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Abstract. One of the main projects in noncommutative algebraic geometry
is to classify all noncommutative projective surfaces. A conjecture due to Artin
says that every noncommutative projective surface is birationally equivalent
to either (1) a quantum projective plane, (2) a quantum ruled surface, or (3)
a surface finite over its center. Quantum projective planes have been studied
intensively by many people, in particular, they have been classified by Artin,
Tate and Van den Bergh. On the other hand, there are many open questions
on quantum ruled surfaces. In this note, we will introduce quantum ruled
surfaces and explain some of the recent results on them.

1. Motivation

One of the fundamental motivations of noncommutative algebraic ge-
ometry is to study noncommutative algebras using ideas and techniques
of algebraic geometry. Since classification of low dimensional projective
schemes has been active and successful in algebraic geometry for many
years, one of the major projects in noncommutative algebraic geometry
is to classify low dimensional noncommutative projective schemes de-
fined by Artin and Zhang. Although classification of noncommutative
projective curves were completed by Artin and Stafford, classification
of noncommutative projective surfaces is still nowhere in sight. The
purpose of this note is to introduce a quantum ruled surface, which is
an important class of noncommutative projective surfaces, and explain
some of the recent results. Since intersection theory plays an essential
role in the classification of commutative schemes, it should be extended
to noncommutative settings. In this note, we will particularly see that
the intersection theory defined by Smith and the author of this note
works well over a quantum ruled surface.

2. Quasi-schemes

Throughout, let k be a fixed field. The following theorem motivates
the definition of a quasi-scheme below.

Theorem 2.1 (Gabriel [7], Rosenberg [16]). Every scheme can be re-
constructed from the category of quasi-coherent sheaves on it.

This is an expository paper.
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Definition 2.2 (Rosenberg [15], Van den Bergh [22]). A quasi-scheme
X is a Grothendieck category Mod X, that is, Mod X is an abelian
category having a generator and the exact direct limits.

An object in Mod X is called an X-module. As we see below, the no-
tion of quasi-scheme includes both commutative and noncommutative
schemes.

Example 2.3. A quasi-compact, quasi-separated scheme X is a quasi-
scheme where Mod X is the category of quasi-coherent sheaves on X
[20].

Let R be a ring, and Mod R the category of right R-modules. If R
is commutative and X = Spec R, then it is well-known that Mod X ∼=
Mod R, which motivates the following definition.

Definition 2.4 (Artin-Zhang [5]). For a ring R not necessarily commu-
tative, the noncommutative affine scheme associated to R is a quasi-
scheme X = Spec R where Mod X = Mod R.

Let A be a graded algebra, and GrMod A the category of graded
right A-modules. We say that M ∈ GrMod A is torsion if Mn = 0 for
all n À 0. Let Tors A ⊂ GrMod A be the full subcategory consisting
of direct limits of torsion modules, and Tails A = GrMod A/ Tors A the
quotient category. The following well-known theorem motivates the
definition of a noncommutative projective scheme below.

Theorem 2.5 (Serre [17]). If A is a commutative graded algebra finitely
generated in degree 1 over k and X = Proj A, then Mod X ∼= Tails A.

Definition 2.6 (Artin-Zhang [5]). For a graded ring A not necessarily
commutative, the noncommutative projective scheme associated to A is
a quasi-scheme X = Proj A where Mod X = Tails A.

If A is a noetherian graded domain, then we define the function field
of X by

k(X) := {a/b ∈ Q(A) | a, b ∈ A homogeneous of the same degree}.
If A is a graded domain finitely generated in degree 1 over k of

GKdim A = d+1, then it is reasonable to call Proj A a noncommutative
projective variety of dimension d.

Since classification of low dimensional projective varieties have been
successful in algebraic geometry, one of the major projects in noncom-
mutative algebraic geometry is to classify low dimensional noncommu-
tative projective varieties.
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Since noncommutative projective curves were classified by Artin and
Stafford [2] (1995), the next project is to classify noncommutative pro-
jective surfaces. This project is still nowhere in sight. We only have a
conjecture below.

Conjecture 2.7 (Artin [1]). Every noncommutative projective surface
is birationally equivalent to one of the following:

(1) a quantum projective plane.
(2) a quantum ruled surface.
(3) a surface finite over its center.

