Derived equivalences and Gorenstein algebras

Hiroki Abe and Mitsuo Hoshino

In this note, we introduce the notion of Gorenstein algebras. Let R be a commutative Gorenstein ring and A a noetherian R-algebra. We call A a Gorenstein R-algebra if A has Gorenstein dimension zero as an R-module (see [2]), add $(D(_AA)) = \mathcal{P}_A$, where $D = \operatorname{Hom}_R(-, R)$, and $A_{\mathfrak{p}}$ is projective as an $R_{\mathfrak{p}}$ module for all $p \in \operatorname{Spec} R$ with dim $R_{\mathfrak{p}} < \dim R$. Note that if dim $R = \infty$ then a Gorenstein R-algebra A is projective as an R-module and that A is a Gorenstein R-algebra if A is projective as an R-module and add $(D(_AA)) = \mathcal{P}_A$. Also, in case R is equidimensional and $A_{\mathfrak{p}} \neq 0$ for all $\mathfrak{p} \in \operatorname{Spec} R$, a Gorenstein R-algebra A with $A \simeq DA$ in Mod- A^{e} is a Gorenstein R-order in the sense of [1]. In Section 3, we see that a Gorenstein R-algebra A enjoys properties similar to those of R. Especially, A satisfies the Auslander condition (see [5]) and for any nonzero $P^{\bullet} \in \mathsf{K}^-(\mathcal{P}_A)$ we have $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} -A)}(P^{\bullet}, A[i]) \neq 0$ for some $i \in \mathbb{Z}$.

Unfortunately, the class of Gorenstein *R*-algebras is not closed under derived equivalence in general (see Example 4.9). In Section 4, for a tilting complex P^{\bullet} over a Gorenstein *R*-algebra *A* we show that $B = \operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet})$ is also a Gorenstein *R*-algebra if and only if $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet})$, where $\nu = D \circ \operatorname{Hom}_A(-, A)$. In particular, the class of Gorenstein *R*-algebras *A* with $A \simeq DA$ in Mod- $A^{\rm e}$ is closed under derived equivalence. More precisely, for any partial tilting complex P^{\bullet} over a Gorenstein *R*-algebra *A* with $A \simeq DA$ in Mod- $A^{\rm e}$, $B = \operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet})$ is also a Gorenstein *R*-algebra with $B \simeq DB$ in Mod- $B^{\rm e}$. Then, in Section 5, we provide a construction of such tilting complexes. Namely, we show that tilting complexes P^{\bullet} associated with a certain sequence of idempotents in a Gorenstein *R*-algebra *A* satisfy the condition $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet})$.

In Sections 6 and 7, we deal with the case where R is a complete local ring and A is free as an R-module. For a tilting complex P^{\bullet} constructed in Section 5, we show that $B = \operatorname{End}_{\mathsf{K}(\operatorname{Mod} A)}(P^{\bullet})$ is also free as an R-module and then provide a way to construct a two-sided tilting complex corresponding to P^{\bullet} .

²⁰⁰⁰ Mathematics Subject Classification. Primary 18E30, 16G30; Secondary 16E05

 $Key\ words.$ derived equivalence, Gorenstein algebra, tilting complex, two-sided tilting complex.

This is not in final form. The detailed version will be submitted for publication elsewhere.

Simultaneously, we provide a sufficient condition for a free R-algebra B containing A as a subalgebra to be derived equivalent to A.

Finally, in Section 8, we ask when a partial tilting complex P^{\bullet} appears as a direct summand of a tilting complex. This is not the case in general (see [15, Section 8]). We show that the question is affirmative if P^{\bullet} has length 1 and $P^{\bullet} \in \operatorname{add}(\nu P^{\bullet})$.

Let A be a ring. We denote by Mod-A the category of right A-modules and mod-A the full subcategory of Mod-A consisting of finitely presented modules. We denote by Proj-A (resp., Inj-A) the full subcategory of Mod-A consisting of projective (resp., injective) modules and by \mathcal{P}_A the full subcategory of Proj-A consisting of finitely generated projective modules. We denote by $A^{\rm op}$ the opposite ring of A and consider left A-modules as right A^{op} -modules. Sometimes, we use the notation X_A (resp., $_AX$) to stress that the module X considered is a right (resp., left) A-module. For an object X in an additive category \mathcal{B} , we denote by add(X) the full subcategory of \mathcal{B} whose objects are direct summands of finite direct sums of copies of X and by $X^{(n)}$ the direct sum of n copies of X. In case \mathcal{B} has arbitrary direct sums, we denote by Add(X) the full subcategory of \mathcal{B} whose objects are direct summands of direct sums of copies of X. For a cochain complex X^{\bullet} over an abelian category \mathcal{A} , we denote by $B^n(X^{\bullet})$, $Z^n(X^{\bullet}), B^{\prime n}(X^{\bullet}), Z^{\prime n}(X^{\bullet})$ and $H^n(X^{\bullet})$ the *n*-th boundary, the *n*-th cycle, the *n*-th coboundary, the *n*-th cocycle and the *n*-th cohomology of X^{\bullet} , respectively. For an additive category \mathcal{B} , we denote by $\mathsf{K}(\mathcal{B})$ (resp., $\mathsf{K}^+(\mathcal{B})$, $\mathsf{K}^-(\mathcal{B})$, $\mathsf{K}^{\mathrm{b}}(\mathcal{B})$) the homotopy category of complexes (resp., bounded below complexes, bounded above complexes, bounded complexes) over \mathcal{B} . As usual, we consider objects of \mathcal{B} as complexes over \mathcal{B} concentrated in degree zero. For an abelian category \mathcal{A} , we denote by $D(\mathcal{A})$ (resp., $D^+(\mathcal{A})$, $D^-(\mathcal{A})$, $D^{\rm b}(\mathcal{A})$) the derived category of complexes (resp., bounded below complexes, bounded above complexes, bounded complexes) over \mathcal{A} . We always consider $\mathsf{K}^*(\mathcal{B})$ (resp., $\mathsf{D}^*(\mathcal{A})$) as a full triangulated subcategory of $\mathsf{K}(\mathcal{B})$ (resp., $\mathsf{D}(\mathcal{A})$), where * = +, - or b. Finally, we use the notation $\operatorname{Hom}^{\bullet}(-,-)$ (resp., $-\otimes^{\bullet}-$) to denote the single complex associated with the double hom (resp., tensor) complex (cf. Remark 1.11).

We refer to [6], [9], [17] for basic results in the theory of derived categories, to [15], [16] for definitions and basic properties of derived equivalences, tilting complexes and two-sided tilting complexes and to [12] for standard commutative ring theory.

