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1 Introduction

Let (A,m) be a d-dimensional Noetherian local ring of characteristic p, where
p is a prime integer. For an m-primary ideal I and a positive integer e, we
set

I [pe] = (ape | a ∈ I).

It is easy to see that I [pe] is an m-primary ideal of A. For a finitely generated
A-module M , the function `A(M/I [pe]M) on e is called the Hilbert-Kunz
funtion of M with respect to I. It is known that

lim
e→∞

`A(M/I [pe]M)

pde

exists [8], and the real number is called the Hilbert-Kunz multiplicity, that is
denoted by eHK(I, M). Properties of eHK(I, M) are studied by many authors
(Monsky, Watanabe, Yoshida, Huneke, Enescue, e.t.c.).

Recently Huneke, McDermott and Monsky proved the following theorem:

Theorem 1.1 (Huneke, McDermott and Monsky [5]) Let (A, m, k) be
a d-dimensional normal local ring of characteristic p, where p is a prime
integer. Assume that A is F-finite1 and the residue class field k is perfect.

1. For an m-primary ideal I of A and a finitely generated A-module M ,
there exists a real number β(I, M) that satisfies the following equation2:

`A(M/I [pe]M) = eHK(I, M) · pde + β(I,M) · p(d−1)e + O(p(d−2)e)

1We say that A is F-finite if the Frobenius map F : A → A = 1A is module-finite. We
sometimes denote the e-th iteration of F by F e : A → A = eA.

2Let f(e) and g(e) be functions on e. We denote f(e) = O(g(e)) if there exists a real
number K that satisfies |f(e)| < Kg(e) for any e.



2. Let I be an m-primary ideal of A. Then, there exists a Q-homomorphism
τI : Cl(A)Q −→ R that satisfies

β(I, M) = τI

(
cl(M)− rankA M

pd − pd−1
cl(1A)

)
,

for any finitely generated A-module M . In particular,

β(I, A) = − 1

pd − pd−1
τI

(
cl(1A)

)

is satisfied.

For an abelian group N , NQ stands for N ⊗Z Q.
It is natural to ask the following question:

Question 1.2 1. When does cl(1A) vanish?

2. How does cl(eA) behave?

In the next section, we give a partial answer to this question.

Remark 1.3 The map cl in the theorem as above is called the determinant
map [1]. Here we recall basic properties on cl.

Let R be a Noetherian normal domain. The group of isomorphism classes
of reflexive R-modules of rank 1 is called the divisor class group of R, and
denoted by Cl(R). Let G0(R) be the Grothendieck group of finitely generated
R-modules. Then, there exists the map

cl : G0(R) −→ Cl(R)

that satisfies the following two conditions:

(i) If M is a reflexive module of rank 1, then cl(M) is just the isomorphism
class that contains M .

(ii) Let M be a finitely generated R-module. If the height of the annihilator
of M is greater than or equal to 2, then cl(M) = 0.



Example 1.4 1. This example is due to Han-Monsky [3]. Set A =
F5[[x1, . . . , x4]]/(x

4
1 + · · ·+ x4

4) and m = (x1, . . . , x4)A. Then,

`A(A/m[pe]) =
168

61
53e − 107

61
3e

is satisfied. Therefore, in this case, we have eHK(m,A) = 168
61

and
β(m,A) = 0. We know that there is no hope to extend Theorem 1.1
under the same assumption.

2. Set
A = k[[xij | i = 1, . . . ,m; j = 1, . . . , n]]/I2(xij),

where k is a perfect field of characteristic p > 0.

Suppose m = 2 and n = 3. Then, K.-i. Watanabe proved

`A(A/m[pe]) = (13p4e − 2p3e − p2e − 2pe)/8.

Therefore, we have eHK(m,A) = 13
8

and β(m,A) = −1
4
6= 0.

One can prove that, if m 6= n, then there exists an maximal primary
ideal I (of finite projective dimension) such that β(I, A) 6= 0.

In Corollary 2.2, we will see that β(I, A) = 0 if A is a Gorenstein ring.

2 Main Theorem

Here, we state the main theorem. We refer the reader to [7] for a precise
proof of the main theorem.

Let F e : A → A = eA be the e-th iteration of the Frobenius map F .

Theorem 2.1 Let (A,m, k) be a d-dimensional Noetherian normal local ring
of characteristic p, where p is a prime integer, and assume that A is a ho-
momorphic image of a regular local ring. Assume that k is a perfect field and
A is F-finite.

Then, for each integer e > 0, we have

cl(eA) =
pde − p(d−1)e

2
cl(ωA)

in Cl(A)Q.



The following is an immediate consequence of the above theorem:

Corollary 2.2 Under the same assumption as in the above theorem, if cl(ωA)
is a torsion in Cl(A), then β(I, A) = 0 for any maximal primary ideal I.

The following is an analogue of Theorem 2.1 for normal algebraic varieties.

Theorem 2.3 Let k be a perfect field of characteristic p, where p is a prime
integer. Let X be a normal algebraic variety over k of dimension d. Let
F : X → X be the Frobenius map3.

Then, we have

c1(F
e
∗OX) =

pde − p(d−1)e

2
KX

in Cl(X)Q = Ad−1(X)Q, where c1( ) is the first Chern class4 and KX is the
canonical divisor of X.

We give an outline of a proof of Theorem 2.1 in the next section.

