there are quite a lot of compactifications of the moduli of abelian varieties ([AMRT75],
[FC90]).

Nevertheless we will construct one and only one new compactification SQg,K of the
moduli of abelian varieties. This compactification is natural enough because, as we will
see below, there are three natural approaches to the compactification problem including
GIT-stability and representation theory of Heisenberg groups, each of which leads us to
the same compactification SQg,K .

Let us explain what is a modern interpretation of the theorem of Hesse. Let us look
first at the curve

C(∞) : x0x1x2 = 0.(2)

Let C(∞)0 := C(∞) \ {singular points}. Then C(∞)0 has a group scheme structure,
and as group schemes

C(∞)0 = Gm × (Z/3Z)(3)

where Gm is the multiplicative group, so Gm = C∗ if k = C. The family of Hesse cubic
curves (1) is therefore an analogue of the so-called Tate curve over a complete discrete
valuation ring (or the unit disc). Moreover theta functions on cubic curves, namely
nonsingular elliptic curves or one-dimensional abelian varieties over C, are Fourier series,
and similarly functions on the group variety Gm has also Fourier series expansions. In
this sense Gm is one of the nice limits of cubic curves. This viewpoint of degeneration
of elliptic curves into nice group varieties was also very fruitful in higher dimension as
is shown by the work of Grothendieck, Raynaud, Mumford, Faltings and Chai. This
is the first modern interpretation of the theorem of Hesse, though this should now be
considered classical.

From a different point of view, a finite group G(3) of order 27 called the Heisenberg
group acts on the Hesse cubic curves linearly. Let x0, x1, x2 be the homogeneous coordi-
nates of the plane P2

k and V the vector space spanned by xi (i = 0, 1, 2). The Heisenberg
group G(3) is a subgroup of GL(V ) generated by the following two linear transformations
σ and τ of V :

σ(xi) = ζi
3xi, τ(xi) = xi+1 (i = 0, 1, 2 mod 3)(4)

which are subject to the relation

σ3 = τ3 = idV , στ = (ζ3 · idV )τσ.(5)



4 IKU NAKAMURA

Let us regard P2
k as the space of row 3-vectors. Then σ and τ induce automorphisms

of P2
k by

σ̄ : [x0, x1, x2] �→ [σ(x0), σ(x1), σ(x2)] = [x0, ζ3x1, ζ
2
3x2],

τ̄ : [x0, x1, x2] �→ [τ (x0), τ(x1), τ(x2)] = [x1, x2, x0].
(6)

These restrict to automorphisms of Hesse cubic curves, which are the translations
of the elliptic curves by their 3-torsion points. The vector space V is by (4) a three-
dimensional representation of G(3). This is often called the Schrödinger representation
of G(3), which is easily shown to be irreducible. Therefore by the famous lemma of
Schur about irreducible representations, the basis x0, x1 and x2, which are transformed
by σ and τ as above, are uniquely determined up to constant multiples. This property
enables us to identify x0, x1 and x2 with a natural basis of theta functions over C. In
this sense theta functions usually defined over C have natural counterparts in positive
characteristic. This is the second modern interpretation of the work of Hesse.

The third important interpretation of it is based on the GIT-stability of Mumford,
which we omit in this report. We will see that the above three interpretations are es-
sentially the same and that Hesse cubic curves and their equations are derived naturally
from any of the interpretations. Thus each of the three interpretations is a route to
one and the same compactification P1

k. Each interpretation provides us with a natu-
ral approach to the problem of compactifying the moduli of abelian varieties in higher
dimension.

2. Satake compactification and toroidal compactification

A compactification as a complex analytic space of the moduli space Ag of principally
polarized abelian varieties was constructed by Satake in the 1950’s, now known as the
Satake compactification of Ag . Later as an application of the theory of torus embeddings,
quite a lot of compactifications of complex spaces similar to Ag were constructed by
Mumford et al. [AMRT75], which we call toroidal compactifications. Thereafter, toroidal
compactifications were algebrized by Faltings and Chai [FC90] into compactifications of
Ag or its analogues as a scheme over Z. A particular case of toroidal compactification,
referred to as the Voronoi compactification of Ag, was discussed in [Namikawa76] in
connection with proper degeneration of abelian varieties. This is very relevant to the
subject of the present article.