1 Preliminaries

Throughout this note, R is a commutative ring and A is an R-algebra, i.e., A is a ring endowed with a ring homomorphism $R \to A$ whose image is contained in the center of A. We set $D = \operatorname{Hom}_R(-, R)$. Note that for any $X \in \operatorname{Mod} A$ we have a functorial isomorphism in $\operatorname{Mod} A^{\operatorname{op}}$

$$DX \xrightarrow{\sim} \operatorname{Hom}_A(X, DA), h \mapsto (x \mapsto (a \mapsto h(xa))).$$

For *R*-algebras *A*, *B* we identify an $(A^{\mathrm{op}} \otimes_R B)$ -module *X* with an *A*-*B*-bimodule *X* such that rx = xr for all $r \in R$ and $x \in X$. Also, for an *R*-algebra *A* we set $A^{\mathrm{e}} = A^{\mathrm{op}} \otimes_R A$.

In this section, we recall several definitions and basic facts which we need in later sections.

Definition 1.1. A module $X \in Mod-R$ is said to be reflexive if the canonical homomorphism

$$\varepsilon_X: X \to D^2 X, x \mapsto (h \mapsto h(x))$$

is an isomorphism, where $D^2 X = D(DX)$.

Definition 1.2 (cf. [2]). A module $X \in Mod-R$ is said to have Gorenstein dimension zero if X is reflexive, $\operatorname{Ext}_{R}^{i}(X, R) = 0$ for i > 0 and $\operatorname{Ext}_{R}^{i}(DX, R) = 0$ for i > 0.

Lemma 1.3 ([2, Lemma 3.10]). Let $0 \to X \to Y \to Z \to 0$ be an exact sequence in Mod-R. Then the following hold.

- (1) If Y, Z have Gorenstein dimension zero, so does X.
- (2) Assume $\operatorname{Ext}^{1}_{R}(Z, R) = 0$. If X, Y have Gorenstein dimension zero, so does Z.

Lemma 1.4. For any $X^{\bullet} \in \mathsf{K}(\mathsf{Mod}\text{-}R)$ we have a functorial homomorphism

$$\xi_{X^{\bullet}} : \mathrm{H}^{0}(DX^{\bullet}) \to D\mathrm{H}^{0}(X^{\bullet})$$

and the following hold.

- (1) If $B^0(DX^{\bullet}) \xrightarrow{\sim} DB'^0(X^{\bullet})$ canonically, then $\xi_{X^{\bullet}}$ is monic.
- (2) If $B^0(DX^{\bullet}) \xrightarrow{\sim} DB'^0(X^{\bullet})$ canonically and $Ext^1_R(B'^0(X^{\bullet}), R) = 0$, then $\xi_{X^{\bullet}}$ is an isomorphism.

Lemma 1.5. Let A, B be derived equivalent R-algebras. Let $F : \mathsf{K}^{\mathsf{b}}(\mathcal{P}_B) \xrightarrow{\sim} \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ be an equivalence of triangulated categories and $F^* : \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A) \xrightarrow{\sim} \mathsf{K}^{\mathsf{b}}(\mathcal{P}_B)$ a quasi-inverse of F. Set $P^{\bullet} = F(B) \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ and $Q^{\bullet} = \operatorname{Hom}_B^{\bullet}(F^*(A), B) \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_{B^{\mathsf{op}}})$. Then for any $i \in \mathbb{Z}$ we have an isomorphism in Mod- $(B^{\mathsf{op}} \otimes_R A)$

$$\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} - A)}(A, P^{\bullet}[i]) \simeq \operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} - B^{\operatorname{op}})}(B, Q^{\bullet}[i])$$

and an isomorphism in Mod- $(A^{\mathrm{op}} \otimes_R B)$

 $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} - A)}(P^{\bullet}, A[i]) \simeq \operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} - B^{\operatorname{op}})}(Q^{\bullet}, B[i]).$

Definition 1.6. For any nonzero $P^{\bullet} \in \mathsf{K}^{-}(\operatorname{Proj} A)$ we set

$$a(P^{\bullet}) = \max\{i \in \mathbb{Z} \mid \mathrm{H}^{i}(P^{\bullet}) \neq 0\}$$

and for any nonzero $P^{\bullet} \in \mathsf{K}^+(\operatorname{Proj} A)$ we set

 $b(P^{\bullet}) = \min\{i \in \mathbb{Z} \mid \operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} - A)}(P^{\bullet}[i], \operatorname{Proj} A) \neq 0\}.$

Then for any nonzero $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\operatorname{Proj} A)$ we set

$$l(P^{\bullet}) = a(P^{\bullet}) - b(P^{\bullet})$$

which we call the length of P^{\bullet} .

Remark 1.7. For any complex X^{\bullet} and $n \in \mathbb{Z}$ we define truncations

$$\sigma_{\leq n}(X^{\bullet}):\dots\to X^{n-2}\to X^{n-1}\to \mathbf{Z}^n(X^{\bullet})\to 0\to\dots,$$

$$\sigma_{>n}'(X^{\bullet}):\dots\to 0\to \mathbf{Z}'^n(X^{\bullet})\to X^{n+1}\to X^{n+2}\to\dots.$$

Then $P^{\bullet} \simeq \sigma_{\leq a}(P^{\bullet})$ for any nonzero $P^{\bullet} \in \mathsf{K}^{-}(\operatorname{Proj-}A)$, where $a = a(P^{\bullet})$, and $P^{\bullet} \simeq \sigma'_{>b}(P^{\bullet})$ for any nonzero $P^{\bullet} \in \mathsf{K}^{+}(\operatorname{Proj-}A)$, where $b = b(P^{\bullet})$.

Lemma 1.8. Assume A is finitely generated projective as an R-module. Then for any $P^{\bullet} \in \mathsf{K}^+(\mathcal{P}_A)$ and $Q^{\bullet} \in \mathsf{K}^-(\mathcal{P}_A)$ with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, Q^{\bullet}[i]) = 0$ for i > 0, $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, Q^{\bullet})$ is finitely generated as an R-module.

Definition 1.9 (cf. [3]). An idempotent $e \in A$ is said to be local if eAe is a local ring. A ring A is said to be semiperfect if $1 = e_1 + \cdots + e_n$ in A with the e_i orthogonal local idempotents.

Lemma 1.10. Assume R is a complete noetherian local ring and A is finitely generated as an R-module. Then A is semiperfect and the Krull-Schmidt theorem holds in mod-A, i.e., for any nonzero $X \in \text{mod-}A$ the following hold.

- (1) X decomposes into a direct sum of indecomposable submodules.
- (2) X is indecomposable if and only if $\operatorname{End}_A(X)$ is local.

Remark 1.11 ([16, Section 4]). Let A, B and C be projective R-algebras. Then the following hold.

(1) Let $X^{\bullet} \in \mathsf{K}^{-}(\operatorname{Mod}_{B^{\operatorname{op}}\otimes_{R}} A))$ and $Y^{\bullet} \in \mathsf{K}^{+}(\operatorname{Mod}_{C^{\operatorname{op}}\otimes_{R}} A))$. If either each term of X^{\bullet} is projective as an A-module or each term of Y^{\bullet} is injective as an A-module, then the canonical homomorphism in $\mathsf{D}(\operatorname{Mod}_{C^{\operatorname{op}}\otimes_{R}} B))$

$$\operatorname{Hom}_{A}^{\bullet}(X^{\bullet}, Y^{\bullet}) \to \operatorname{\mathbf{R}Hom}_{A}^{\bullet}(X^{\bullet}, Y^{\bullet})$$

is an isomorphism.