Example 2.4 1. Set

A = k[[x1, x2, x3, y1, y2, y3]]

/
I2

(
x1 x2 x3

y1 y2 y3

)
,

p = (x1, x2, x3)A and q = (x1, y1)A, where I2( ) is the ideal generated
by all the 2 by 2 minors of the given matrix. Here, assume that k is
a perfect field of characteristic 2. Then, using Hirano’s formula [4], we
know that

1A ' A⊕10 ⊕ p⊕ q⊕5.

Here, recall that rankA
1A = pdim A = 24 = 16.

Then, we have

cl(1A) = 10cl(A) + cl(p) + 5cl(q) = 4cl(q)

since cl(A) = 0 and cl(p) + cl(q) = 0.

3Remark that, under the assumption, F is a finite morphism.
4Set U = X \ Sing(A). Since codimX Sing(A) ≥ 2, the restriction Cl(X) → Cl(U)

is an isomorphism. Here, remark that F |U : U → U is flat. Therefore, (F e
∗OX)|U =

(F |U )e
∗OU is a vector bundle on U . Here, c1(F e

∗OX) is defined to be the first Chern class
c1((F e

∗OX)|U ) ∈ Cl(U) = Cl(X).



On the other hand, it is well known that ωA ' q. By Theorem 2.1, we
have

cl(1A) =
24 − 23

2
cl(ωA) = 4cl(q).

2. Let k be a perfect field of characteristic p, where p is a prime integer.
Put X = P1

k. Let F : X → X be the Frobenius map. Then, we have
F∗OX ' OX ⊕OX(−1)⊕(p−1), and

c1(F∗OX) = c1(∧pF∗OX) = c1(OX(1− p)) = 1− p.

Remark that the natural map deg : Cl(X) → Z is an isomorphism in
this case.

On the other hand, it is well known that ωX ' OX(−2). Therefore, we
have KX = −2. By Theorem 2.3, we have

c1(F∗OX) =
p− 1

2
KX = 1− p.

3 Proof of Theorem 2.1

Now we start to give an outline of a proof of Theorem 2.1.
Let (A,m) be a Noetherian local ring that satisfies the assumption in

Theorem 2.1.
Since (A,m) is a homomorphic image of a regular local ring, we have an

isomorphism
τA : G0(A)Q −→ A∗(A)Q

of Q-vector spaces by the singular Riemann-Roch theorem (Chapter 18 in
[2]), where A∗(A) = ⊕d

i=0 Ai(A) is the Chow group of the affine scheme
Spec(A). Let

p : A∗(A)Q −→ Ad−1(A)Q = Cl(A)Q

be the projection. We set

τd−1 = pτA : G0(A)Q −→ Cl(A)Q.

Here, we summarize basic facts on the map τd−1.



(i) Let p be a prime ideal of height 1. There exists a natural identification

Ad−1(A) = Cl(A) by [Spec(A/p)] = cl(p). By the exact sequence

0 → p → A → A/p → 0,

we have
cl(p) = cl(A)− cl(A/p) = −cl(A/p).

On the other hand, by the top-term property (Theorem 18.3 (5) in [2]),
we have τd−1(A/p) = [Spec(A/p)]. Therefore we have

τd−1(A/p) = [Spec(A/p)] = cl(p) = −cl(A/p).

Let q be a prime ideal of height at least 2. By the top-term property,
we have τd−1(A/q) = 0.

(ii) By the covariance with proper maps (Theorem 18.3 (1) in [2]), we have

τd−1(
eA) = p(d−1)eτd−1(A)

for each e > 0.

(iii) We have

τd−1(A) =
1

2
cl(ωA)

in Cl(A)Q by Lemma 3.5 of [6].

Next we prove the following lemma:

Lemma 3.1 Let (A, m) be a local ring that satisfies the assumption in The-
orem 2.1. Then, for a finitely generated A-module M , we have

τd−1(M) = −cl(M) +
rankA M

2
cl(ωA)

in Cl(A)Q.

Proof. Set r = rankA M . Then we have an exact sequence

0 → Ar → M → T → 0,



where T is a torsion module. By this exact sequence, we obtain

cl(M) = r · cl(A) + cl(T ) = cl(T ).

On the other hand, by the basic fact (iii) as above, we obtain

τd−1(M) = r · τd−1(A) + τd−1(T ) =
r

2
cl(ωA) + τd−1(T ).

We have only to prove τd−1(T ) = −cl(T ).
We may assume that T = A/p, where p 6= 0 is a prime ideal of A. If

ht p ≥ 2, then we have

τd−1(A/p) = 0 = −cl(A/p)

by Remark 1.3 and the basic fact (i) as above. If ht p = 1, then we have

τd−1(A/p) = −cl(A/p)

by (i) as above. q.e.d.

Now we start to prove Theorem 2.1.
By the basic facts (ii) and (iii), we obtain

τd−1(
eA) = p(d−1)eτd−1(A) =

p(d−1)e

2
cl(ωA).

By Lemma 3.1, we have

τd−1(
eA) = −cl(eA) +

rankA
eA

2
cl(ωA)

in Cl(A)Q. It is easy to see that rankA
eA = pde. We have obtained

cl(eA) =
pde − p(d−1)e

2
cl(ωA)

in Cl(A)Q. q.e.d.

Remark 3.2 By Theorem 2.1 and Lemma 3.1, we have

τd−1(M) = −cl(M) +
rankA M

2
cl(ωA) = −cl(M) +

rankA M

pd − pd−1
cl(1A).

Therefore, we have
β(I, M) = −τI(τd−1(M)).



References
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