Toroidal compactification is sufficiently general, and it seems that there is no other
class of algebro-geometrically natural compactifications. However there is a feature miss-
ing in this compactification. As we explained for Hesse cubic curves in §1, we would like
to demand a given compactification of the moduli space to be again the moduli space
of compact geometric objects of the same dimension. All of the compactifications men-
tioned above do not meet the demand, though they are moduli spaces of noncompact
objects by [FC90]. On the other hand it is still an open problem whether the Voronoi
compactification in [Namikawa76] is a moduli space.

Therefore the first problem in this direction would be the existence of a compactifi-
cation of Ag or its analogues which meets the above demand. Since the uniqueness of
the compactification is not true for toroidal compactifications, there might exist many
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less important compactifications which meet the above demand. Thus a more impor-
tant problem would be to single out a natural significant compactification and study its
structure in detail.

The major purpose of my talk at Okayama was to report that there does exist actually
an algebro-geometrically natural compactification SQg,K defined over Z[ζN , 1/N ], where
N =

√|K|. It is immediate from its construction that it is projective. The precise
relationship of SQg,K with the Voronoi compactification will be understood in a not-so-
far future since this is basically not a difficult problem.

We expect that the results will be extended over Z or Z[ζN ] in a way analogous to
the Drinfeld compactification of modular curves [KM85]. This is now in progress, and
we will be able to report it somewhere else in the near future. Though we reported a bit
on it in Okayama, we omit it here because it is not final.

3. The space of closed orbits

3.1. Example. Now let us consider what the principle for singling out a nice compactifi-
cation ought to be. One of the principles is suggested by GIT of Mumford, the geometric
invariant theory [MFK94]. Let us look at the following example. Let C2 be the complex
plane, (x, y) its coordinates. Let us consider the action of C∗ on C2:

(α, x, y) �→ (αx, α−1y) (α ∈ C∗)(7)

What is (or ought to be) the quotient space of C2 by the action of C∗? Let us
decompose C2 into orbits first. Since the function xy is constant on any orbit, we see
that there are four kinds of orbits:

O(a, 1) = {(x, y) ∈ C2; xy = a} (a �= 0),

O(0, 1) = {(0, y) ∈ C2; y �= 0},
O(1, 0) = {(x, 0) ∈ C2; x �= 0},

O(0, 0) = {(0, 0)}

(8)

where there are the closure relations of orbits

O(1, 0) ⊃ O(0, 0), O(0, 1) ⊃ O(0, 0).

It is tempting to define the quotient to be the orbit space, namely the set of all orbits,
but its natural topology is not Hausdorff. In fact, if it is Hausdorff, then we see

O(1, 0) = lim
x→0

O(1, x) = lim
x→0

O(x, 1) = O(0, 1)(9)

because O(a, 1) = O(1, a) (a �= 0). Hence the natural topology of the orbit space is not
Hausdorff. In order to avoid this, we need to turn to the ring of invariants. By (7) the
ring of invariants by the C∗-action is a polynomial ring generated by xy. Thus we define
the desirable quotient space to be

C2//C∗ = {t; t ∈ C} � Spec C[t].(10)

where t = xy. Since t = xy is a function on C2, there is a natural morphism from C2 onto
C2//C∗. The three orbits O(1, 0), O(0, 1) and O(0, 0) are projected to the origin t = 0
of Spec C[t]. Among the three orbits, O(0, 0) is the unique closed orbit, while O(0, 1)
and O(1, 0) are not closed. Hence one could think that the origin t = 0 is represented by
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the unique closed orbit O(0, 0). This is a very common phenomenon for orbits spaces.
Now we make an important remark to summarize the above:

Theorem 3.2. The quotient space C2//C∗ is set-theoretically the space of closed orbits.