(2) Let $X^{\bullet} \in \mathsf{K}^{-}(\mathrm{Mod}_{B^{\mathrm{op}}\otimes_{R}}A)$ and $Y^{\bullet} \in \mathsf{K}^{-}(\mathrm{Mod}_{A^{\mathrm{op}}\otimes_{R}}C))$. If either each term of X^{\bullet} is flat as an A-module or each term of Y^{\bullet} is flat as an A^{op} -module, then the canonical homomorphism in $\mathsf{D}(\mathrm{Mod}_{B^{\mathrm{op}}\otimes_{R}}C))$

$$X^{\bullet} \otimes^{\mathbf{L}}_{A} Y^{\bullet} \to X^{\bullet} \otimes^{\bullet}_{A} Y^{\bullet}$$

is an isomorphism.

2 Nakayama functor

In the following, we set $\nu = D \circ \operatorname{Hom}_A(-, A)$. Note that for any $P \in \mathcal{P}_A$ we have a functorial isomorphism in Mod-A

$$P \otimes_A DA \xrightarrow{\sim} \nu P, x \otimes h \mapsto (g \mapsto h(g(x))).$$

Lemma 2.1. For any $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ and $Q^{\bullet} \in \mathsf{K}(\mathrm{Mod}\text{-}A)$ we have a bifunctorial isomorphism of complexes

$$D\mathrm{Hom}_A^{\bullet}(P^{\bullet}, Q^{\bullet}) \simeq \mathrm{Hom}_A^{\bullet}(Q^{\bullet}, \nu P^{\bullet}).$$

Lemma 2.2. For any $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ and $Q^{\bullet} \in \mathsf{K}(\mathsf{Mod}\text{-}A)$ we have a bifunctorial homomorphism

$$\xi_{P^{\bullet},Q^{\bullet}}$$
: Hom_{K(Mod-A)} $(Q^{\bullet},\nu P^{\bullet}) \to D$ Hom_{K(Mod-A)} $(P^{\bullet},Q^{\bullet})$.

Furthermore, in case $Q^{\bullet} \in \mathsf{K}^{-}(\operatorname{Proj} A)$ and $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} A)}(P^{\bullet}, Q^{\bullet}[i]) = 0$ for i > 0, the following hold.

(1) $\xi_{P^{\bullet},Q^{\bullet}}$ is monic if $\operatorname{Ext}_{R}^{i}(A,R) = 0$ for $1 \leq i < a(Q^{\bullet}) - b(P^{\bullet})$.

(2) $\xi_{P^{\bullet},Q^{\bullet}}$ is an isomorphism if $\operatorname{Ext}_{R}^{i}(A,R) = 0$ for $1 \leq i \leq a(Q^{\bullet}) - b(P^{\bullet})$.

Corollary 2.3. Assume $\operatorname{Ext}_{A}^{i}(A, R) = 0$ for i > 0. Then for any $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_{A})$ with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for i > 0 we have $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, \nu P^{\bullet}[i]) = 0$ for i < 0.

Definition 2.4. For any $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$, we denote by $\mathcal{C}(P^{\bullet})$ the full subcategory of $\mathsf{D}^{-}(\mathrm{Mod}\text{-}A)$ consisting of X^{\bullet} with $\mathrm{Hom}_{\mathsf{D}(\mathrm{Mod}\text{-}A)}(P^{\bullet}, X^{\bullet}[i]) = 0$ for $i \neq 0$.

Lemma 2.5. Assume A is reflexive as an R-module and $\operatorname{add}(D(_AA)) = \mathcal{P}_A$. Then we have an equivalence $\nu : \mathcal{P}_A \xrightarrow{\sim} \mathcal{P}_A$. In particular, for any tilting complex $P^{\bullet} \in \mathsf{K}^{\mathrm{b}}(\mathcal{P}_A), \ \nu P^{\bullet}$ is also a tilting complex and the following are equivalent.

- (1) $\nu P^{\bullet} \in \mathcal{C}(P^{\bullet})$ and $P^{\bullet} \in \mathcal{C}(\nu P^{\bullet})$.
- (2) $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet}).$

Lemma 2.6. Assume $A \simeq DA$ in Mod- A^{e} . Then the following hold.

- (1) For any $P^{\bullet} \in \mathsf{K}(\mathcal{P}_A)$ we have a functorial isomorphism of complexes $\nu P^{\bullet} \simeq P^{\bullet}$.
- (2) A has Gorenstein dimension zero as an R-module if and only if $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for i > 0.

Proposition 2.7. Assume $A \simeq DA$ in Mod- A^{e} and A has Gorenstein dimension zero as an R-module. Let $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_{A})$ with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$ and $B = \operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet})$. Then $B \simeq DB$ in Mod- B^{e} .

3 Gorenstein algebras

In this section, we introduce the notion of Gorenstein R-algebras over a Gorenstein ring R. We refer to [4] for the definition and basic properties of Gorenstein rings.

Lemma 3.1. For any $X \in Mod-R$ the following hold.

- (1) If X is injective, so is $\operatorname{Hom}_R(_AA, X)$.
- (2) Assume A is finitely generated projective as an R-module and $D(_AA) \in \mathcal{P}_A$. If X is flat, so is $\operatorname{Hom}_R(_AA, X)$.

Definition 3.2. A module $T \in \text{Mod}-A$ is called a tilting module if there exists a tilting complex $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ such that $\mathrm{H}^i(P^{\bullet}) = 0$ for $i \neq 0$ and $\mathrm{H}^0(P^{\bullet}) \simeq T$ in Mod-A, i.e., $P^{\bullet} \simeq T$ in D(Mod-A).

Remark 3.3 (cf. [14]). A module $T \in Mod-A$ is a tilting module if and only if the following conditions are satisfied:

- (1) $\operatorname{Ext}_{A}^{i}(T,T) = 0$ for i > 0;
- (2) there exists an exact sequence $0 \to P^{-l} \to \cdots \to P^0 \to T \to 0$ in Mod-A with $P^{-i} \in \mathcal{P}_A$ for all $0 \le i \le l$; and
- (3) there exists an exact sequence $0 \to A_A \to T^0 \to \cdots \to T^m \to 0$ in Mod-A with $T^i \in \text{add}(T)$ for all $0 \le i \le m$.

