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1 Introduction

The Bogomolov inequality for semistable vector bundes on smooth complex
projective n-folds X reads

c2(E)An−2 ≥ r − 1
2r

c1(E)2An−2,

where A is an ample divisor and E is an A-semistable vector bundle of rank
r on X. In case E is A-stable with vanishing c1(E), the lower bound of
this inequality c2(E) ≥ 0 is attained if and only if E admits the structure
of a flat hermitian bundle associated with an irreducible unitary represen-
tation of the fundamental group π1(X), thereby establishing the one-to-one
Kobayashi-Hitchin correspondence between the stable bundles with vanish-
ing Chern classes and the irreducible unitary representation of π1(X) [2].
The Bogomolov inequality is natural enough to have several proofs by com-
pletely different approaches (geometric invariant theory [1]; characteristic p
method [3]; the theory of effective cones on ruled surfaces [8]; Yang-Mills
theory of connections [2]).

Because of this naturality, the Bogomolov inequality extends to certain
classes of generalized vector bundles, including parabolic bundles and orbi-
bundles. Another important class of generalized vector bundles is that of
Higgs bundles (see [9]), and Simpson [?] succeeded in generalizing the in-
equality also to stable Higgs bundles through a generalized version of Yang-
Mills theory. In contrast to the aforementioned cases, an algebro-geometric
proof of the Bogomolov inequality is so far not available for Higgs bundles
except for very special ones: some standard examples listed in Section 1 as
Examples 0, 1 and 2, and the bundles of small ranks 2, 3 [7]. One of the
implications of Simpson’s result is that, if a stable Higgs bundle has trivial
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Chern classes, then it comes from an irreducible representation of π1(X) to
the special linear group SL(r,C).

In this note, we give several examples of stable Higgs bundles with trivial
Chern classes.

2 Higgs bundles: definition and examples

Let E be a vector bundle on a comlex manifold X and θ : E → Ω1
X ⊗ E an

OX -linear mapping. The pair (E , θ) is said to be a Higgs bundle if the natural
composite map θ ∧ θ : E → Ω2

X ⊗ E identically vanishes. Alternatively, E is
a Higgs bundle if an OX -linear action of the sheaf of the local vector fields
ΘX on E is given in such a way such that ξ1(ξ2(e)) = ξ2(ξ1(e)) for arbitrary
ξi ∈ ΘX and e ∈ E . In other words, a Higgs bundle is a vector bundle with
a Sym ΘX -module structure, where

Sym ΘX =
∞⊕

i=0

Symi ΘX

is the symmetric tensor algebra generated by ΘX . Higgs subsheaves are, by
definition, Sym ΘX -submodules.

Given an ample divisor A on X, the notion of A-(semi)stable Higgs
bundles is naturally defined. Namely, a Hiiggs bundle E is A-stable if

c1(S)An−1

rank S <
c1(EAn−1

rank E
for any nontrivial Higgs subsheaf S ⊂ E , S 6= 0, E , where n = dim X.

Historically Higgs structures were introduced in the study of moduli of
integrable connections [5]. Let E be a vector bundle with an integrabale
connection ∇0 : E → Ω1

X ⊗ E . Given another integrable connection ∇, the
difference θ = ∇−∇0 is a Higgs bundle structure and this correspondence
translates the moduli of the integrable connections on a flat vector bundle
E into the moduli of the Higgs bundle structures.

With the above definition in mind, we give below several examples of
Higgs bundles.

Example 0. An ordinary vector bundle is viewed as a Higgs bundle with
trivial zero action of ΘX . In this case, the Higgs stability is nothing but the
usual stability.

Starting from given Higgs bundles, we can construct new Hiiggs bundles
by taking tensor products, duals and pull-backs.
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Given two Higgs bundles E1, E2, the tensor bundle E1 ⊗ E2 is a Higgs
bundle by defining ξ(e1 ⊗ e2) = ξ(e1) ⊗ e2 + e1 ⊗ ξ(e2) for ξ ∈ ΘX . The
dual bundle E∨ of a Higgs bundle is again a Higgs bundle by 〈e|ξ(e∨)〉 =
−〈ξ(e)|e∨〉, where e ∈ E , e∨ ∈ E∨, ξ ∈ ΘX .

If g : X → Y is a morphism between complex manifolds and E is a Higgs
bundle on Y , then the pull-back g∗E is naturally a Sym g∗ΘY -module. Then
the natural OY -algebra homomorphism Sym ΘX → Sym g∗ΘY defines a
canonical Higgs bundle structure of g ∗ E .
Example 1. Let X be a complex manifold. The symmetric tensor algebra
E∞0 (X) = Sym ΘX is naturally a Higgs bundle of infinite rank and so is its

ideal. In particular, the graded ideal E∞l+1(X) =
∞⊕

i=l+1

Symi ΘX is a Higgs

subbundle of infinite rank. Given l ≥ k ≥ 0, the subquotient El
k(X) =

E∞k (X)/E∞l+1(X) is a coherent Higgs bundle isomorphic to
l⊕

i=k

Symi ΘX .