To be more precise, the theorem asserts the following: For any a ∈ C in the right
hand side of (10), there is a unique closed orbit O(a, 1) or O(0, 0) respectively if a �= 0
or a = 0.

�

� Spec C[ab]

�

�

a

b

�

O(c, 1)

�

O(d, 1)

O(c, 1) O(d, 1)

The same is true in general. There is a notion of a semistable point, which we will
define soon after stating the following theorems.

Theorem 3.3. (Seshadri-Mumford) Let X be a projective scheme over a closed field
k, G a reductive algebraic k-group acting on X . Then there exists an open subscheme
Xss of X consisting of all semistable points in X , and a quotient of Xss by G in a certain
reasonable sense.

To be more precise, there exist a projective k-scheme Y and a G-invariant morphism
π from Xss onto Y such that
(1) For any k-scheme Z on which G acts, and for any G-equivariant morphism φ :

Z → X there exists a unique morphism
φ̄ : Z → Y such that φ̄ = πφ,

(2) For given points a and b of Xss

π(a) = π(b) if and only if O(a) ∩ O(b) �= ∅
where the closure is taken in Xss,

(3) Y (k) is regarded as the set of G-orbits closed in Xss.
We denote the (categorical) quotient Y by Xss//G.

A reductive group in Theorem 3.3 is by definition an algebraic group whose maximal
solvable normal subgroup is an algebraic torus; for example SL(n) and Gm are reductive.

We restate Theorem 3.3 in a much simpler form, though the statement of it is not
precise.
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Theorem 3.4. Let X be a projective variety, G a reductive group acting on X . Then
Xss//G is projective and it is identified with the set of G-orbits closed in Xss.

Let R be the graded ring of all G-invariant homogeneous polynomials on X . Then the
(categorical) quotient Y of Xss by G is defined to be

Y = Proj (R).

The most important point to emphasize is the fact that

Y = the space of orbits closed in Xss.

Now we give the definition of the term ”semistable” in Theorem 3.3.

Definition 3.5. We keep the same notation as in Theorem 3.3. Let p ∈ X .

(1) the point p is said to be semistable if there exists a G-invariant homogeneous poly-
nomial F on X such that F (p) �= 0,

(2) the point p is said to be Kempf-stable if the orbit O(p) is closed in Xss,
(3) the point p is said to be properly-stable if p is Kempf-stable and the stabilizer

subgroup of p in G is finite.

We denote by Xps or Xss the set of all properly-stable points or the set of all semistable
points respectively. Very often in the recent literatures ”properly-stable” is only referred
to as ”stable”, however in the present article we will use ”properly-stable” for it in order
to strictly distinguish it from ”Kempf-stable”.

Thus Theorem 3.3 tells us what the quotient space Y ought to be. What is the subset
of X lying over Y ? It is Xss, namely the subset of X consisting of all points where at least
a G-invariant homogeneous polynomial does not vanish. Any homogeneous polynomial
now is not a function on X , instead the quotient of a pair of G-invariant homogeneous
polynomials of equal degree is a function on X . Therefore Xss is the subset of X where
G-invariant functions are defined possibly by choosing a suitable denominator. Therefore

X \ Xss = the common zero locus of all G -invariant
homogeneous polynomials on X

= the subset of X where no G -invariant

functions are defined (0/0 !).