Definition 3.4 (cf. [9] and [13]). Assume A is a left and right noetherian ring. Then a complex $V^{\bullet} \in D^{b}(Mod A^{e})$ is called a dualizing complex for A if the following conditions are satisfied:

- (1) $\mathrm{H}^{i}(V_{A}^{\bullet}) \in \mathrm{mod}\text{-}A$ and $\mathrm{H}^{i}(_{A}V^{\bullet}) \in \mathrm{mod}\text{-}A^{\mathrm{op}}$ for all $i \in \mathbb{Z}$;
- (2) $V_A^{\bullet} \in \mathsf{K}^{\mathrm{b}}(\operatorname{Inj-}A)$ and $_AV^{\bullet} \in \mathsf{K}^{\mathrm{b}}(\operatorname{Inj-}A^{\operatorname{op}});$
- (3) $\operatorname{Hom}_{\mathsf{D}(\mathrm{Mod}-A)}(V_A^{\bullet}, V_A^{\bullet}[i]) = 0$ for $i \neq 0$ and $\operatorname{Hom}_{\mathsf{D}(\mathrm{Mod}-A^{\mathrm{op}})}({}_AV^{\bullet}, {}_AV^{\bullet}[i]) = 0$ for $i \neq 0$; and
- (4) the left multiplication of A on each homogeneous component of V^{\bullet} gives rise to an R-algebra isomorhism $A \xrightarrow{\sim} \operatorname{End}_{\mathsf{D}(\operatorname{Mod}-A)}(V_A^{\bullet})$ and the right multiplication of A on each homogeneous component of V^{\bullet} gives rise to an R-algebra isomorhism $A \xrightarrow{\sim} \operatorname{End}_{\mathsf{D}(\operatorname{Mod}-A^{\operatorname{op}})}(AV^{\bullet})^{\operatorname{op}}$.

Definition 3.5 (cf. [5]). A left and right noetherian ring A is said to satisfy the Auslander condition if it admits an injective resolution $A_A \to E^{\bullet}$ in Mod-A such that flat dim $E^n \leq n$ for all $n \geq 0$.

Throughout the rest of this section, we assume R is noetherian and A is a noetherian R-algebra, i.e., A is finitely generated as an R-module. We denote by dim R the Krull dimension of R, by Spec R the set of prime ideals in R

and by $(-)_{\mathfrak{p}}$ the localization at $\mathfrak{p} \in \operatorname{Spec} R$. Note that we do not exclude the case where $A_{\mathfrak{p}} = 0$ for some $\mathfrak{p} \in \operatorname{Spec} R$, i.e., the kernel of the structure ring homomorphism $R \to A$ may not be nilpotent. Also, if R is a Gorenstein ring and $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for i > 0, then A has Gorenstein dimension zero as an R-module.

Lemma 3.6. Assume $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for i > 0. Then the following hold.

- (1) For an injective resolution $R \to I^{\bullet}$ in Mod-R, we have an injective resolution $D(_AA) \to \operatorname{Hom}_R^{\bullet}(_AA, I^{\bullet})$ in Mod-A.
- (2) For any $X \in Mod-A$, we have $Ext^i_A(X, DA) \simeq Ext^i_B(X, R)$ for all $i \ge 0$.
- (3) If R is an equidimensional Gorenstein ring, then inj dim $D(_AA) = \dim R$.

Proposition 3.7. Assume R is a Gorenstein ring with dim $R < \infty$ and A has Gorenstein dimension zero as an R-module. Then the following hold.

- (1) proj dim $D(_AA) < \infty$ if and only if inj dim $_AA < \infty$.
- (2) $D(_AA)$ is a tilting module if and only if inj dim $_AA = inj \dim A_A < \infty$.
- (3) If $\operatorname{add}(D(_AA)) = \mathcal{P}_A$, then inj dim $_AA = \operatorname{inj} \dim A_A \leq \dim R$.
- (4) For a minimal injective resolution $R \to I^{\bullet}$ in Mod-R, $\operatorname{Hom}_{R}^{\bullet}(A, I^{\bullet}) \in D^{\mathrm{b}}(\operatorname{Mod} A^{\mathrm{e}})$ is a dualizing complex for A.

Proposition 3.8. Assume R is a Gorenstein ring, A has Gorenstein dimension zero as an R-module and $_{A}A \in \operatorname{add}(D(A_{A}))$. Then for any nonzero $P^{\bullet} \in \mathsf{K}^{-}(\mathcal{P}_{A})$ we have $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, A[i]) \neq 0$ for some $i \in \mathbb{Z}$.

Proposition 3.9. Assume R is a Gorenstein ring, A has Gorenstein dimension zero as an R-module, $\operatorname{add}(D(_AA)) = \mathcal{P}_A$ and $A_{\mathfrak{p}}$ is projective as an $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec} R$ with dim $R_{\mathfrak{p}} < \dim R$. Then A satisfies the Auslander condition.

Now, we propose to define the notion of Gorenstein algebras as follows.

Definition 3.10. Assume R is a Gorenstein ring. A noetherian R-algebra A is called a Gorenstein R-algebra if A has Gorenstein dimension zero as an R-module, $\operatorname{add}(D(_AA)) = \mathcal{P}_A$ and $A_{\mathfrak{p}}$ is projective as an $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec} R$ with dim $R_{\mathfrak{p}} < \dim R$. In particular, if A is projective as an R-module and $\operatorname{add}(D(_AA)) = \mathcal{P}_A$, then A is a Gorenstein R-algebra.

Remark 3.11. Assume R is a Gorenstein ring and A is a Gorenstein R-algebra. Then the following hold.

(1) If dim $R = \infty$, then A is projective as an R-module.

(2) For any $\mathfrak{p} \in \text{Spec } R$ with $A_{\mathfrak{p}} \neq 0$, $A_{\mathfrak{p}}$ is a Gorenstein $R_{\mathfrak{p}}$ -algebra.

Consider the case where R is an equidimensional Gorenstein ring and $A_{\mathfrak{p}} \neq 0$ for all $\mathfrak{p} \in \operatorname{Spec} R$. Then a Gorenstein R-algebra A with $A \simeq DA$ in Mod- A^{e} is a Gorenstein R-order in the sense of [1, Chapter III, Section 1].

4 Derived equivalences in Gorenstein algebras

In this section, for a tilting complex P^{\bullet} over a Gorenstein *R*-algebra *A* we ask when $B = \operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet})$ is also a Gorenstein *R*-algebra. This question does not seem to depend on the base ring *R*. So we assume *R* is an arbitrary commutative ring unless otherwise stated.

We fix a nonzero $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$. Set $B = \operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet})$ and $X^{\bullet} = \operatorname{Hom}_{A}^{\bullet}(P^{\bullet}, P^{\bullet}) \in \mathsf{K}^{\mathsf{b}}(\operatorname{add}(A_R))$. Since $\operatorname{H}^{i}(X^{\bullet}) = 0$ for $i \neq 0$, we have exact sequences of the form

 $(*) \qquad 0 \to \mathbf{Z}^0(X^{\bullet}) \to X^0 \to \dots \to X^l \to 0,$ $(**) \quad 0 \to X^{-l} \to \dots \to X^{-1} \to \mathbf{Z}^0(X^{\bullet}) \to B \to 0.$

Lemma 4.1. Assume $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for i > 0. Then the following are equivalent.