The action of ΘX on El
k(X) is given by zero on Syml ΘX and by the standard

multiplication Θ⊗ Symi ΘX → Symi+1 ΘX on the other components.
If KXA > 0 and ΘX is A-semistable as an ordinary vector bundle [resp.

If KXA ≥ 0 and ΘX is semistable], then El
0(X) is an A-stable [resp. A-

semistable] Higgs bundle. If KX is ample and A = KX , then the Yau
inequality [10]

c2(X)Kn−2
X ≥ dimX − 1

2 dim X
Kn

X

yields the Bogomolov inequality for El
k(X).

Example 2. Given integers l ≥ k ≥ 0, we define the Higgs bundle Fk
l (X)

as the vector bundle
l⊕

i=k

Symi Ω1
X with the ΘX -action defined by 0 on

Symk Ω1
X and by (−1) times the standard contraction map ΘX⊗Symi Ω1

X →
Symi−1 ΩX . Fk

l (X) is the dual E∞0 (X)-module HomE∞0 (X)(El
k(X),OX) of

El
k(X), where OX is viewed as a Higgs bundle with trivial ΘX -action. For

l ≥ m ≥ k, Fk
m(X) is naturally a Higgs subbundle of Fk

l (X) with the quo-
tient Fk

l (X)/Fk
m(X) isomorphic to Fm+1

l (X). The stability condition and
the Bogomolov inequality for Fk

l are similar as for El
k.

Example 3. Let m ≥ l ≥ 0 be integers. We define a Higgs bundle structure
on

Syml
i=0 Symi Ω1

X ⊕
0⊕

i=m−l

Symi ΘX ⊗ Symm+1 Ω1
X
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by defining the action of ξ ∈ ΘX as follows:

— For α ∈ Symi Ω1
X , l ≥ i ≥ 0, ξ(α) is the (−1)× the natural contraction

∈ Symi−1 Ω1
X .

— For α ∈ Syml−m ΘX⊗Symm+1 Ω1
X , ξ(α) is defined by the composition

of the natural product ξα ∈ Symm−l+1 ΘX ⊗ Symm+1 ΩX and the
contraction map Symm−l+1 ΘX ⊗ Symm+1 ΩX → Syml Ω1

X .

— For α ∈ Symi ΘX⊗Symm+1 Ω1
X , i < m− l, ξ(α) is the natural product

ξα ∈ Symi+1 ΘX ⊗ Symm+1.

This Higgs bundle is an extension of Em−l
0 (X)⊗ Symm+1 Ω1

X by Fl
0(X).

Example 4. Let fi : X → Ci be a surjective morphism onto a curve. Let
Fi = OCi ⊕ Ω1

Ci
be the standard Higgs bundle on Ci. Then Ei = f∗i Fi is

a Higgs subsheaf of OX ⊕ Ω1
X . It is straight forward to check that E◦i =

Ei(−f∗i KCi/2) has trivial c1 and c2. If H is ample on X and g(Ci) ≥ 2,
then E◦i is H-stable, and hence flat. E◦ =

⊗
i E◦i is also an H-semistable,

flat Higgs bundle of rank 2r.
When X = C1×C2 and the fi are the two canonical projections, we get

an H-stable, flat Higgs bundle

OX(−KX

2
)⊕Ω1

X(−KX

2
)⊕O(

KX

2
) ⊂ (OX ⊕ Ω1

X ⊕ Sym2 Ω1
X

)⊗OX(−KX

2
).

3 Hirzebruch’s Kummer covers X(n) attached to
the complete qradrilateral on P2

We briefly review Hirzebruch’s construction of Kummer covers of projective
plane branching along a complete quadrilateral [4].

Take general four points P1, . . . , P4 on P2, and let Lij = Lji denote the
line connecting Pi and Pj (i 6= j). The reduced divisor D =

⋃
Lij is the so

called complete quadrilateral consisting of six lines, the Pi being the triple
points of D. D has extra three double points of the form Li1,i2 ∩ Lj1,j2 ,
where {i1, i2, j1, j2} = {1, 2, 3, 4}. Exactly three singlular points of D lies on
each Lij , two of which are the triple points Pi, Pj and one a double point.
Thus the Euler number of the non-singular locus of D is 6× (2− 3) = −6,
while that of D is −6 + 4 + 3 = 1. Therefore the Euler number of of the
complement of D is given by e(P2 \D) = 3− 1 = 2.

Let µ : X → P2 be the blowing up at the four triple points P1, . . . , P4 and
let Ei ⊂ X denote the exceptional divisor over Pi. X is a Del Pezzo surface
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of degree five with very ample anticanonical divisor −KX ∼ 3H − ∑
Ei,

where H stands for the pullback of the hyperplane of P2. The effective
divisor µ∗D is supported by a reduced effective divisor

D̃ ∼ µ∗
∑

Lij − 2
∑

Ei ∼ 6µ∗H − 2
∑

Ei ∼ −2KX .