However since it is a very difficult task to determine the ring of all G-invariant ho-
mogeneous polynomials on X , so is it to determine Xss. The geometric invariant theory
is the theory in which Mumford intended to determine semistability or the subset Xss

without knowing explicitly the ring of all G-invariant homogeneous polynomials, instead
by studying the geometric structure of X and the G-action on it. In lucky situations
this is really the case, for instance, semistable vector bundles on a variety (Takemoto,
Maruyama and Mumford), stable curves (Gieseker and Mumford) and in addition abelian
varieties (Kempf) and their natural limits PSQASes as we will see in Theorem 7.4.
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3.6. Comparison of notions. In order to apply Theorem 3.3 to moduli problems we
compare various notions in GIT and moduli theories as follows:

X = the set of geometric objects,
G = the group of isomorphisms of objects in X,

//G = mod G plus some extra relation in Theorem 3.3
called the orbit closure relation,

Xps = the set of properly-stable geometric objects
= the set of generic geometric objects,

Xss = the set of semistable geometric objects
= Xps ∪ moderately degenerating limits of objects in Xps,

Xps//G = the moduli space of generic geometric objects,

Xss//G = compactification of the moduli space .

We note that if a, b ∈ Xps,

π(a) = π(b) ⇐⇒ O(a) ∩ O(b) �= ∅
⇐⇒ O(a) ∩ O(b) �= ∅
⇐⇒ O(a) = O(b)
⇐⇒ a and b are isomorphic .

Each point of Xps gives a closed orbit and the moduli space Xps//G is an ordinary
orbit space Xps/G. Moreover it is compactified by Xss//G. This is currently one of the
most powerful principles for compactifying moduli spaces.

The first approximation to our moduli is Y 0 := Xps/G. Therefore the first candidate
for a compactification of our moduli could be Xss//G. However in many cases Xss is too
big to determine explicitly. There are too many orbits in Xss//G which are unnecessary
in understanding the space Xss//G itself. In this sense it is more practical to restrict our
attention to Kempf-stable points, though the set of Kempf-stable points in Xss is not
even an algebraic subscheme of Xss in general.

4. GIT-stability and stable critical points

4.1. What is implied by GIT-stability? The Morse theory is well known as a method
of studying the topology of a differentiable manifold by a Morse function. In studying the
topology it is important to know the critical exponents of the Morse function at critical
points. When the critical exponent at a critical point is maximal, namely the Hessian
of the Morse function is positive definite, the critical point is called a stable critical
point. This is the case where the Morse function takes a local minimum at the point.
If one considers the function as a sort of energy function in physics, the critical point
corresponds to a stable point (or a stable physical state) where the energy attains its local
minimum. To our knowledge, the term stable is used in this sense in most cases. However
it may seem that GIT-stability has nothing to do with it, at least from the definition.
Nevertheless as the following theorem of Kempf and Ness shows, GIT-stability does have
to do with a stable critical point.
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Let V a finite-dimensional complex vector space, G a reductive algebraic group acting
on V . Let K be a maximal compact subgroup of G and ‖ ‖ be a K-invariant Hermitian
norm on V . For instance if G = SL(2, C), then K = SU(2). If one takes the example
in 3.1, then V = C2, G = C∗, K = S1 = {w ∈ C∗; ‖w‖ = 1} and the K-invariant
Hermitian norm on V is given by

‖(a, b)‖ = |a|2 + |b|2,
‖gλ · (a, b)‖ = |λa|2 + |λ−1b|2

where gλ = diag(λ, λ−1).

Definition 4.2. Let v ∈ V , v �= 0.
(1) the vector v is said to be semistable if there exists a G-invariant homegeneous

polynomial F on V such that F (v) �= 0,
(2) the vector v is said to be Kempf-stable if the orbit O(v) is closed in V ,
(3) the vector v is said to be properly-stable if p is Kempf-stable and the stabilizer

subgroup of v in G is finite.
If v is Kempf-stable, then v is semistable. Let π : V \ {0} → P(V ) be the natural
surjection. Now we compare the above with the previous one in Definition 3.5. Then v is
semistable (resp. Kempf-stable, properly-stable) if and only if π(v) is semistable (resp.
Kempf-stable, properly-stable).

For v �= 0, we define pv(g) := ‖g · v‖ on G. Then pv is a function on an orbit O(v),
which is invariant by the action of K from the left. Then the following theorem is known.