- (1) $\operatorname{Ext}_{R}^{i}(B, R) = 0$ for i > 0.
- (2) $\nu P^{\bullet} \in \mathcal{C}(P^{\bullet}).$

Lemma 4.2. Assume A has Gorenstein dimension zero as an R-module. Then the following are equivalent.

- (1) B has Gorenstein dimension zero as an R-module.
- (2) $\nu P^{\bullet} \in \mathcal{C}(P^{\bullet}).$

Lemma 4.3. Assume A is finitely generated projective as an R-module. Then the following are equivalent.

- (1) B is finitely generated projective as an R-module.
- (2) $\nu P^{\bullet} \in \mathcal{C}(P^{\bullet}).$

Lemma 4.4. Assume R is noetherian and A is finitely generated as an R-module. Then for any $\mathfrak{p} \in \text{Spec } R$ with $A_{\mathfrak{p}}$ projective as an $R_{\mathfrak{p}}$ -module the following are equivalent.

- (1) $B_{\mathfrak{p}}$ is projective as an $R_{\mathfrak{p}}$ -module.
- (2) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet},\nu P^{\bullet}[i])_{\mathfrak{p}} = 0 \text{ for } i \neq 0, \text{ this is the case if } \nu P^{\bullet} \in \mathcal{C}(P^{\bullet}).$

Theorem 4.5. Assume $A \simeq DA$ in Mod- A^{e} and A has Gorenstein dimension zero as an R-module. Then the following hold.

- (1) $B \simeq DB$ in Mod- B^{e} and B has Gorenstein dimension zero as an R-module.
- (2) If A is finitely generated projective as an R-module, so is B.

(3) Assume R is noetherian and A is finitely generated as an R-module. Then for any p ∈ Spec R, if A_p is projective as an R_p-module, so is B_p.

Throughout the rest of this section, we assume P^{\bullet} is a tilting complex.

Proposition 4.6. Assume A has Gorenstein dimension zero as an R-module and $\operatorname{add}(D(_AA)) = \mathcal{P}_A$. Then the following are equivalent.

- (1) B has Gorenstein dimension zero as an R-module and $\operatorname{add}(D(_BB)) = \mathcal{P}_B$.
- (2) $\nu P^{\bullet} \in \mathcal{C}(P^{\bullet})$ and $P^{\bullet} \in \mathcal{C}(\nu P^{\bullet})$.
- (3) $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet}).$

Proposition 4.7. Assume A is finitely generated projective as an R-module and $\operatorname{add}(D(_AA)) = \mathcal{P}_A$. Then the following are equivalent.

- (1) B is finitely generated projective as an R-module and $\operatorname{add}(D(B)) = \mathcal{P}_B$.
- (2) $\nu P^{\bullet} \in \mathcal{C}(P^{\bullet})$ and $P^{\bullet} \in \mathcal{C}(\nu P^{\bullet})$.
- (3) $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet}).$

Theorem 4.8. Assume R is a Gorenstein ring and A is a Gorenstein R-algebra. Then the following are equivalent.

- (1) B is a Gorenstein R-algebra.
- (2) $\nu P^{\bullet} \in \mathcal{C}(P^{\bullet})$ and $P^{\bullet} \in \mathcal{C}(\nu P^{\bullet})$.
- (3) $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet}).$

Example 4.9. Assume R contains a regular element c which is not a unit. Let

$$A = \begin{pmatrix} R & R \\ cR & R \end{pmatrix}$$

be a free R-algebra of rank 4 and set

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad a = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix} \text{ and } b = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

It is easy to see that $\nu(e_1A) \simeq e_2A$ and $\nu(e_2A) \simeq e_1A$. In particular, $D(_AA) \simeq A_A$. Set $P_1^{\bullet} = e_1A[1]$ and let P_2^{\bullet} be the mapping cone of $h : e_1A \to e_2A, x \mapsto ax$. Then Cok $h \simeq R/cR$ in Mod-R and $\operatorname{Hom}_R(\operatorname{Cok} h, e_1A) = 0$. Thus $\operatorname{Hom}_A(\operatorname{Cok} h, e_1A) = 0$ and by [10, Proposition 1.2] $P^{\bullet} = P_1^{\bullet} \oplus P_2^{\bullet} \in \operatorname{K^b}(\mathcal{P}_A)$ is a tilting complex. On the other hand, νP_2^{\bullet} is isomorphic to the mapping cone of the homomorphism $e_2A \to e_1A, x \mapsto bx$, and hence $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P_1^{\bullet}, \nu P_2^{\bullet}[1]) \neq 0$. Thus $\nu P^{\bullet} \notin \mathcal{C}(P^{\bullet})$ and by Lemma 4.1 $\operatorname{Ext}^1_R(B, R) \neq 0$, where $B = \operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet})$. More precisely, we have an R-algebra isomorphism

$$B \simeq \begin{pmatrix} R & R/cR \\ 0 & R/cR \end{pmatrix}$$

Note that if R is a Gorenstein ring then A is a Gorenstein R-algebra.

At present, we do not have any example of tilting complexes P^{\bullet} over a Gorenstein *R*-algebra *A* such that $\nu P^{\bullet} \in \mathcal{C}(P^{\bullet})$ and $\operatorname{add}(P^{\bullet}) \neq \operatorname{add}(\nu P^{\bullet})$.

Proposition 4.10. Assume A, B have Gorenstein dimension zero as R-modules. Then the following hold.

- (1) A is finitely generated projective if and only if so is B.
- (2) Assume R is noetherian and A, B are finitely generated as R-modules. Then for any p ∈ Spec R, A_p is projective if and only if so is B_p.
- (3) If $\operatorname{add}(D(_AA)) = \mathcal{P}_A$, then $D(_BB)$ is a tilting module.

5 Suitable tilting complexes

Throughout this section, R is noetherian and A is finitely generated as an R-module. Following [11], we provide a way to construct tilting complexes $T^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ such that $\mathrm{add}(T^{\bullet}) = \mathrm{add}(\nu T^{\bullet})$.

Lemma 5.1. Let $T^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ be a tilting complex. Let $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ be a nonzero complex with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} - A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$ and form a distinguished triangle in $\mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$

$$Q^{\bullet} \to P^{\bullet(n)} \xrightarrow{f} T^{\bullet} \to$$

such that $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, f)$ is epic. Then $Q^{\bullet} \oplus P^{\bullet}$ is a tilting complex if the following conditions are satisfied:

- (1) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} A)}(P^{\bullet}, T^{\bullet}[i]) = 0$ for i > 0 and i < -1;
- (2) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} A)}(T^{\bullet}, P^{\bullet}[i]) = 0$ for i > 1;
- (3) $P^{\bullet} \in \operatorname{add}(\nu P^{\bullet});$ and
- (4) $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for $1 \le i < a(Q^{\bullet}) b(P^{\bullet}) 1$.