Since quantum projective planes were classified by Artin, Tate and
Van den Bergh [4] (1990), the next project is to classify quantum ruled
surfaces, which is still wide open. The purpose of this note is to intro-
duce quantum ruled surfaces and explain some of the recent results on
them.

3. Bimodules

Blowing up plays an essential role in the classification of commutative
schemes, so it should be extended to the noncommutative setting. Van
den Bergh introduced a notion of bimodule below in order to define
blowing up of a point on a noncommutative surface.

Definition 3.1 (Van den Bergh [22]). Let X,Y be quasi-schemes. An
X-Y bimodule M is an adjoint pair of functors

−⊗X M : Mod X → Mod Y
HomY (M,−) : Mod Y → Mod X,

that is,

HomY (−⊗X M,−) ∼= HomX(−,HomY (M,−)).

Of course, this definition was motivated by the following fact.

Example 3.2. If R, S are rings and X = Spec R, Y = Spec S, then
M is an X-Y bimodule if and only if M is an R-S bimodule.

In the commutative case, modules are naturally bimodules.

Example 3.3. A coherent OX-moduleM on a scheme X can be viewed
as an X-bimodule by

−⊗OX
M : Mod X → Mod X

HomOX
(M,−) : Mod X → Mod X.

There is a special bimodule over any quasi-scheme X corresponding
to the “structure sheaf” on X.
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Example 3.4. Let X be a quasi-scheme. The identity functor, denoted
by

oX : Mod X → Mod X,

can be viewed as an X-bimodule.

Let X,Y, Z be quasi-schemes. If M is an X-Y bimodule, and N is
a Y -Z bimodule, then M ⊗Y N is an X-Z bimodule defined by the
composition of functors, that is,

−⊗X (M ⊗Y N) := (−⊗X M)⊗Y N
HomZ(M ⊗Y N,−) := HomY (M,HomZ(N,−)).

Since a Grothendieck group has enough injectives, Ext-groups can be
defined using injective resolution. We will define Tor-groups as follows:
let M be an X-Y bimodule. We define T orX

i (−,M) : Mod X → Mod Y
by the formula

HomY (T orX
i (−,M), I) ∼= Exti

X(−,HomY (M, I))

for all injective objects I ∈ Mod Y .
Let X be a quasi-scheme. If Mod X is k-linear, that is, HomX-set

has a k-vector space structure compatible with compositions, then we
say that X is a quasi-scheme over k. We say that X is noetherian if
Mod X is locally noetherian, that is, Mod X has a set of noetherian
generators. If X is a noetherian quasi-scheme, then we use lower letter
case mod X ⊂ Mod X to denote the full subcategory consisting of
noetherian objects. For example, if X is a noetherian scheme, then
mod X is the category of coherent sheaves on X, and if R is a right
noetherian ring, then mod R is the category of finitely generated right
R-modules.

4. Quantum Projective Space Bundle

In this section, let X be a noetherian quasi-scheme. We will define a
noncommutative projective scheme over X, extending the idea of Artin
and Zhang.

Definition 4.1 (Van den Bergh [22]). A graded X-algebra is a direct sum

A =
⊕

i∈Z

Ai

of X-bimodules equipped with natural transformations

oX → A0 (unit)
Ai ⊗X Aj → Ai+j (multiplication)
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satisfying the usual axioms of a ring (commutative diagrams below):

Ai ⊗X oX → Ai ⊗X A0 oX ⊗X Aj → A0 ⊗X Aj

↘ ↓ ↘ ↓
Ai Aj

Ai ⊗X Aj ⊗X Ak → Ai+j ⊗X Ak

↓ ↓
Ai ⊗X Aj+k → Ai+j+k.

A graded right A-module is a direct sum

M =
⊕

i∈Z

Mi

of X-modules equipped with functors

Mi ⊗X Aj → Mi+j (action)

satisfying the usual axioms of a module (commutative diagrams below):

Mi ⊗X oX → Mi ⊗X A0

↘ ↓
Mi

Mi ⊗X Aj ⊗X Ak → Mi+j ⊗X Ak

↓ ↓
Mi ⊗X Aj+k → Mi+j+k.

We would like to point out that a graded X-algebra A itself has no
canonical structure of a graded right A-module.