Theorem 4.3. (Kempf-Ness)
(1) pv obtains its minimum on O(v) at any critical point of pv.
(2) The second order derivation of pv at the minimum is ”positive”.
(3) v is Kempf-stable if and only if pv obtains a minimum on O(v).

Thus summarizing the above, we see

v is Kempf-stable ⇐⇒ pv has a stable critical point on O(v).

In this sense, we can justify the term ”stable” or ”stability” in GIT.
In this connection we would like to add a few words about the history of coining the

term ”stability”. The first edition of GIT was published in 1965, and then was followed
by Deligne-Mumford’s paper on stable curves in 1969 and the paper of Kempf and Ness
in 1979. In the first edition of GIT the following theorem has been proved:

Theorem. Any nonsingular hypersurface of Pn is properly-stable.

This suggests that Mumford had an idea of compactifying the moduli space of nonsin-
gular curves by stability at latest in 1965, though the notion of stable curves has maybe
not been established yet because the article of Deligne and Mumford appeared in 1969.
The term stability might come from the stable reduction theorem of abelian varieties
(due to Grothendieck) and the stable curves that were probably being born at that time.
On the other hand the theorem of Kempf and Ness is not so difficult to prove, though
its discovery would not be so easy. Taking all of these into consideration, we suspect
that Mumford was unaware of the connection of GIT-stability with Morse-stability like
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Theorem 4.3 when he first used the term stability in GIT. It might have been a mere
accident. But it was a very excellent coining that described its essence very well as the
subsequent history shows.

5. Stable curves of Deligne and Mumford

5.1. The moduli space Mg of stable curves. In the paper [DM69] Deligne and
Mumford compactified the moduli space of nonsingular curves by adding stable curves
— a class of curves with mild singularities. Roughly speaking we have

the moduli of smooth curves
= the set of all isomorphism classes of smooth curves
⊂ the set of all isomorphism classes of stable curves
= the Deligne-Mumford compactification.

The Deligne-Mumford compactification Mg frequently appears in diverse branches
such as the quantum gravity in physics and Gromov-Witten invariants in connection with
mirror symmetry. Also widely known are Kontsevich’s solution of Witten conjecture, and
his cellular decomposition of Mg by ribbon graphs.

Let us recall the definition of stable curves:

Definition 5.2. Let C be a possibly reducible, connected projective curve of genus at
least two. A curve C is called moduli-stable if the following conditions are satisfied:
(1) it is locally a curve on a nonsingular algebraic surface (or a two-dimensional complex

manifold) defined by an equation x = 0 or xy = 0 in terms of local coordinates x, y,
(2) if a nonsingular rational curve C′ is an irreducible component of C, then C′ inter-

sects the other irreducible components of C at least at three points.

It is easy to see that the automorphism group of any moduli-stable curve is finite.
Since diverse stabilities appear in the context, we call a Deligne-Mumford stable curve a
moduli-stable curve in what follows to distinguish the terminology strictly.

5.3. Another stability. Any moduli-stable curve is stable in the following sense [DM69]:
(i) Any given one parameter family of curves, after a suitable process of surgeries,

namely after pulling back, taking normalizations and by contracting excessive ir-
reducible rational components, can be modified into a one parameter family of
moduli-stable curves,

(ii) if any fibre of the above family is moduli-stable, then fibres of the family are un-
changed by the above surgeries.

What is the relationship between moduli-stability and GIT-stability?

Theorem 5.4. For a connected curve C of genus greater than one, the following are
equivalent:
(1) C is moduli-stable,
(2) Any Hilbert point of C of large degree is Kempf-stable,
(3) Any Chow point of C of large degree is Kempf-stable.
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We note that a Hilbert point (or a Chow point) of a curve C is Kempf-stable if and
only if it is properly-stable because the automorphism group of C of genus greater than
one is finite. The equivalence of (1) and (2) is due to [?], while the equivalence of (1)
and (3) is due to [Mumford77]. A Hilbert point and a Chow point are the points which
completely describe the embedding of C into the projective space, each being a point
of a projective space of very big dimension. These are a kind of Plücker coordinates of
the Grassman variety in the sense that the Plücker coordinates describe completely a
subspace embedded in a fixed vector space.