D̃ has only simple normal crossings as singularities and consists of ten irre-
ducible components: four exceptional curve Ei and six strict transforms L̃ij .
The L̃ij meet each other at the three points lying over the double points of
D, while each Ei contains three singular points of D̃. Hence D̃ has exactly
3+4×3 = 15 double points, so that e(D̃) = 4×(2−3)+6×(2−3)+15 = 5.

Given a positive integer n, there exists a finite Kummer covering π(n) :
X(n) → X of degree n5 branching along D̃ [4]. The function field of X(n)

is simply obtained by adjoining the n-th roots n
√

lij/l12 ({i, j} 6= {1, 2} ∈
{1, 2, 3, 4}) to C(P2), where lij is a linear differential equation of the line
Lij .

X(n) is a smooth projective surface and the local description of X(n)

is quite simple: if D̃ is locally defined by the equation x = 0 or xy = 0,
then π(n)∗ : OX → OX(n) is given by (x, y) 7→ (tn, u) or (x, y) 7→ (tn, un),
where (x, y) and (t, u) are local coordinates of X and X(n). In particular,
the inverse image

(
π(n)

)−1
(p) ⊂ X(n) of a closed point p ∈ X consists of n5

[resp. n4, n3] points when p ∈ X \ D̃ [resp. p ∈ D̃ \ Sing(D̃), p ∈ Sing(D̃)].
The topological Euler number of X̃(n) of X(n) is thus given by

c2(X(n))
n5

=
e(X(n))

n5
= e(X \ D̃) +

e(D̃ \ Sing(D̃)
n

+
e(Sing(D̃)

n2

= 2− 10
n

+
15
n2

.

On the other hand we calculate KX(n) by

KX(n) ∼ π(n)∗
(

KX +
(

1− 1
n

)
D̃

)
∼

(
1− 2

n

)
π(n)∗(−KX),

and hence
c1(X(n))2

n5
= 5

(
1− 2

n

)2

.

X(n) has ample canonical divisor if n ≥ 3 (X(2) is a K3 surface). When
n = 5, we have c1(X(5))2 = 54×9, c2(X(5)) = 54×3, meaning that X(5) is a
surface of general type which attains the upper bound of the Miyaoka-Yau
inequality K ≤ 3c2.
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The Del Pezzo surface X carries five linear pencils |2H−∑
Ei|, |H−E1|,

. . . , |H − E4|, defining five surjective morphisms f0, f1, . . . f4 from X onto
P1. Each fi of these morphisms has exactly three fibres contained in D̃,
which are the singular fibres of fi. For f1 associated with |H−E1, L̃1j +Ej ,
j = 2, 3, 4 are such fibres, and so are the three curves L̃12 + L̃34, L̃13 + L̃24,
L̃14 + L̃23 for f0 associated with |2H −∑

Ei|.
Upstairs on X(n), there are thus five morphisms f

(n)
0 , f

(n)
1 , . . . , f

(n)
4 onto

the curve C(n), an n2-sheeted Kummer cover of P1 branching at three points,
0, 1,∞, say. The pullback line bundle L(n)

i = f
(n)∗
i ωC(n) is an invertible

subshef of Ω1
X(n) . We easily check that L(n)

i is saturated in Ω1
X(n) and that

L(n)
0 ∼

(
1− 3

n

)
π(n)∗(2H − σEi)

L(n)
i ∼

(
1− 3

n

)
π(n)∗(H − Ei), i = 1, 2, 3, 4.

Ishida [6] showed that the natural map

4⊕

j=0

f
(n)∗
j H0(C(n),Ω1

C(n)) → H0(X(n),Ω1
X(n))

is an isomorphism. In particular, the irregularity of X(n) is given by

q(X(n)) =
5(n− 2)(n− 1)

2
.

4 Construction of further examples of stable Higgs
bundles with vanishing Chern classes

The tensor product L(n) =
4⊕

i=0

f∗i Ω1
C(n) is an invertible subsheaf of Sym5 Ω1

X(n) .

Easy calculation shows that

c1(L(n)) =
n− 3

n
)π(n)∗D̃,

while
KX(n) =

n− 1
2n

π(n)∗D̃.

This subsheaf induces a Higgs subsheaf

E(n) =
2⊕

i=0

Symi ΩX(n) ⊕
0⊕

i=2

Symi ΘX ⊗ L(n)
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of
⊕2

i=0 Symi ΩX(n) ⊕ ⊕0
i=2 Symi ΘX ⊗ Sym5 Ω1

X(n) (see example 3). This
bundle has rank six. We claim:

Proposition 4.1. c2(E(n))2 =
5
12

c1(E(n))2.

Proposition 4.2. If n ≥ 5, then E(n) is KX(n)-semistable. If n ≥ 6,
then E(n) is KX(n)-stable.

Corollary 4.3. If n ≥ 6, then E(n) is projectively flat.
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