Let A be a graded X-algebra, and GrMod A the category of graded
right A-modules. We say that M ∈ GrMod A is torsion if Mn = 0 for
all n À 0. Let Tors A ⊂ GrMod A be the full subcategory consisting
of direct limits of torsion modules, and Tails A = GrMod A/ Tors A the
quotient category as before.

Definition 4.2 (Van den Bergh [22]). For a graded X-algebra A, Proj A
is the quasi-scheme where Mod(Proj A) = Tails A.

We denote the quotient functor by

π : GrMod A → Tails A,

which is an exact functor, and the section functor by

ω : Tails A → GrMod A,

which is the right adjoint to π. The structure map

f : Proj A → X
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is the adjoint pair of functors defined by

f∗ : Tails A
ω−→GrMod A

(−)0−−→ Mod X

f ∗ : Mod X
−⊗XA−−−−→ GrMod A

π−→Tails A.

A quantum projective space bundle over X should be Proj A where
A is a graded X-algebra analogous to a polynomial algebra over X. It
is natural to impose the following conditions to A. We say that:

(1) A is connected if Ai = 0 for i < 0 and A0
∼= oX .

(2) A is regular if T orA
i (−, oX) = 0 for all i À 0.

(3) A is flat if −⊗X A : Mod X → GrMod A is an exact functor.
(4) A is noetherian if the functor − ⊗X A : Mod X → GrMod A

sends neotherian objects to noetherian objects, that is, −⊗X A :
mod X → grmod A.

Definition 4.3 (Mori-Smith [12]). A quantum projective space bundle
over X is a quasi-scheme Proj A where A is a noetherian, flat, regular,
connected graded X-algebra.

As in the commutative case, it is important to calculate the Grothendieck
group of a quantum projective space bundle to perform intersection
theory (see section 6). The Grothendieck group of X is defined by

K0(X) := K0(mod X).

Let A be a graded X-algebra and M ∈ grmod A. The Hilbert series of
M is defined by

HM(t) :=
∑

i∈Z

[Mi]t
i ∈ K0(X)[[t]][t−1].

Theorem 4.4 (Mori-Smith [12]). If Proj A is a quantum projective
space bundle over a noetherian smooth projective scheme X, then

K0(Proj A) ∼= K0(X)[t, t−1]/(
∑

i∈N

(−1)iHT orA
i (OX ,oX)(t)).

Applying the above theorem to X = Mod k, we have:

Corollary 4.5 (Mori-Smith [11]). If A is a right noetherian regular
connected graded algebra over k, then

K0(Proj A) ∼= Z[t]/(HA(t)−1).

Example 4.6. If A = k[x1, . . . , xn] is a commutative polynomial al-
gebra over k so that Proj A = Pn−1, then A is a noetherian regular
connected graded algebra over k with HA(t) = (1− t)−n, so

K0(P
n−1) ∼= Z[t]/((1− t)n),

which is well-known.
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5. Quantum Ruled Surfaces

Let X be a smooth projective curve over k. We will define a quantum
ruled surface over X. First, we recall a commutative ruled surface over
X. One of the characterizations of a ruled surface over X is a scheme
defined by P(E) := Proj S(E) where

• E is a locally free OX-module of rank 2, and
• S(E) is the symmetric algebra of E over X.

Note that
S(E) = T (E)/(Q)

where

• T (E) is the tensor algebra of E over X, and
• Q ⊂ E ⊗OX

E is an invertible OX-subbimodule locally generated
by the sections of the form xy − yx.

We will extend this construction.
Recall that if R is a commutative ring, then R-R bimodules can be

identified with R ⊗ R-modules. If X = Spec R, then Spec(R ⊗ R) =
X ×X, so X-X bimodules can be identified with X ×X-modules.

Definition 5.1 (Artin-Van den Bergh [3]). Let X be a smooth projective
variety over k. A coherent OX-bimodule is a coherent sheaf M on
X ×X such that

pri : SuppM⊂ X ×X → X

are finite for i = 1, 2 where pri(x1, x2) = xi are projection maps.

If M is a coherent OX-bimodule, then

−⊗X M := pr2∗(pr∗1(−)⊗OX×X
M)

HomX(M,−) := pr1∗(HomOX×X
(M, pr!

2(−)))

are adjoint pair of functors, so M can be viewed as an X-bimodule in
the earlier sense.