5.5. What is our problem? A simple and clear theorem like Theorem 5.4 which in-
trinsically characterizes moduli-stable curves is our goal in our compactification problem
of moduli spaces. In general the phenomenon of degeneration of algebraic varieties is so
complicated that it may be far beyond classifying completely. Compactifying a moduli
space may be achieved by minimizing the scale of degeneration of the algebraic varieties.
Therefore one needs to collect only significant degeneration, and one needs to ignore less
important ones. From this standpoint, it would be our central problem to understand
the meaning of the most significant degeneration or the fundamental principle behind it.

So far in this section we reviewed the known results about moduli-stable curves. From
the next section on we consider the same problems about abelian varieties. One of our
goals is to complete the following diagram:

themoduli of smooth AVs (= abelian varieties)

= {smooth polarized AVs+ extra structure}/ isom.

⊂ {smooth polarized AVs or

singular polarized degenerate AVs + extra structure}/ isom.

= the new compactification of the moduli of AVs

It is also another important goal to characterize those degenerate varieties (schemes)
which appear as natural limits of abelian varieties (Theorem 7.4).

6. Moduli theory of cubic curves

6.1. Stability of cubic curves. Now let us recall the compact moduli theories of cubic
curves. Let k be an algebraically closed field of characteristic �= 3. There are two compact
moduli theories of cubic curves from the viewpoint of GIT. First we recall that SL(3, k)
acts on H0(P2, O(1)), hence on V := H0(P2, O(3))=the space of ternary cubic forms.

Definition 6.2. Le f ∈ V . Then

(1) f is semistable if there is an SL(3, k) invariant homogeneous polynomial H on V
such that H(f) �= 0.

(2) f is Kempf-stable if the SL(3, k)-orbit of f in V is closed.

We recall that Kempf-stable implies semistable, whereas properly-stable is Kempf-
stable with finite stabilizer. The stabilizer group of a Kempf-stable point can be infinite.
Let us say that a cubic curve is Kempf-stable/semistable if the equation defining the
curve is Kempf-stable/semistable. See Table 1.
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Table 1. Stability of cubic curves

curves (sing.) stability stab. gr.

smooth elliptic Kempf-stable finite
3 lines, no triple point Kempf-stable 2 dim
a line+a conic, not tangent semistable, not Kempf-stable 1 dim
irreducible, a node semistable, not Kempf-stable Z/2Z
3 lines, a triple point not semistable 1 dim
a line+a conic, tangent not semistable 1 dim
irreducible, a cusp not semistable 1 dim

6.3. Moduli spaces of cubic curves. The first compactification of the moduli of
nonsingular cubic curves is the quotient

SQ1,1 := V (semistable)// SL(3) � P1.

This is the theory of the j-invariant of elliptic curves.
The second compactification is given in Theorem 6.4. A pair of cubic curves with

level 3-structure is defined to be isomorphic if there is an linear isomorphism of the cubic
curves mapping ei to ei. By the theorem of Hesse, the cubic curves C(µ) and C(µ′) with
level 3-structure are isomorphic iff µ = µ′ and the isomorphism is the identity morphism
of C(µ). Thus we see that

{smooth cubics + level 3 structure}/ isom.

= {smooth Hesse cubics + level 3 structure}/ isom.

= {smooth Hesse cubics + level 3 structure}.
The following is a prototype for all the rest.

Theorem 6.4. Let G(3) be the Heisenberg group of level 3. Then

SQ1,3 : =
{

Kempf-stable cubic curves
with level 3-structure

}
/isom.