Throughout the rest of this section, we fix a sequence of idempotents e_0, e_1, \cdots in A such that $\operatorname{add}(e_0A_A) = \mathcal{P}_A$ and $e_{i+1} \in e_iAe_i$ for all $i \geq 0$. We will construct inductively a sequence of complexes $T_0^{\bullet}, T_1^{\bullet}, \cdots$ in $\mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ as follows. Set $T_0^{\bullet} = e_0A$. Let $k \geq 1$ and assume $T_0^{\bullet}, T_1^{\bullet}, \cdots, T_{k-1}^{\bullet}$ have been constructed. Then we form a distinguished triangle in $\mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$

$$Q_k^{\bullet} \to e_k A^{(n_k)} \xrightarrow{f_k} T_{k-1}^{\bullet} \to$$

such that $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(e_kA, f_k)$ is epic and set $T_k^{\bullet} = Q_k^{\bullet} \oplus e_kA$.

Lemma 5.2. For any $l \ge 0$ the following hold.

(1) $T_l^i = 0$ for i > l and i < 0.

- (2) $T_l^i \in \operatorname{add}(e_{l-i}A_A)$ for $0 \le i \le l$.
- (3) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(e_l A, T_l^{\bullet}[i]) = 0 \text{ for } i > 0.$
- (4) $\operatorname{add}(T_l^{\bullet})$ generates $\mathsf{K}^{\mathrm{b}}(\mathcal{P}_A)$ as a triangulated category.

Lemma 5.3. For any $l \ge 1$ the following hold.

- (1) $\operatorname{H}^{j}(T_{l}^{\bullet}) \in \operatorname{Mod}(A/Ae_{l-i}A)$ for $0 \leq i < j \leq l$.
- (2) If $D(e_i A_A) \in \operatorname{add}(_A A e_i)$ for $1 \le i \le l$, then $\operatorname{H}^j(\nu T_l^{\bullet}) \in \operatorname{Mod}(A/A e_{l-i} A)$ for $0 \le i < j \le l$.

Lemma 5.4 ([11, Lemma 1.11(1)]). Let $l \ge 1$. Let $T^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ with $T^i = 0$ for i > l and i < 0 and with $T^i \in \operatorname{add}(e_{l-i}A_A)$ for $0 \le i \le l$. Then for any $S^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ with $S^i = 0$ for i > l and i < 0 and with $\mathrm{H}^j(S^{\bullet}) \in \operatorname{Mod}(A/Ae_{l-i}A)$ for $0 \le i < j \le l$, we have $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}(A))}(T^{\bullet}, S^{\bullet}[i]) = 0$ for i > 0.

Lemma 5.5 ([11, Remark 2.3]). Let $l \ge 0$. For any $T^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$, $\mathrm{add}(T^{\bullet})$ is uniquely determined if the following conditions are satisfied:

- (1) $T^i = 0$ for i > l and i < 0;
- (2) $T^i \in \operatorname{add}(e_{l-i}A_A)$ for $0 \le i \le l$;
- (3) $\mathrm{H}^{j}(T^{\bullet}) \in \mathrm{Mod}(A/Ae_{l-i}A)$ for $0 \leq i < j \leq l$; and
- (4) $\operatorname{add}(T^{\bullet})$ generates $\mathsf{K}^{\mathrm{b}}(\mathcal{P}_A)$ as a triangulated category.

Theorem 5.6. Let $l \ge 1$ and assume $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for $1 \le i < l - 1$. Then the following hold.

- (1) If $e_i A_A \in \text{add}(D(_A A e_i))$ for $1 \leq i \leq l$, then T_l^{\bullet} is a tilting complex.
- (2) If $\operatorname{add}(e_i A_A) = \operatorname{add}(D(_A A e_i))$ for $1 \le i \le l$ and $D(e_i A_A) \in \operatorname{add}(_A A e_i)$ for $1 \le i \le l$, then $\nu T_l^{\bullet} \in \mathcal{C}(T_l^{\bullet})$.
- (3) If $\operatorname{add}(e_i A_A) = \operatorname{add}(D(_A A e_i))$ for $0 \le i \le l$ and $D(e_i A_A) \in \operatorname{add}(_A A e_i)$ for $1 \le i \le l$, then $\nu T_l^{\bullet} \in \operatorname{add}(T_l^{\bullet})$.
- (4) If A is reflexive as an R-module and $\operatorname{add}(e_i A_A) = \operatorname{add}(D(_A A e_i))$ for $0 \le i \le l$, then $\operatorname{add}(T_l^{\bullet}) = \operatorname{add}(\nu T_l^{\bullet})$.

The next lemma enables us to make use of induction in calculating the endomorphism algebra of T_l^{\bullet} .

Lemma 5.7. Let $T^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ be a tilting complex and $B = \operatorname{End}_{\mathsf{K}(\operatorname{Mod} - A)}(T^{\bullet})$. Let $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ be a direct summand of T^{\bullet} and $e \in B$ an idempotent corresponding to P^{\bullet} . Form a distinguished triangle in $\mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$

$$Q^{\bullet} \to P^{\bullet(n)} \xrightarrow{f} T^{\bullet} \to$$

such that $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, f)$ is epic and a distinguished triangle in $\mathsf{K}^{\mathsf{b}}(\mathcal{P}_B)$

$$S^{\bullet} \to eB^{(m)} \xrightarrow{g} B \to$$

such that $\operatorname{Hom}_B(eB, g)$ is epic. Then the following hold.

- (1) $\operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(Q^{\bullet} \oplus P^{\bullet})$ is Morita equivalent to $\operatorname{End}_{\mathsf{K}(\operatorname{Mod}-B)}(S^{\bullet} \oplus eB)$.
- (2) Assume $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for $1 \leq i \leq l(T^{\bullet})$. If $\operatorname{add}(P^{\bullet}) = \operatorname{add}(\nu P^{\bullet})$, then $\operatorname{add}(eB_{B}) = \operatorname{add}(D(_{B}Be))$.

Remark 5.8. In case A is finitely generated projective as an R-module, according to Lemma 1.8, we do not need to assume R is noetherian.

6 Two-sided tilting complexes

Throughout this and the next sections, R is a complete noetherian local ring with the maximal ideal \mathfrak{m} and A is finitely generated free as an R-module. For a tilting complex $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ as in Theorem 5.6(4), we show that B = $\operatorname{End}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet})$ is free as an R-module and then construct a two-sided tilting complex corresponding to P^{\bullet} . To do so, according to Lemma 5.7, we have only to deal with tilting complexes of length 1. Namely, we will show that the construction of two-sided tilting complexes in [11, Sections 4 and 5] remains valid; but, of course, we have to modify the argument in several places. Note that all the R-algebras to be considered are semiperfect (see Lemma 1.10).