We say that a coherent OX-bimodule E is locally free of rank r if
pri∗E are locally free of rank r on X for i = 1, 2. Every coherent locally
free OX-bimodule E of rank r has a right adjoint E∗ and a left adjoint
∗E which are also locally free OX bimodules of rank r, that is,

HomX(−⊗OX
E ,−) ∼= HomX(−,−⊗OX

E∗),
HomX(−⊗OX

∗E ,−) ∼= HomX(−,−⊗OX
E).

We say that an invertible OX-subbimodule Q ⊂ E ⊗OX
E is non-

degenerate if the compositions

E∗ ⊗OX
Q → E∗ ⊗OX

E ⊗OX
E → oX ⊗OX

E → E ,

Q⊗OX

∗E → E ⊗OX
E ⊗OX

∗E → E ⊗OX
oX → E
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are isomorphisms.
For the rest of this section, let X be a smooth projective curve over

k.

Definition 5.2 (Van den Bergh [21], Patrick [14]). A quantum ruled
surface over X is a quasi-scheme P(E) := ProjA where

• E is a locally free OX-bimodule of rank 2,
• Q ⊂ E ⊗OX

E is a non-degenerate invertible OX-subbimodule,
and

• A = T (E)/(Q) is the graded X-algebra.

It is known that P(E) is independent of the choice of a non-degenerate
Q. In fact, Q is not even needed to define P(E) [23].

Since a quantum ruled surface over X is a quantum projective space
bundle over X, we can calculate its Grothendieck group.

Theorem 5.3 (Mori-Smith [12]). If P(E) is a quantum ruled surface
over X, then

K0(P(E)) ∼= K0(X)[t]/([OX ]− [pr2∗E ]t + [pr2∗Q]t2).

We define the structure sheaf on P(E) by

OP(E) := f ∗OX ∈ modP(E),

and the canonical sheaf on P(E) by

ωP(E) := f ∗(ωX ⊗OX
Q)(−2) ∈ modP(E),

where ωX is the canonical sheaf on X. The following result says that
a quantum ruled surface satisfies classical Serre duality.

Theorem 5.4 (Mori [9]). If P(E) is a quantum ruled surface over X,
then

Exti
P(E)(M, ωP(E)) ∼= Ext2−i

P(E)(OP(E),M)′

for all M ∈ modP(E) where (−)′ is the functor taking the k-vector
space dual.

6. Intersection Theory

Intersection theory plays an essential role in the classification of com-
mutative schemes, so it should be extended to the noncommutative
setting. Let X be a noetherian quasi-scheme over k. We say that X is
Ext-finite if

dimk Exti
X(M,N ) < ∞

for all i ∈ N, and all M,N ∈ mod X. The homological dimension of
X is defined by

hd(X) := sup{i | Exti
X(M,N ) 6= 0 for some M,N ∈ mod X}.
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If X is a noetherian Ext-finite quasi-scheme over k of finite homo-
logical dimension, then we can extend the Euler form

(M,N ) :=
∑

i∈N

(−1)i dimk Exti
X(M,N )

where M,N ∈ mod X to the Grothendieck group

(−,−) : K0(X)×K0(X) → Z.

Following [11], we define the intersection multiplicity ofM,N ∈ mod X
by

M·N := (−1)codimM(M,N ),

which we also extend to the Grothendieck group. This new intersection
theory agrees with the commutative one by the following theorem.

Theorem 6.1 (Chan [6]). If X is a smooth variety over k, and C,D
are subschemes of X such that dim C + dim D ≤ dim X, then

C ·D = OC · OD.

Here the left-hand-side C ·D is the intersection multiplicity of C and
D defined in terms of Tor due to Serre [18], and the right-hand-side
OC ·OD is the intersection multiplicity of OC and OD defined in terms
of Ext as above. Note that the condition dim C + dim D ≤ dim X is
necessary in order for C · D to be well-defined (see [18]), however, if
X is a smooth projective variety over k, then X is a noetherian Ext-
finite quasi-scheme over k of finite homological dimension, so OC · OD

is always well-defined.
For the rest of this section, let X be a smooth projective curve over

k. The following two theorems guarantee that we can apply the above
new intersection theory to a quantum ruled surface.