=
{

cubic curves invariant under G(3)
with level 3-structure

}

=
{

Hesse cubics
with level 3-structure

}
,

which compactifies

A1,3 : =
{

smooth cubic curves
with level 3-structure

}
/isom.

=
{

smooth Hesse cubics
with level 3-structure

}
.

The compactification SQ1,3 (� P1
Z[ζ3,1/3]) is projective over Z[ζ3, 1/3], and it is the

fine moduli scheme for families of Kempf-stable cubic curves with level 3 structure over
reduced base schemes.
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We note that A1,3 is P1
Z[ζ3,1/3] with four points ∞, ζk

3 deleted.

7. Compactification of the moduli in higher dimension

7.1. PSQAS and TSQAS. Let R be a complete discrete valuation ring and k(η) the
fraction field of R. Given an abelian variety (Gη,Lη) over k(η) with an ample line bundle
Lη, we have Faltings-Chai degeneration data for it by a finite base change if necessary.
In [Nakamura99] for the Faltings-Chai degeneration data, we constructed two natural
R-flat projective degenerating families (P,L) and (Q,L) of abelian varieties with generic
fiber isomorphic to (Gη,Lη). The family (Q,L) is the most naive choice with L an ample
line bundle, while the family (P,L) with L (= LP ) the pull back of L (= LQ) on Q is
the normalization of (Q,L) after a certain finite minimal base change so that the closed
fiber P0 of P may be reduced.

We call the closed fiber (P0,L0) of (P,L) a torically stable quasi-abelian scheme (abbr.
TSQAS), while we call the closed fiber (Q0,L0) of (Q,L) a projectively stable quasi-
abelian scheme (abbr. PSQAS) [Nakamura99].

7.2. Symplectic finite abelian groups. Let K be a finite symplectic abelian group,
namely a finite abelian group with eK a nondegenerate alternating bimultiplicative form,
which we call a symplectic form on K. Let emin(K) (resp. emax(K)) be the minimum
(resp. the maximum) of elementary divisors of K. To be more explicit, let K = H ⊕
H∨, H = (Z/e1Z) ⊕ · · · ⊕ (Z/egZ) with e1|e2| · · · |eg and H∨ = HomZ(H, Gm). Then
emin(K) = e1 and emax(K) = eg. Moreover we set

eK(z + α, w + β) = β(z)α(w)−1

for z, w ∈ H , α, β ∈ H∨. Then eK is a symplectic form on K. Let N := emin(K) and
M := emax(K).

Let µM = {z ∈ Gm; zM = 1} and G(K) the Heisenberg group, that is a central
extension of µM by K with its commutator form equal to eK . If k is algebraically closed,
G(K) is unique up to isomorphism. If g = 1, e1 = 3, then G(K) = G(3) in the notation
of §1.

The classical level-K structures on abelian varieties are generalized as level-G(K)
structures on PSQASes and TSQASes. The group scheme G(K) has an essentially
unique irreducible representation of weight one over Z[ζN , 1/N ]. In [Nakamura99] this
fact played a substantial role in constructing a canonical compactification SQg,K of the
moduli space Ag,K of abelian varieties with (non-classical and non-commutative) level-
K structure. We note that, for any closed field k over Z[ζN , 1/N ], Ag,K(k) is the same
as the set of all isomorphism classes of abelian varieties with level-K structure in the
classical sense.

Theorem 7.3. Suppose emin(K) ≥ 3. Let (Z, L) be a g-dimensional K-PSQAS over
an algebraically closed field k of characteristic prime to |K|. Then (Z, L) is G(K)-
equivariantly embedded into P(V (K) ⊗ k) by the natural limits of theta functions. In
particular, the image of (Z, L) is a G(K)-invariant closed subscheme of P(V (K)⊗ k).

By Theorem 7.3, any K-PSQAS (Z, L) is a point of the Hilbert scheme

HilbK := HilbP
P(V (K))
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where P (n) = χ(Z, nL) = ng
√|K|, g = dimZ.