Let $\{e_1, \dots, e_n\}$ be a basic set of orthogonal local idempotents in A. We fix a nonempty subset I_0 of $I = \{1, \dots, n\}$ and define $S^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathsf{Mod}\text{-}A^{\mathsf{e}})$ as the mapping cone of the multiplication map

$$\rho: \bigoplus_{i \in I_0} Ae_i \otimes_R e_i A \to A.$$

Set $e = \sum_{i \in I_0} e_i$, $B = \operatorname{End}_{\mathsf{K}(\operatorname{Mod} - A)}(S^{\bullet})$ and $d_{ij} = \operatorname{rank}_R e_i A e_j$, the rank of $e_i A e_j$ as a free *R*-module, for $i, j \in I_0$. We assume the following conditions are satisfied:

- (a₁) there exists a permutation σ of I_0 such that $e_i A_A \simeq D(_A A e_{\sigma(i)})$ for all $i \in I_0$;
- $(a_2) e_i A e_i \neq e_i R$ for any $i \in I_0$ with $i = \sigma(i)$; and
- (a₃) $e_i A e_i / e_i J e_i \simeq R/\mathfrak{m}$ for all $i \in I_0$, where J is the Jacobson radical of A.

Remark 6.1. For any $i, j \in I_0$ the following hold.

- (1) $e_i A e_j \simeq D(e_j A e_{\sigma(i)}) \simeq e_{\sigma(i)} A e_{\sigma(j)}.$
- (2) ${}_{A}\operatorname{Hom}_{A}(Ae_{\sigma(j)}\otimes_{R}e_{\sigma(i)}A_{A},A_{A})_{A} \simeq {}_{A}Ae_{\sigma(i)}\otimes_{R}e_{j}A_{A} \simeq D({}_{A}Ae_{\sigma(j)}\otimes_{R}e_{i}A_{A}).$

(3) $e_i \otimes e_j \in A^e$ is a local idempotent.

Remark 6.2. For any $i, j \in I_0$ the following hold.

- (1) $d_{ij} = d_{j,\sigma(i)} = d_{\sigma(i),\sigma(j)}$.
- (2) $d_{ij} \ge 1$ if either j = i or $j = \sigma(i)$.
- (3) $d_{ij} \ge 2$ if $j = i = \sigma(i)$.

Remark 6.3. For any $i \in I_0$ we have $\sum_{j \in I_0} d_{ij} = \sum_{j \in I_0} d_{ji} \ge 2$.

Proposition 6.4. The following hold.

- (1) $S^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ is a tilting complex.
- (2) The left multiplication of A on each homogeneous component of S^{\bullet} gives rise to an injective R-algebra homomorphism $\varphi : A \to B$.

(3)
$$_A(B/A)_A \simeq \bigoplus_{i,j \in I_0} (_A Ae_i \otimes_R e_j A_A)^{(\alpha_{ij})}, where$$

$$\alpha_{ij} = \begin{cases} d_{ji} - 2 & \text{if } i = j = \sigma(j), \\ d_{ji} - 1 & \text{if } j \neq \sigma(j) \text{ and } i \in \{j, \sigma(j)\}, \\ d_{ji} & \text{otherwise.} \end{cases}$$

(4) For any $i \in I_0$, $e_i B_B \simeq \bigoplus_{i \in I_0} \operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} - A)}(S^{\bullet}, e_{\sigma(j)}A[1])^{(\mu_{ij})}$, where

$$\mu_{ij} = \begin{cases} d_{ji} - 1 & \text{if } i = \sigma(j), \\ d_{ji} & \text{otherwise.} \end{cases}$$

Proposition 6.5. For any $i \in I_0$ there exists a local idempotent $f_i \in e_i Be_i$ such that $f_i B_B \simeq \operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(S^{\bullet}, e_{\sigma(i)}A[1])$. Furthermore, the following hold.

- (1) $f_i B_B \not\simeq f_j B_B$ unless i = j.
- (2) $f_i B_B \simeq D(BBf_{\sigma(i)})$ for all $i \in I_0$.
- (3) $f_i B f_j \simeq e_i A e_j$ for all $i, j \in I_0$.
- (4) $e_i B_B \simeq \bigoplus_{j \in I_0} f_j B_B^{(\mu_{ij})}$ for all $i \in I_0$.
- (5) $f_i B_A \simeq \bigoplus_{i \in I_0} e_j A_A^{(\mu_{ji})}$ for all $i \in I_0$.

Theorem 6.6. The mapping cone T^{\bullet} of the multiplication map

$$\bigoplus_{i \in I_0} {}_BBf_i \otimes_R e_i A_A \to {}_BB_A$$

is a two-sided tilting complex with $T^{\bullet} \simeq S^{\bullet}$ in $\mathsf{K}(\operatorname{Mod} A)$.

We will prove this in the next section (see Theorem 7.3).

Corollary 6.7. The following are equivalent.

- (1) $\operatorname{add}(D(_AA)) = \mathcal{P}_A.$
- (2) $\operatorname{add}(D(_BB)) = \mathcal{P}_B.$

7 Derived equivalent extension algebras

Let R and A be the same as in the preceding section. We will show that an R-algebra B containing A as a subalgebra satisfying (3) of Proposition 6.4 and (1)–(5) of Proposition 6.5 is derived equivalent to A.

More precisely, let B be an R-algebra which is finitely generated free as an R-module and contains A as a subalgebra. We fix a local idempotent $f_i \in e_i Be_i$ for each $i \in I_0$ and assume the following conditions are satisfied:

- $(b_1) \ _A(B/A)_A \simeq \bigoplus_{i,j \in I_0} (_A Ae_i \otimes_R e_j A_A)^{(\alpha_{ij})};$
- (b₂) $f_i B_B \not\simeq f_j B_B$ unless i = j and $f_i B_B \simeq D(BBf_{\sigma(i)})$ for all $i \in I_0$;
- (b₃) $f_i B f_j \simeq e_i A e_j$ for all $i, j \in I_0$;
- $(b_4) e_i B_B \simeq \bigoplus_{i \in I_0} f_j B_B^{(\mu_{ij})}$ for all $i \in I_0$; and

$$(b_5)$$
 $f_i B_A \simeq \bigoplus_{i \in I_0} e_j A_A^{(\lambda_{ij})}$ for all $i \in I_0$.

Remark 7.1. The following hold.

- (1) $_BBe_i \simeq \bigoplus_{j \in I_0} {}_BBf_j^{(\mu_{ij})}$ for all $i \in I_0$.
- (2) $_{A}Bf_{i} \simeq \bigoplus_{j \in I_{0}} {}_{A}Ae_{j}^{(\lambda_{\sigma^{-1}(i),\sigma^{-1}(j)})}$ for all $i \in I_{0}$.

Remark 7.2. For any $i, j \in I_0$, $f_i \otimes e_j \in B^{\mathrm{op}} \otimes_R A$ and $e_i \otimes f_j \in A^{\mathrm{op}} \otimes_R B$ are local idempotents.