Theorem 6.2 (Nyman [13]). A quantum ruled surface P(E) over X
is Ext-finite.

Theorem 6.3 (Mori-Smith [12]). A quantum ruled surface P(E) over
X has finite homological dimension.

We define the following “divisors” on P(E) as elements of the Grothendieck
group:

(1) The section H of f : P(E) → X is defined by

OH := [OP(E)]− [OP(E)(−1)] ∈ K0(P(E)).

(2) The fiber f−1p of a closed point p ∈ X is defined by

Of−1p := [f ∗OX ]− [f ∗OX(−p)] ∈ K0(P(E)).
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(3) The quasi-canonical divisor K is defined by

OK := [ωP(E)]− [OP(E)] ∈ K0(P(E)).

If C and D are “divisors” as above, then we define

C ·D := OC · OD = −(OC ,OD).

We define the Picard group of P(E) by

PicP(E) = f ∗ Pic X ⊕ Z.H.

We refer to [12] for the justification of this definition. The following
theorem, which says that “fibers do not meet and a fiber and the section
meet exactly once” as in the commutative case, completely determines
the intersection theory on PicP(E).

Theorem 6.4 (Mori-Smith [12]). If P(E) is a quantum ruled surface
over X, and p, q ∈ X are closed points of X, then

(1) f−1p · f−1q = 0.
(2) f−1p ·H = 1.
(3) H · f−1q = 1.
(4) H ·H = deg(pr2∗E).

The following three results describe how the canonical divisor inter-
sects with other divisors, extending the commutative results. First one
says that an Adjunction Formula holds for PicP(E).

Theorem 6.5 (Mori [9]). If P(E) is a quantum ruled surface over X,
K is the quasi-canonical divisor on P(E), and D = H or D = f−1p,
then

2g − 2 = D ·D + D ·K,

where g := 1− (OX ,OD) is the genus of D.

The quasi-canonical divisor is determined in PicP(E) up to numer-
ically equivalent as in the commutative case.

Theorem 6.6 (Mori [9]). If P(E) is a quantum ruled surface over X,
then the quasi-canonical divisor K on P(E) is numerically equivalent
to

−2H + (2g − 2− e)f−1p

where p ∈ X is a closed point, g is the genus of X, and e := −H ·H.

In the commutative case, the theorem below is an easy consequence
of the theorem above, however, in the noncommutative case, a separate
proof is needed because we do not know so far that the new intersection
theory is commutative.
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Theorem 6.7 (Mori [9]). Let P(E) be a quantum ruled surface over
X, and K the quasi-canonical divisor on P(E). If E commutes with
shifts, then

K ·K = 8(1− g)

where g is the genus of X.

7. Classification (In Progress)

In this section, let X be a smooth projective curve over k. Classifi-
cation of quantum ruled surfaces is still wide open. This project can
be divided into two subprojects.

Question 7.1. (1) Classify all locally free OX-bimodules of rank 2.
(2) If E ,F are locally free OX-bimodules of rank 2, when P(E) ∼=

P(F)?

The first question can be regarded as a question in commutative
algebraic geometry. It seems to be difficult even over X = P1 (see
[14]). For the second question, we have the following result as in the
commutative case.

Theorem 7.2 (Mori [10]). If E is a locally free OX-bimodule of rank
2, and L,M are invertible OX-bimodules, then

P(L ⊗OX
E ⊗OX

M) ∼= P(E).

We say that a locally free OX-bimodule E is decomposable if E ∼=
L ⊕ M for some locally free OX-bimodules L,M of rank 1. Since
every locally free OX-bimodule of rank 1 is invertible [14], we have the
following corollary.

Corollary 7.3 (Mori [10]). If E is a decomposable locally free OX-
bimodule of rank 2, then

P(E) ∼= P(OX ⊕ L)

for some invertible OX-bimodule L.

Every invertible OX-bimodule is uniquely determined by the pair of
an invertible OX-module L ∈ Pic X and an automorphism σ ∈ Aut X
by

Lσ := pr∗2L ⊗OX×X
OΓ

where
Γ = {(p, σ(p)) | p ∈ X} ⊂ X ×X

is the graph of X under σ [3]. It follows that quantum ruled surfaces
P(E) where E are decomposable can be parameterized by the pairs
(L, σ).
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