In what follows we say that Speck is a geometric point of SpecZ[ζM , 1/M ] if k is
an algebraically closed field containing ζM and M is invertible in k. We denote by
SL±(V (K)⊗ k) the subgroup of GL(V (K)⊗ k) consisting of matrices with determinant
±1.

Theorem 7.4. Suppose emin(K) ≥ 3. Let M = emax(K). Let Spec k be a geometric
point of SpecZ[ζM , 1/M ] and (Z, L) ∈ HilbK(k). Suppose that (Z, L) is smoothable into
an abelian variety whose Heisenberg group is isomorphic to G(K). Then the following
are equivalent:
(1) the n-th Hilbert points of (Z, L) are Kempf-stable for any large n,
(2) a subgroup of SL±(V (K)⊗ k) conjugate to G(K) stabilizes (Z, L),
(3) (Z, L) is a K-PSQAS over k.

This theorem follows from [Nakamura99, Theorem 0.3] and [NS06, Theorem 2].
We note that any nonsingular PSQAS is an abelian scheme, which is known to be

Kempf-stable by [Kempf78]. For comparison with Theorem 5.4, we restate Theorem 7.4
in a much simpler form:

Theorem 7.5. Any of the following three objects is the same:
(1) a degenerate abelian variety whose Hilbert points are Kempf-stable,
(2) a degenerate abelian variety which is stable under the action of G(K), the Heisen-

berg group,
(3) a K-PSQAS, namely a degenerate abelian variety which is moduli-stable (in the

sense similar to stable curves).

Theorem 7.6. Assume emin(K) ≥ 3. Let M = emax(K). Then there is a projective
Z[ζM , 1/M ]-subscheme SQg,K of HilbK such that for any geometric point Spec k of
Spec Z[ζM , 1/M ],

SQg,K(k) =


(Z, L);

(Z, L) is a Kempf-stable
degenerate AV over k
with level G(K)-structure


 /isom.

=


(Z, L);

(Z, L) is a degenerate AV over k
invariant under G(K)
with level G(K)-structure




=


(Z, L);

(Z, L) is a K-PSQAS over k
invariant under G(K)
with level G(K)-structure


 ,

which compactifies

Ag,K(k) =
{

(Z, L);
(Z, L) is an abelian variety over k
with level G(K)-structure

}
/isom.

=


(Z, L);

(Z, L) is an abelian variety over k
invariant under G(K)
with level G(K)-structure


 .
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By definition G(3) = G(K) and SQ1,3 = SQ1,K if K = (Z/3Z)2.

Theorem 7.7. Suppose emin(K) ≥ 3. Let M := emax(K). The functor SQg,K of projec-
tively stable quasi-abelian schemes over reduced base schemes with level G(K)-structure
is representable by the projective Z[ζM , 1/M ]-scheme SQg,K .

Theorem 7.6 or Theorem 7.7 shows that SQg,K is a nice compactification of the moduli
space of abelian varieties. It is shown by Theorem 7.4 to be also natural from the
viewpoint of GIT. If one chooses K = (Z/3Z)⊕2, all of the above theorems are reduced
to Theorem 6.4.

The following theorem [Nakamura10] constructs another canonical compactification of
the moduli space Ag,K by proper reduced degenerate abelian schemes (P0,L0), which we
call torically stable quasi-abelian schemes (TSQASes).

Theorem 7.8. If emin(K) ≥ 3, the functor of g-dimensional torically stable quasi-
abelian schemes with level-G(K) structure over reduced base algebraic spaces has a com-
plete separated reduced-coarse (hence reduced) moduli algebraic space SQtoric

g,K over Z[ζN , 1/N ].
Moreover, there is a canonical bijective finite birational morphism sq : SQtoric

g,K → SQg,K .
Hence in particular, SQtoric

g,K is projective. Moreover the normalization of SQtoric
g,K is iso-

morphic to that of SQg,K .

This theorem suggests that the normalization of SQg,K is isomorphic to the Voronoi
compactification.
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