Theorem 7.3. Denote by T^{\bullet} the mapping cone of the multiplication map

$$\delta: \bigoplus_{i \in I_0} {}_BBf_i \otimes_R e_i A_A \to {}_BB_A.$$

Then T^{\bullet} is a two-sided tilting complex with $T^{\bullet} \simeq S^{\bullet}$ in K(Mod-A) if

$$\alpha_{ij} = \begin{cases} d_{ji} - 2 & \text{if } i = j = \sigma(j), \\ d_{ji} - 1 & \text{if } j \neq \sigma(j) \text{ and } i \in \{j, \sigma(j)\}, \\ d_{ji} & \text{otherwise}, \end{cases}$$
$$\mu_{ij} = \lambda_{ji} = \begin{cases} d_{ji} - 1 & \text{if } i = \sigma(j), \\ d_{ji} & \text{otherwise.} \end{cases}$$

8 Partial tilting complexes

Throughout this section, R is noetherian and A is finitely generated as an R-module. We fix a nonzero $P^{\bullet} \in \mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ with $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$ and ask when P^{\bullet} appears as a direct summand of a tilting complex. Set $l = l(P^{\bullet})$. We may assume $a(P^{\bullet}) = l$ and $b(P^{\bullet}) = 0$. In case l = 0, by Remark 1.7 $P^{\bullet} \simeq \operatorname{H}^{0}(P^{\bullet})$ in $\mathsf{K}^{\mathsf{b}}(\mathcal{P}_{A})$ and the question is trivial. So we assume $l \geq 1$.

Following [15, Section 4], we will construct inductively a sequence of complexes $Q_0^{\bullet}, Q_1^{\bullet}, \cdots$ in $\mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$ as follows. Set $Q_0^{\bullet} = A$. Let $k \geq 0$ and assume $Q_0^{\bullet}, \cdots, Q_k^{\bullet}$ have been constructed. Then we form a distinguished triangle in $\mathsf{K}^{\mathsf{b}}(\mathcal{P}_A)$

$$Q_{k+1}^{\bullet} \to P^{\bullet(n_k)} \xrightarrow{f_k} Q_k^{\bullet} \to$$

such that $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, f_k)$ is epic.

Lemma 8.1. For any $k \ge 1$ the following hold.

- (1) $a(Q_k^{\bullet}) \leq k+l-1 \text{ and } b(Q_k^{\bullet}) \geq 0.$
- (2) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, Q_k^{\bullet}[i]) = 0 \text{ for } i > 0.$
- (3) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(Q_k^{\bullet}, Q_k^{\bullet}[i]) = 0 \text{ for } i \geq l.$
- (4) If $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for $1 \le i < k+l-2$, then $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} A)}(Q_{k}^{\bullet}, \nu P^{\bullet}[i]) = 0$ for i < 0.

Lemma 8.2. For any $k \ge l$ the following hold.

- (1) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(P^{\bullet}, Q_k^{\bullet}[i]) = 0 \text{ for } i < 0.$
- (2) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod} A)}(Q_k^{\bullet}, P^{\bullet}[i]) = 0 \text{ for } i > 0.$

Lemma 8.3. Assume $l \ge 2$. Then for any $k \ge l$ the following are equivalent.

- (1) $\operatorname{Hom}_{\mathsf{K}(\operatorname{Mod}-A)}(Q_k^{\bullet}, Q_k^{\bullet}[i]) = 0$ for $1 \le i < l$.
- (2) $\mathrm{H}^{l}(f_{i})$ is epic for $1 \leq i < l$.
- (3) $a(Q_l^{\bullet}) \leq l$.
- (4) $a(Q_k^{\bullet}) \le k$.

Theorem 8.4. Let $k \ge l$ and assume $\operatorname{Ext}_R^i(A, R) = 0$ for $1 \le i < k + l - 2$. If $P^{\bullet} \in \operatorname{add}(\nu P^{\bullet})$, then the following are equivalent.

- (1) $Q_k^{\bullet} \oplus P^{\bullet}$ is a tilting complex.
- (2) $a(Q_l^{\bullet}) \leq l$, this is the case if l = 1.

Proposition 8.5 (cf. [7, Lemma of 1.2]). Assume $H^i(P^{\bullet}) = 0$ for $i \neq l$. Then the following are equivalent.

- (1) $Q_l^{\bullet} \oplus P^{\bullet}$ is a tilting complex with $\mathrm{H}^i(Q_l^{\bullet} \oplus P^{\bullet}) = 0$ for $i \neq l$.
- (2) $a(Q_l^{\bullet}) \leq l$, this is the case if l = 1.

Remark 8.6. In case A is finitely generated projective as an R-module, according to Lemma 1.8, we do not need to assume R is noetherian.

References

- M. Auslander, Functors and morphisms determined by objects, in: Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), 1–244, Lecture Notes in Pure Appl. Math., 37, Dekker, New York, 1978.
- [2] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc., 94, Amer. Math. Soc., Providence, R.I., 1969.
- [3] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. **95** (1960), 466–488.
- [4] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
- [5] J.-E. Björk and E. K. Ekström, Filtered Auslander-Gorenstein rings, in: Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), 425–448, Progr. Math., 92, Birkhäuser, Boston, MA., 1990.
- [6] M. Bökstedt and A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234.
- K. Bongartz, Tilted algebras, in: Representations of algebras (Puebla, 1980), 26–38, Lecture Notes in Math., 903, Springer, Berlin, 1982.
- [8] H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956.
- [9] R. Hartshorne, *Residues and duality*, Lecture Notes in Math., 20, Springer, Berlin, 1966.
- [10] M. Hoshino and Y. Kato, Tilting complexes defined by idempotents, Comm. Algebra 30 (2002), no. 1, 83–100.
- [11] M. Hoshino and Y. Kato, Tilting complexes associated with a sequence of idempotents, J. Pure Appl. Algebra 183 (2003), no. 1-3, 105–124.
- [12] H. Matsumura, *Commutative ring theory*, Translated from the Japanese by M. Reid, Cambridge Univ. Press, Cambridge, 1986.
- [13] J. Miyachi, Derived categories and Morita duality theory, J. Pure Appl. Algebra 128 (1998), no. 2, 153–170.
- Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146.
- [15] J. Rickard, Morita theory for derived categories, J. London Math. Soc.
 (2) 39 (1989), no. 3, 436–456.
- [16] J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), no. 1, 37–48.

- [17] J. L. Verdier, Catégories dérivées, état 0, in: Cohomologie étale, 262–311, Lecture Notes in Math., 569, Springer, Berlin, 1977.
- [18] A. Zaks, Injective dimension of semi-primary rings, J. Algebra 13 (1969), 73–86.

Institute of Mathematics, University of Tsukuba, Ibaraki, 305-8571, Japan $E\text{-mail}\ address:$ abeh@math.tsukuba.ac.jp

Institute of Mathematics, University of Tsukuba, Ibaraki, 305-8571, Japan $E\text{-mail}\ address:$ hoshino@math.tsukuba.ac.jp